
HAL Id: inria-00388943
https://hal.inria.fr/inria-00388943

Submitted on 28 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on core switch designs and algorithms
Dinil Mon Divakaran, Sébastien Soudan, Pascale Primet, Eitan Altman

To cite this version:
Dinil Mon Divakaran, Sébastien Soudan, Pascale Primet, Eitan Altman. A survey on core switch
designs and algorithms. [Research Report] RR-6942, INRIA. 2009. �inria-00388943�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50168098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00388943
https://hal.archives-ouvertes.fr


appor t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
69

42
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A survey on core switch designs and algorithms

Dinil Mon Divakaran, Sebastien Soudan, Pascale Vicat-Blanc Primet, Eitan Altman

N° 6942

May 2009





Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

A survey on core switch designs and algorithms

Dinil Mon Divakaran, Sebastien Soudan, Pascale Vicat-Blanc

Primet, Eitan Altman

Thème COM — Systèmes communicants
Équipe-Projet RESO

Rapport de recherche n° 6942 — May 2009 — 26 pages

Abstract: Tremendous amounts of effort have gone into research on switch
designs and architectures. This survey attempts to sketch the evolution of the
modern switch architectures. The survey covers the literature over the period
1987-2008 on switch architectures. Starting with the simple crossbar switch, we
explore various architectures such as Output queueing, Input queueing, Com-
bined Input/Output queueing, buffered crosspoint etc., that have evolved during
this period. We discuss the pros and cons of these designs, so as to shed light
on the path of evolution of switch architecture.

Key-words: switch, architecture, crossbar



Etude des algorithmes et des architectures
utilisés dans les switchs de coeur de réseau

Résumé : La recherche sur la conception et l’architecture de commutateurs a
été l’objet de beaucoup d’effort. Cet état de l’art tente d’esquisser l’évolution
de l’architectures des commutateurs modernes. Ce document couvre la période
1987-2008. En partant d’un simple commutateur crossbar, nous explorons
différentes évolutions de cette architecture telle que OQ, IQ, CIOQ, buffered
crosspoint, etc en soulignant les avantages et inconvénients.

Mots-clés : switch, architecture, crossbar



A survey on core switch designs and algorithms 3

1 Introduction

The success of the Internet can be attributed to packet switching as it enables
any device to communicate with virtually any number of peers at the same time.

While the end-hosts in a packet-switched network put messages into multiple
packets and send them through their interfaces, the network multiplexes packets
coming from different end-hosts at the interconnects formed using switches and
routers. The switches and routers basically store, route and forward these pack-
ets before they reach the destination. One core functionality of such switches
(a layer 2 switch, or a layer 3 IP router) is to transfer the packets from the
input port to one of the output ports. This functionality, called switching,
though appears simple, is such a challenging problem to solve at line rates that,
there is a wealth of literature on this topic. In this survey, we explore the various
switch designs and algorithms, and shed light on the way they have evolved. Un-
less mentioned otherwise, our discussion revolves around homogeneous switches,
that is, switches with same rates (capacities) for all input/output lines.

As we go over different switch architectures, we will see that the evolution
is driven by two factors: (1) the performance demands from a network opera-
tor’s point of view, and (2) IC and VLSI technology. An operator expects high
utilization of a switch that is deployed, besides looking to provide QoS guaran-
tees to the customers. Though it has been initially impractical to provide both
high throughput and delay guarantees, with the advancement of technology,
architectures meeting both requirements are now feasible.

In ancient switches, the input output ports communicated using a single
shared bus. Consequently this bus was a limitation, as not more than one pair
of ports can communicate at a time. The classical crossbar switch overcame the
bottleneck imposed by this shared bus architecture that restricted the use of
N input-output port pairs in parallel. The crossbar switch is an NxN matrix
of 2N buses, connecting input output ports as shown in Fig. 1. Each of the
N2 crosspoints, where the bus lines intersect, needs a control line from the
scheduler to turn it on or off, thereby allowing the corresponding input-output
port communication. Evidently, one input can communicate to only one output
at any given time. For example, if an input line card wants to communicate to
an output line card, then the scheduler, based on some criteria (which we will
discuss later), has to turn on the crosspoint formed by the corresponding input
and output lines [1]. If all the input ports have packets to unique output ports,
then all those packets can be switched in a single time slot. Observe that this
is an ideal condition, where the traffic pattern is of uniform nature, and hence
N input ports can communicate to N output port simultaneously.

In scenarios that deviate from the ideal traffic pattern, it is inevitable to
buffer some packets, as not all packets can be switched and transmitted as soon
as they arrive. This reflects the real-world scenario where traffic pattern is
essentially non-uniform in nature leading to queueing of packets. Depending on
where the buffers are, there are different kinds of switch architectures, namely,
input queued (IQ), output queued (OQ), combined input output queued (CIOQ),
crosspoint queued, etc. Each architectures has its own advantages and drawbacks
that will be discussed here.

RR n° 6942



4 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

I
n
p
u
t
 
l
i
n
e
s

Output lines

Figure 1: A crossbar architecture

1.1 Organisation

We start by presenting some basic features and functions of a switch in Sec-
tion 2. Over there, we describe a long existing trend in switch design: syn-
chronous switching. Section 3 takes a tour on various architecture that deploys
synchronous switching. It includes the well-known Virtual Output Queueing
archticture. We also discuss the commonly used arbitration algorithms such as
iSlip, as well as some recent randomized algorithms. In section 4, we look into
asynchronous switching architecture, which has gained attention in the recent
times, thanks to the progress made in technology. Finally, we discuss about the
current trends that would influence future switch designs in Section 5.

2 Preliminary background

This section describes how the fixed size of switching units and synