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Abstract

Register allocation is often a two-phase approach: spilling of regis-
ters to memory, followed by coalescing of registers. Extreme live-
range splitting (i.e. live-range splitting after each statement) en-
ables optimal solutions based on ILP, for both spilling and coa-
lescing. However, while the solutions are easily found for spilling,
for coalescing they are more elusive. This difficulty stems from the
huge size of interference graphs resulting from live-range splitting.

This paper focuses on coalescing in the context of extreme live-
range splitting. It presents some theoretical properties that give rise
to an algorithm for reducing interference graphs. This reduction
consists mainly in finding and removing useless splitting points. It
is followed by a graph decomposition based on clique separators.
The reduction and decomposition are general enough, so that any
coalescing algorithm can be applied afterwards.

Our strategy for reducing and decomposing interference graphs
preserves the optimality of coalescing. When used together with
an optimal coalescing algorithm (e.g. ILP), optimal solutions are
much more easily found. The strategy has been tested on a standard
benchmark, the optimal coalescing challenge. For this benchmark,
the cutting-plane algorithm for optimal coalescing (the only opti-
mal algorithm for coalescing) runs 300 times faster when combined
with our strategy. Moreover, we provide all the optimal solutions of
the optimal coalescing challenge, including the three instances that
were previously unsolved.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Processors - compilers, optimization; G.2.2 [Graph the-
ory]: Graph algorithms

General Terms algorithms, languages

Keywords register allocation, coalescing, graph reduction

1. Introduction

Register allocation determines at compile time where each variable
will be stored at execution time: either in a register or in memory.
Register allocation is often a two-phase approach: spilling of reg-
isters to memory, followed by coalescing of registers [3, 8, 16, 5].
Spilling generates loads and stores for live variables1 that cannot

1 A variable that may be potentially read before its next write is called a live

variable.
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be stored in registers. Coalescing allocates unspilled variables to
registers in a way that leaves as few as possible move statements
(i.e. register copies). Both spilling and coalescing are known to be
NP-complete [24, 6].

Classically, register allocation is modeled as a graph coloring
problem, where each register is represented by a color, and each
variable is represented by a vertex in an interference graph. Given
a number k of available registers, register allocation consists in
finding (if any) a k-coloring of the interference graph. When there
is no k-coloring, some variables are spilled to memory. When there
is a k-coloring, coalescing consists in choosing a k-coloring that
removes most of the move statements.

ILP-based approaches have been applied to register allocation
in order to provide optimal solutions. Register allocation is one of
the most important passes of a compiler. A compiler performing an
optimal register allocation can thus generate efficient code. Having
such a code is often of primary concern for embedded software,
even if the price to pay is to use an external ILP-solver. Appel and
George formulate spilling as an integer linear program (ILP) and
provide optimal and efficient solutions [3]. Their process to find
optimal solutions for spilling requires live-range splitting, an opti-
mization that leaves more flexibility to the register allocation (i.e.
avoids to spill a variable everywhere). While the solutions are easily
found for spilling in this context, for coalescing they are more elu-
sive. Indeed, live-range splitting generates huge interference graphs
(due to many move statements) that make the coalescing harder to
solve.

Splitting the live-range of a variable v consists in renaming v
to different variables having shorter live-ranges than v and adding
move statements connecting the variables originating from v. Re-
cent spilling heuristics benefit from live-range splitting: when a
variable is spilled because it has a long live-range, splitting this
live-range into smaller pieces may avoid to spill v. If the live-range
of v is short, it is easier to store v in a register, as the register needs
to hold the value of v only during the live-range of v.

There exists several ways of splitting live-ranges (e.g. region
spilling, zero cost range splitting, load/store range analysis) [10, 7,
18, 19, 4, 11, 20]. Splitting live-ranges often reduces the interfer-
ences with other live-ranges. Thus, most of the splitting heuristics
have been successful in improving the spilling phase. The differ-
ences between these heuristics stem from the number of splitting
points (i.e. program points where live-ranges are split) as well as
the sizes of the split live-ranges. These heuristics are sometimes
difficult to implement.

The most aggressive live-range splitting is extreme live-range
splitting, where live-ranges are split after each statement. Its main
advantage is the accuracy of the generated interference graph. In-
deed, a variable is spilled only at the program points where there is
no available register for that variable. As in a SSA form, each vari-
able is defined only once. Furthermore, contrary to other splitting
heuristics, extreme live-range splitting is easy to implement.



Extreme live-range splitting helps in finding optimal and ef-
ficient solutions for spilling [3]. However, it generates programs
with huge interference graphs. Each renaming of a variable v to
v1 results in adding a vertex in the interference graph for v1 and,
consequently, some edges incident to that vertex. Thus, interfer-
ence graphs become so huge that coalescing heuristics often fail.
The need for a better algorithm for the optimal coalescing problem
gave rise to a benchmark of interference graphs called the optimal
coalescing challenge (written OCC in the sequel of this paper) [2].

Recently, Grund and Hack have formulated coalescing as an
ILP [16]. They introduce a cutting-plane algorithm that reduces
the search space (i.e. the space of potential solutions). Thus, their
ILP formulation needs less time to compute optimal solutions. As
a result, they provide the first optimal and efficient solutions of the
OCC. These solutions are 50% better than the solutions computed
by the best coalescing heuristics.

Grund and Hack conclude in [16] that their cutting-plane al-
gorithm fails when applied to the largest graphs of the OCC. Be-
cause of extreme live-range splitting (that was required for opti-
mal spilling), optimal solutions for coalescing cannot be efficiently
computed on these graphs. Owing to the extreme amount of copies,
coalescing is hard to solve optimally. In this paper, we study the
impact of extreme live-range splitting on coalescing and provide
a strategy for reducing interference graphs before coalescing. ILP
is commonly composed with algorithms in order to let the solver,
that uses an exponential algorithm, only deal with the core of the
problem. The work we present follows this classical methodology.

Our strategy performs mainly two steps. The first step is the
main step of the strategy and we call this step live-range unsplitting;
it identifies most of the splitting points that are not useful for co-
alescing, and updates the graph consequently. Then, a second step
finds clique separators in the updated graph and thus decomposes it
into several subgraphs. Coalescing on each subgraph is then solved
separately. As the subgraphs are much smaller than the original
graph, ILP solutions are much easier and faster to find. Moreover,
both steps do not break the optimality of coalescing.

The remainder of this paper is organized as follows. Section 2
recalls some definitions form graph theory and defines some terms
that are computed by our strategy for optimal coalescing (e.g. split
interference graphs, that are the interference graphs resulting from
extreme live-range splitting). Section 3 presents the main contri-
bution of this paper. It details our algorithm for live-range unsplit-
ting, that reduces split interference graphs. Then, section 4 defines
our whole strategy for optimal coalescing. This strategy performs
mainly live-range unsplitting and then a graph decomposition.

Section 5 presents experimental results on the OCC. A first re-
sult is that our live-range unsplitting reduces the size of original
graphs (i.e. before extreme live-range splitting) by a factor of up to
10, and thus extreme live-range splitting does not make coalescing
harder anymore. A second result is that Grund and Hack’s cutting-
plane algorithm for optimal coalescing runs 300 times faster when
combined with our strategy, thus enabling to solve all the instances
of the OCC, including the 3 instances that were previously un-
solved. Related work is discussed in Section 6, followed by con-
cluding remarks in Section 7.

2. Foundation

This section defines split interference graphs and SB-cliques, as
well as some concepts from graph theory.

Register allocation is performed on an interference graph. There
are two kinds of edges in an interference graph: interference (or
conflict) edges and affinity (or preference) edges. Two variables in-
terfere if there exists a program point where one variable is live at
the exit of a statement that defines the other variable (and the state-
ment differs from a move statement between both variables) [1].

An affinity edge between two variables represents a move statement
between these variables (that should be stored in a same register or
at the same memory location). Weights are associated to affinity
edges, taking into account the frequency of execution of the move

statements.
Given a number k of registers, register allocation consists in

satisfying all interference edges as well as maximizing the sum of
weights of affinity edges such that the same color is assigned to
both endpoints. Satisfying most of the affinity edges is the goal of
register coalescing.

Interference graphs are built after a liveness analysis [9]. In an
interference graph, a variable is described by a unique live-range.
Consequently, spilling a variable means spilling it everywhere in
the program, even if it could have been spilled on a shorter live-
range. Figure 1 illustrates this problem on a small program consist-
ing of a switch statement with 3 branches (see [21] for more de-
tails). The program has 3 variables but only 2 variables are updated
in each branch of the switch statement. Thus, its corresponding
interference graph is a 3-clique, that is not 2-colorable, although
only 2 registers are needed.

switch(. . . ){
case 0: case 1: case 2:
l1 : a := . . . l4 : a := . . . l7 : b:= . . .
l2 : b := . . . l5 : c := . . . l8 : c:= . . .
l3 : . . . := a + b l6 : . . . := a + c l9 : . . . := b + c
}

Figure 1. Excerpt of a small program such that its interference
graph is a 3-clique.

The usual way to overcome the previous problem is to perform
live-range splitting. Extreme live-range splitting splits live-ranges
after each statement, and thus generates some renamings that are
not useful for coalescing. When v is renamed to v1 and v2, if after
optimal coalescing v1 and v2 share a same color, then the renaming
of v2 is useless: v2 can be replaced by v1 while preserving the
optimality of coalescing.

Moreover, the number of affinity edges blows up during extreme
live-range splitting since there is an affinity edge between any
two vertices that represent the same variable in two consecutive
statements. Figure 2 shows the split interference graph of a small
program given in [1]. In the initial interference graph, each vertex
represents a variable of the initial program (the array mem is stored
in memory); the affinity edges correspond to both assignments
d:=c and j:=b.

The bottom of Figure 2 is the split interference graph resulting
from extreme live-range splitting on the graph at the top of the Fig-
ure. The construction of the split interference graph is inspired from
the construction of the OCC by Appel and George. Every variable
vi that is live-in and live-out2 at program point p is renamed into
vi+1 at this program point (i.e. the variables are renamed in parallel
with the statement of p). For instance, k0, k1 and k2 are copies of
k. As k is live initially, it is renamed (at program point p0) to k0
(and so is j). Similarly, g and j0 are renamed to respectively g0
and j1 at program point p1, but the variable k is not renamed, as
it dies (i.e. it is not live-out) at p1. In order to show how the edges
of the first graph (on the top of the figure) are transformed into the
edges of the second graph (bottom of the figure), the edges (j, k)
and (j, b) of the first graph and their corresponding edges in the
second graph are bold edges. The renamings are done in parallel
in order to limit the interferences between the newly created vari-

2 Given a program point p, a variable is live-in (resp. live-out) if it is live
just before (resp. after) p.



Live-in : k j
(p0) g := mem[j+12]
(p1) h := k - 1
(p2) f := g * h
(p3) e := mem[j+8]
(p4) m := mem[j+16]
(p5) b := mem[f]
(p6) c := e + 8
(p7) d := c
(p8) k := m + 4
(p9) j := b

(p10)
Live-out : d k

d

e

gh
k mj b

f

Live-in : k j
(p0) k0 := k ‖ j0 := j ‖ g := mem[j+12]
(p1) j1 := j0 ‖ g0 := g ‖ h := k0 - 1
(p2) j2 := j1 ‖ f := g0 * h
(p3) f0 := f ‖ j3 := j2 ‖ e := mem[j2+8]
(p4) e0 := e ‖ f1 := f0 ‖ m:=mem[j3+16]
(p5) e1 := e0 ‖ m0 := m ‖ b:=mem[f1]
(p6) b0 := b ‖ m1 := m0 ‖ c := e1 + 8
(p7) b1 := b0 ‖ m2 := m1 ‖ d := c
(p8) b2 := b1 ‖ d0 := d ‖ k1 := m2 + 4
(p9) d1 := d0 ‖ k2 := k1 ‖ j4 := b2

(p10)
Live-out : d1 k2

k
j

k0
j0 g g0 h

j1 fj2
ef0 j3

e0f1 m
m0b e1

m1 b0
m2b1 d

k1 b2d0
k2 j4d1

(p0) (p1) (p2) (p3) (p4) (p5)

(p6)(p7)(p8)(p9)(p10)
Figure 2. A small program and its interference graph (top). Full edges are interference edges. Affinity edges are dashed edges. The same
program after extreme live-range splitting and its split interference graph (bottom). The weights of affinity edges are omitted in the Figure.
The program points (p0) . . . (p10) of both programs are shown in the Figure.

ables and the other variables. For instance, in the first statement (at
program point p0), k0 interferes with j0 but not with j.

Edges corresponding to renamings are added in the split inter-
ference graph. Affinity edges between renamed variables are also
added, as well as interference edges related to renamed variables.
For instance, renaming j to j0 generates the affinity edge (j, j0).
More precisely, an interference edge (x, y) in the initial graph gen-
erates (in the split interference graph) n interference edges between
a renaming x′ of x (or x itself) and a renaming y′ of y (or y it-
self), where n is the number of program points where x and y in-
terfere in the initial program. For instance, the interference edge
(j, k) (of the initial graph) corresponds to the three interference
edges (j, k), (j0, k0) and (j4, k2) of the split interference graph,
because in the initial program, j and k interfere at program points
p0, p1 and p10. Similarly, the affinity edge (j, b) of the initial graph
corresponds to the affinity edge (j4, b2) of the split interference
graph, and this is the only affinity edge originating from (j, b) as
there is only one move statement j:=b in the initial program.

The main drawback of extreme live-range splitting is that it
generates huge graphs. There are two kinds of affinity edges in a
split interference graph: edges representing coalescing behaviors,
and edges added by variable renaming during live-range splitting.

A lot of affinity edges and vertices (as well as some associated
edges) corresponding to variable renaming are added in the graph.
This section gives two properties of these edges and vertices that
are useful for reducing the graphs.

Clique. A clique of a graph G is a subgraph of G having an edge
between every pair of vertices. A clique is said to be maximal if
there is no other clique containing it.

Interference connected component. Given a graph, an interfer-
ence connected component is a maximal set of vertices such that
there exists a path (of interference edges) between any pair of its
vertices.

Interference clique. An interference clique is a clique containing
only interference edges. For instance, the subgraph induced by
the vertices b0, c and m1 is an interference clique that we call
C. The subgraph induced by the vertices b1, d and m2 is also an
interference clique that we call C′.

Theorem 1. After extreme live-range splitting, a statement corre-
sponds to an interference connected component of the split interfer-
ence graph. Moreover, such a component is an interference clique,
that we call a statement clique.
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(p5) e1 := e0 ‖ m0 := m ‖ b:=mem[f1]
(p6) b0 := b ‖ m1 := m0 ‖ c := e1 + 8
(p7) b1 := b0 ‖ m2 := m1 ‖ d := c
(p8) b2 := b1 ‖ d0 := d ‖ k1 := m2 + 4

(p5) e1 := e0 ‖ m0 := m ‖ b:=mem[f1]
(p6, p7) b1 := b ‖ m2 := m0 ‖ d := e1 + 8
(p8) b2 := b1 ‖ d0 := d ‖ k1 := m2 + 4

Figure 3. Some parallel cliques and the corresponding piece of code (top). The same subgraph (and the corresponding piece of code) after
our graph reduction (bottom).

For instance, the statement clique of d := c (at program point
p7) is C, and the statement clique of k := m+4 (at program point
p8) is C′. The split interference graph of Figure 2 shows the corre-
spondence between statement cliques and statements (i.e. program
points).

The proof of Theorem 1 relies on the fact that all the variables
that are defined in parallel at a program point interfere together,
thus they induce an interference clique. Moreover, there is no other
interference involving these variables since there is an unique state-
ment where they are live.

Matching. A matching is a set of non-adjacent edges. A matching
is maximum if its cardinality is the maximal cardinality of all
matchings. For instance, the set {(b0, b), (m0, m1)} is a matching.

Affinity matching. An affinity matching is a matching consisting
only of affinity edges. For instance, the previous example is also
an affinity matching. It is maximum on the graph induced by the
vertices of C and C′.

Parallel clique, dominant and dominated parallel cliques, domi-
nant affinity matching. Let C1 and and C2 be two maximal inter-
ference cliques. C1 dominates C2 if there exists an affinity match-
ing M such that :

1. M contains only affinity edges having an endpoint in C1 and
the other in C2,

2. each vertex of C2 is reached by M ,

3. no affinity edge of M has endpoints precolored 3 with different
colors,

4. for any v ∈ C1 and v′ ∈ C2 which are precolored with the
same color, the edge (v, v′) belongs to M ,

5. for each vertex v of C2, the weight of the edge of M that
reaches v is greater than or equal to the total weight of all others
affinity edges reaching v. This condition is not as restrictive as it
seems. The weight of an affinity edge is often half the weight of

3 A precolored node is a node that is colored (i.e. preassigned to a register)
before register allocation, in order to respect the calling conventions of the
processor. Register allocation cannot change the color of such a node, but a
precolored node can be coalesced with any ordinary node.

the total weight of incident affinity edges reaching its endpoints.
Indeed, the number of copy statements does not change, except
when entering in or exiting from a loop.

We also say that C1 and C2 are parallel cliques, C1 is a dominant
parallel clique and C2 is a dominated parallel clique. Moreover,
M is called a dominant affinity matching.

Figure 3 shows a subgraph of the split interference graph given
in Figure 2. This subgraph (on the top of the figure) consists of
both cliques C and C′ and two other cliques. C dominates C′ (and C′

dominates C). We call M = {(b0, b1), (c, d), (m1, m2)} the dom-
inant affinity matching between C and C′. Intuitively, the edges of
M represent the variables that will be coalesced. When applied to
the subgraph on the top of Figure 3, live-range unsplitting consists
in computing M and then coalescing the variables of affinity edges
of M, thus yielding the reduced graph at the bottom of the figure. In
this reduced graph, the splitting point p8 has been removed. In the
corresponding piece of code, the copies b0 and m1 have been re-
moved, and the sequence of statements c:=e1+8; d:=c has been
simplified into the statement d:=e1+8.

Actually, many dominations appear. The following property of
dominated parallel cliques enables us to remove the splitting points
that have created this domination, without worsening the quality of
coalescing (i.e. while preserving the optimality).

Theorem 2. If C1 and C2 are two parallel cliques such that C1

dominates C2, then there exists an optimal coalescing such that
the endpoints of each edge of the dominant affinity matching are
colored with a same color.

We prove this result by induction on the size of C2. If there is
only one vertex then C2 has no coloring constraint. Thus coloring
this vertex with the same color than its image in the matching leads
to an optimal solution. Assume the property holds for a clique of
size p. We decompose a clique of size p + 1 into a clique of size p
and an other vertex. The result holds for the clique and the single
vertex. Moreover, there is no constraint between the p vertices and
the last one since p + 1 is lower than or equal to k because spilling
has already been done, and there is no other constraints since a
statement clique is a connected component. Finally, the optimum
is reached since minima of both problems are reached and that the
function to optimize is linear.



Bipartite graph. A graph G is bipartite if there exists a partition
(V1, V2) of its vertices such that every edge has an endpoint in V1

and the other in V2.

SB-clique. The main idea of live-range unsplitting is to reduce
the size of the split interference graph by removing most of the
splitting points. Any splitting point separates two consecutive se-
quences of statements. We define a split-block as a sequence of
statements that is not separated by a splitting point. Hence, initially
(i.e. before the reduction) split-blocks are statements. Moreover, re-
moving a splitting point between two split-blocks leads to a new
split-block. We also define SB-cliques (for split-blocks cliques),
as cliques of the interference graph. Thus, SB-cliques are initially
statement cliques. The intuition that motivated the following work
relies on the correspondence between split-blocks and SB-cliques.

3. Live-range unsplitting

Live-range unsplitting removes the splitting points that could have
been useful for spilling but that are useless for coalescing. This re-
duction relies on dominated parallel cliques representing the split-
ting points that can be removed from the program. This section de-
tails a first algorithm that checks if two cliques are parallel. Then,
it details a second algorithm that reduces split interference graphs.
This second algorithm merges parallel cliques and removes trivially
colorable vertices.

3.1 Detecting dominated parallel cliques

A reduction rule arises from Theorem 2. Furthermore, checking
if two cliques are parallel can be done in polynomial time. Algo-
rithm 1 does it in O(k ·mC2

), where mC2
is the number of affinity

edges having an endpoint in C2.
The first part of Algorithm 1 (lines 1 to 7) computes E, the set

of affinity edges that may belong to a dominant affinity matching.
The edges that cannot respect precoloring constraints (i.e. that have
endpoints colored with different colors or an endpoint colored with
a color that cannot be a color for the second endpoint) are removed.

Then, the next two loops (lines 8 to 17) remove every affinity
edge such that its weight is not high enough to be dominant.
More precisely, an affinity edge can be deleted if its weight is
not greater than the half of the total weight of its endpoint that
belongs to the potential dominated parallel clique. Affinity edges
having endpoints precolored with the same color are not deleted
since they must belong to any dominant matching. The last part of
Algorithm 1 (lines 18 to 23) is a search for a maximum affinity
matching included in E. This problem is nothing but the search
of a maximum matching in a bipartite graph, which can be solved
in polynomial time [23]. Finally, one only needs to check if each
vertex of C2 is an endpoint of an affinity edge of the matching. That
can be done by checking the equality between the cardinal of the
matching and the number of vertices of C2 (line 19).

3.2 Merging parallel cliques

Algorithm 2 reduces split interference graphs as long as it is pos-
sible. This reduction requires the computation of SB-cliques. First,
SB-cliques are initialized to statement cliques. If two SB-cliques
are parallel, then they can be merged (resulting in a new SB-clique),
since each pair of vertices linked by an edge of the dominant affin-
ity matching (that is computed by Algorithm 1) can be coalesced.
Indeed, there exists an optimal solution that assigns the same color
to both vertices (see Theorem 2). This merge leads to a graph where
new dominations may appear, as well as vertices with no affinity
edges. These vertices can be removed from the graph since the in-
terference degree of any vertex is strictly lower than k. We denote
such a vertex a low-degree vertex. Low-degree vertices can be re-

Algorithm 1 dominant affinity matching (C1,C2)

Require: Two maximal interference cliques C1 and C2

Ensure: A dominant affinity matching M if C2 is dominated by
C1, NULL otherwise

1: E := {affinity edges having an endpoint in C1 and the other in
C2}

2: delete every affinity edge having endpoints precolored with
different colors from E

3: for all color c do
4: if there exist v1 ∈ C1 and v2 ∈ C2 both colored with c

then
5: delete from E every affinity edge reaching v1 or v2

except (v1, v2)
6: end if
7: end for
8: for all v ∈ C2 do
9: Aff weight(v) :=

P

x∈Aff Nghb(v) weight(v,x)

10: end for
11: for all v2 ∈ C2 do
12: for all v1 such that (v1, v2) ∈ E do

13: if weight(v1,v2) < 1
2
· Aff weight(v2) and v1 and

v2 are not precolored with the same color then
14: delete (v1, v2) from E
15: end if
16: end for
17: end for
18: M := maximum affinity matching included in E
19: if cardinal(M) = number of vertices of C2 then
20: return M
21: else
22: return NULL
23: end if

moved from the graph and put in the coloring stack to be treated
later, as many coalescing algorithms do [9, 13].

Merging two SB-cliques is equivalent to removing the splitting
point that separates the split-blocks they represent and, hence, re-
moving copies that have been created by the deleted splitting point.
In other words, merging two SB-cliques is equivalent to undo a
splitting. Moreover, since merging two SB-cliques yields a new SB-
clique, the reduction is iterated until the graph is left unchanged, i.e.
as long as there remain parallel SB-cliques or low-degree vertices
(lines 7 to 22). In order to speed up the process, for each SB-clique
i, we first compute the set Ni of SB-cliques j such that there exists
an affinity edge having an endpoint in i and the other in j. Then, one
only needs to find and merge parallel SB-cliques, delete low-degree
vertices, and update the graph. Algorithm 2 details our reduction.

3.3 An example

Figure 4 presents the succession of parallel cliques detected during
the application of live-range unsplitting to the second graph of
Figure 2, for k ≥ 3. Each of the steps of Figure 4 is followed by
a (traditional) phase of deletion of low-degree vertices that is not
detailed in the Figure (except the first one).

At the first step four pairs parallel-cliques are detected (graph
(a)), and thus coalesced. In the graph, this coalescing corresponds
to the merge of four affinity edges that are in bold in graph (a):
(k, k0), (j, j0), (f, f0), (j2, j3). Graph (b) shows the graph re-
sulting from this merge. In Figure 4, when two nodes are merged,
the resulting node is identified by one of these two nodes (e.g. k0
in graph (b)), not to overload the graphs of Figure 4. Then, low-
degree vertices (h, k0, k1) are removed, thus yielding graph (c). A
new phase of parallel cliques detection is performed on graph (c),



Algorithm 2 graph reduction (G)

Require: A split interference graph G
Ensure: A reduced split interference graph

1: compute statement cliques
2: for all statement clique i do
3: Ni := {statement cliques linked to i with an affinity edge}
4: end for
5: red := 1
6: while red 6= 0 do
7: red := 0
8: for all SB-clique i do
9: for all j ∈ Ni such that |i| ≥ |j| do

10: M := dominant affinity matching(i, j)
11: if M 6= NULL then
12: merge each pair of M and compute new

weights
13: red := red+1
14: Nij := Ni ∪ Nj − {i, j}
15: for all k ∈ Ni ∪ Nj do
16: Nk := Nk ∪ {ij} − {i, j}
17: end for
18: end if
19: end for
20: end for
21: red := red + card({low-degree vertices})
22: remove low-degree vertices
23: end while

thus yielding the graph (d). The process is then iterated, thus yield-
ing graph (e) and an empty graph.

Finally live-range unsplitting yields an empty graph, meaning
that this instance can be optimally solved in polynomial time.
Indeed, contrary to classical algorithms, it does not always lead to
an empty graph. However, when it does, as for this example, it also
ensures the optimality of the coalescing. Moreover, the solution
requires only three colors while any coalescing technique applied
to the the classical interference graph (first graph of Figure 2), and
satisfying its two affinities, would require at least four colors. In
Figure 4, thanks to live-range splitting, k and k2 are not colored
with the same color, as well are j and j5.

Actually, if j and b are coalesced and if jb is the vertex obtained
by coalescing j and b, then {e, f, m, jb} form a clique of four
vertices. Thus these four vertices must have different colors, and
four colors (at least) are needed. It shows, again, that live-range
splitting can provide better solutions because variables belonging
to split live-ranges may be stored in different registers.

4. A strategy for optimal coalescing

Live-range unsplitting is the first step of our strategy for optimal
coalescing. This strategy consists of four steps, and it does not
affect the global quality of coalescing (and preserve the optimality
of coalescing). It is detailed in Figure 5.

The second step uses clique separators to decompose the graph
into several smaller subgraphs. The third step consists in solving
coalescing separately on each subgraph using any well-known co-
alescing algorithm (i.e. a heuristic or an exact algorithm, such as
an ILP). The last step is the combination of coalescings of the sub-
graphs, that is the construction of the global coalescing from the
coalescings of all the subgraphs.

4.1 Decomposition by clique separators

Our graph decomposition (the second step) is an enhancement
of a decomposition based on clique separators that is commonly

Live-range unsplitting

Graph decomposition

Coalescing of g1 Coalescing of gi

Combination of coalescings

Graph g

Graph g1 Graph gi

Coloring of g

. . . . . . . . .

. . . . . . . . .

Figure 5. The whole process for coalescing.

used in operations research [22, 17]. Its main idea is to use SB-
cliques, that have already been computed by the previous phase as
separation sets. A separation set is a set of vertices whose removal
partitions a connected component into several smaller ones. Thanks
to separation cliques, coalescing needs to be solved only on each
component resulting from the decomposition (and not on the whole
graph), as the following property proves.

Property 1. Let s be an interference clique of g that separates g
into components c1, . . . , cj and let col1, . . . , colj be some respec-
tive colorings of c1∪s, . . . , cj∪s and cols a coloring of s. Then, Πi

is defined, for 1 ≤ i ≤ j, as a permutation of {1, . . . k} such that
for each vertex v of s, Πi(coli(v)) = cols(v). Such permutations
exist, since all the available colorings of a clique are permutating.
The composition of Πi and coli is thus a coloring of ci satisfying
exactly the same preferences than coli. Moreover, the coloring col
defined such that ∀x ∈ ci, col(x) = Πi(coli(x)) is a coloring of g.

In other words, this property explains that it is always possi-
ble to paste the colorings of subgraphs to obtain the coloring of
the initial graph. A prerequisite to make the colorings of subgraphs
compatible is to take care that the color of any vertex belonging
to the separation clique does not change between these colorings.
This constraint of compatibility can be either imposed when the co-
alescing algorithm is called, by forcing the coloring of the vertices
of separation cliques, or after the colorings, by permutating colors
as Property 1 explains.

In split interference graphs, this decomposition can be done in
linear time, rather than in quadratic time. Indeed, the hardest task is
to find interference clique separators. This can easily been done in
split interference graphs since all interference cliques are disjoint.
Hence, to know if a SB-clique is a separator clique, we create a
graph where a vertex represents a SB-clique and two vertices are
adjacent if there exists an affinity edge between the two SB-cliques
that these vertices represent. Then, we compute separator vertices
of this graph. A separator vertex of this graph corresponds to a
separator clique of the split interference graph.

Furthermore, our live-range unsplitting is based on cliques
merging (see Algorithm 1) and thus makes cliques more likely
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Figure 4. Application of the live-range coalescing algorithm to the example of Figure 2. Dominant matchings are in bold at each iteration.
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X
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xic = 1

(C2) ∀(i, j) ∈ I, ∀c ∈ {1, . . . , k}, xic + xjc ≤ 1
(C3) ∀(i, j) ∈ A, ∀c ∈ {1, . . . , k}, xic − xjc ≤ yij

(C4) ∀i ∈ {1, . . . , n(G)}, ∀c ∈ {1, . . . , k}, xic ∈ {0, 1}

Figure 6. ILP formulation of Grund and Hack for coalescing. Variables are xic which are set to 1 iff the vertex i is of color c and yij which
are set to 1 iff vertices i and j have the same color. wij is the weight of the affinity edge (i, j), I is the set of interference edges, A is the set
of affinity edges and n(G) is the number of vertices of G.

to be separators. Indeed, if a union of two cliques is a separable
set, then the clique obtained by merging these two cliques is a
separation clique, even if the two cliques alone are not.

The strength of this decomposition is that it gets rid of solutions
that are permutations of previous solutions, while reducing the size
of each subproblem we need to solve. For a coloring problem, the
huge number of such permutations makes this problem hard to
deal with. Thus imposing a same coloring for the clique separators
reduces a lot the number of solutions. Since ILP solvers are very
sensitive to permutations, deleting some of them may lead to much
faster optimal computations.

4.2 Impact on the cutting-plane algorithm for coalescing

Even if any coalescing algorithm can be used after our strategy, this
section focuses on the most efficient optimal algorithm, the cutting-
plane algorithm of [16]. This algorithm consists on an ILP formu-
lation of coalescing to which are added some efficient inequalities
called cuts. Figure 6 recalls the formulation of [16] that we reuse.

At each iteration where a dominated parallel clique of size s is
found, the size of the graph decreases of s vertices, s2 interference
edges and at least s affinity edges. On the ILP formulation of [16],
it involves a reduction of at least k ·s+s variables (k ·s for vertices

and at least s for affinity edges) and at least s2 + k · s·(s−1)
2

+ s

constraints (s2 for constraints C2, k · s·(s−1)
2

for constraints C3

and s for constraints C1). Such a reduction is quite significant,
especially when applied many times as live-range unsplitting.

Moreover, the number of cut inequalities generated for the
cutting-plane algorithm and the number of variables involved in
them decrease with the size of the graph. The more cut inequali-
ties are generated, the more the solver takes time to find efficient
ones for each iteration of the simplex algorithm (on which solvers
rely). Following the same idea, the more variables are involved in
a cut inequality, the more it is difficult to find values for these vari-
ables. For instance, a path cut [16] is more efficient if it concerns a
path of three affinity edges than if it concerns a path of ten affinity
edges. For these reasons, the computation of cut inequalities and
the solution are speeded up when using our strategy.

5. Experimental results

As mentioned previously, we use the OCC as benchmark. The
OCC is a set of 474 large interference graphs that result from a
spilling phase. The graphs in OCC are from compiling real pro-
grams in SML/NJ. The mix of easy and hard problems in OCC
exactly corresponds to (inlined) functions in a set of real programs.
Our strategy is applied on the OCC graphs and generates simpli-
fied graphs that are given as input to the ILP formulation (and
the associated cutting-plane algorithm) defined in [16]. We use the
AMPL/CPLEX 9.0 solver (as in [16]) on a PENTIUM 4 2.26Ghz.

Initial nb Nb of Vertex nb Edge nb
of vertices instances ratio ratio

0-499 292 18% 33%
500-999 97 14% 27%

1000-2999 63 13% 27%
over 3000 22 13% 8%

Figure 7. Size reductions for OCC graphs. The vertex (resp. edge)
number ratio is the ratio between the number of vertices (resp.
edges) of the largest subgraph after reduction and the one before
reduction.

The first part of this section measures the efficiency of our re-
duction. Then, the section details respectively optimal and near-
optimal solutions.

5.1 Reduction and decomposition

The first measure is the ratio between the sizes of the OCC graph
and the largest subgraph on which coalescing has to be solved
(i.e. resulting from our decomposition). We focus on this subgraph
because its solution requires almost the whole computation time.
These results are detailed in Figure 7.

The average reduction is quite significant since the vertex (resp.
edge) number is divided by 7 (resp. 4.5) when using our strategy.
The reduction rates are also quite significant on the largest graphs
of OCC (they are even better on the largest graphs). Let us note
that the precolored vertices are always kept (because they model
the calling conventions of the processor), thus involving a smaller
reduction ratio for small graphs. 90% of the reduction arises from
the live-range unsplitting, i.e. from the deletion of a set of splitting
points. Hence, this coalescing strategy is both optimality conserva-
tive and very efficient. Moreover, our algorithms run very fast since
they only take 6 seconds when applied to all the instances of OCC.

5.2 Optimal solutions

We compute optimal solutions for each component of the decom-
position using the cutting-plane algorithm of Grund and Hack [16].
For each interference edge, we only compute the path cut corre-
sponding to the shortest path of affinity edges linking its endpoints.
Figure 8 shows a fall of computation times between the solution
with and without our strategy. Indeed, the cutting-plane algorithm
finds only 430 optimal solutions within 5 minutes for each when ap-
plied to the OCC graphs. When using our strategy combined with
the cutting-plane algorithm, we find the optimal solution for 436 in-
stances withing one second for each. Furthermore, only 6 instances
are solved in more than one minute, and only 3 of them are solved
in more than 150 seconds.
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Figure 8. Number of instances of the OCC solved within a short
time limit : comparison of the cutting-plane algorithm efficiency
when using (or not) our strategy.

Figure 9 provides more details about computations times. It con-
tains all the successive numbers of instances solved when using our
strategy and their corresponding computation time. We compare
these times with the ones required without our strategy to solve the
same number of instances. This comparison only considers the 471
instances of the OCC both solved with and without our strategy.
One could point out that the cutting-plane algorithm runs about 300
times faster when combined with our strategy.

Moreover, we are the first to solve the whole OCC instances
optimally. Indeed, in [16] 3 solutions are far too slow to compute
and thus their optimality was not certain. We have found a strictly
better solution for one instance and proved that the two other
solutions are optimal.

5.3 Near-optimal solutions

Many problems are solved within a few seconds. We adapt our
approach to the other problems in order to avoid combinatorial
explosion. Thus, we tune the ILP solver for the six instances that
take more than one minute to be solved. Numerical results are
presented Figure 10.

A first way of tuning the solver is to give it a time limit.
Finding the optimal solution (or a near optimal one) often takes
less than 10% of the computation time. The ILP formulation can
call the solver a lot, even if the solver has a time limit. Thus, the
computation can take more than the time limit. However, it never
exceeds this limit too much since there is empirically only one call
to the solver that reaches the time limit. In addition, this method
can fail if no integer solution is found within the time limit.

A better way to tune the solver is to limit the gap between the
expected solution and the optimum. Indeed, the solver can give
at any time the gap between the current best solution and the
best potential one using a bound of the latter. This method is the
opposite of choosing a time limit: it sets the quality of the expected
solution and evaluates the time spent to find it, instead of setting a
time limit and evaluating the quality of the solution.

Results of Figure 10 give a flavor of the quality of coalescing
on split interference graphs. The numbers of the first line are graph
numbers that correspond to the six hardest graphs. First, a short
time limit of 20 seconds provides solutions of good quality when
it does not fail. Second, a time limit of 30 seconds leads to near-
optimal coalescing. The gap between the corresponding solutions
and the optimum is never greater than 20%. The failure that occurs

Nb of solved Time with Time without Time ratio
instances our strategy our strategy without/with
436 1 298 298
446 2 636 318
448 3 732 244
450 4 1198 300
451 5 1228 245
453 6 3153 525
455 7 3321 474
456 8 3574 447
458 10 4022 402
460 12 5630 469
461 15 7214 480
463 16 8709 544
464 24 10397 433
465 37 11757 317
466 40 14941 373
467 59 24916 422
468 74 25490 344
469 76 25663 337
470 133 69956 525
471 11026 71208 7

Figure 9. Time comparisons (in seconds) when using (or not) our
strategy for the 471 instances of the OCC solved in both cases.

for some instances is quite prohibitive but the time limit gives a
good idea of the difficulty for solving an instance.

Last, using a gap limit seems very powerful, especially when
it is large enough to avoid combinatorial explosion. Here, a limit
of 10% leads to solutions of very good quality (under 5% of gap
with the optimum) and within a quite short time (less than two
minutes). Giving a too restricted limit (such as 5% or less) leads
to good solutions too but these solutions may be quite slower, as
for the instance 387 that goes from 115 to 1187 seconds when the
gap goes from 10% to 5%.

6. Related work

Goodwin and Wilken were the first using ILP to solve register al-
location [14, 15]. Their model solved in a single step both spilling
and coalescing, but it failed to provide solutions for large programs.
Furthermore, their model was quite difficult to handle since they
tackled the problem with a machine level point of view. For in-
stance, they did not model interference graphs. Since then, some
improvements were added, in particular by Fu and Wilken [12], Ap-
pel and George [3], or Grund and Hack [16]. Appel and George op-
timally solved spilling by ILP and empirically showed that separat-
ing spilling and coalescing does not significantly worsen the qual-
ity of register allocation. Because their ILP formulation requires
extreme live range splitting, they were not able to solve coalesc-
ing optimally. More recently, Grund and Hack proposed a cutting-
plane algorithm to solve coalescing and were the first to solve the
OCC [16].

Our study reuses this previous work and introduces split inter-
ference graphs, as well as properties of these graphs. Split interfer-
ence graphs model precisely the live-ranges of variables. In particu-
lar, split interference graphs are more accurate than the interference
graphs obtained from programs in SSA forms (i.e. where each vari-
able is defined only once) or from similar forms (e.g. SSI or SSU).

Concerning coalescing, our strategy divides significantly the
size of the interference graphs (by up to ten when measured on
the OCC graphs), thus enabling us to find in a faster way more so-
lutions that are optimal. In addition, our strategy can be combined



Instance 144 304 371 387 390 400
Optimum 129332 6109 1087 3450 339 1263
20s 129333 no no no 417 1388
30s 129333 no 1285 no 365 1263
10% gap 132040 6448 1094 3550 339 1263
5% gap 129342 6273 1094 3450 339 1263

(a) Values of solutions

Instance 144 304 371 387 390 400
Optimum 11026 1058 132 29543 102 75
20s 20 20 20 20 20 20
30s 30 30 30 30 30 30
10% gap 15 36 62 115 86 21
5% gap 17 64 62 1187 92 21

(b) Computation time

Figure 10. Comparison between different approaches for solving the hardest instances of OCC. no means that no solution is computed
within the time limit. Times are in seconds.

with any coalescing algorithm. Iterated register coalescing, a com-
monly used algorithm, becomes of better quality when embedded
in our strategy. In our experiments, the cost of the solution was di-
vided by three on average. One could expect that more recent and
efficient heuristics lead to better solutions with the help of our strat-
egy and we need to conduct more experiments in that direction.

7. Conclusion

Our main motivation was to improve register coalescing using ILP
techniques. Solving an ILP problem is exponential in time and thus
reducing the size of the formulation can drastically speed up the
solution. Rather than reasoning on the ILP model, we have studied
the impact of extreme live-range splitting on register coalescing.
The main drawback of extreme live-range splitting is that it yields
huge interference graphs. However, no liveness information is lost
when performing register allocation on these graphs. Thus, we have
defined a strategy for simplifying these graphs in order to reduce
significantly the size of the ILP formulation for coalescing. This
strategy relies on a graph reduction and a graph decomposition, that
exploit results from graph theory. Our strategy is general enough so
that any coalescing algorithm can be used together with it.

As said in [16], all the optimizations must go hand in hand
to achieve top performance. When our graph reduction and graph
decomposition are combined with a cutting-plane algorithm, we
solve the whole optimal coalescing challenge optimally and more
efficiently than previously.

Moreover, this work on extreme live-range splitting raises many
questions. Indeed, it can be interesting to relax some constraints
on split-blocks merging in order to design new heuristics, or to
wonder if unsplitting could be done before spilling. Finally, since
finding optimal solutions for spilling and coalescing separately is
not elusive anymore, one could expect to solve both simultaneously
and to evaluate the real gap arising from the separation.

This work is part of an on-going project that investigates the
formal verification of a realistic C compiler usable for critical
embedded software. Future work concern the formal verification
of the optimizations described in this paper.
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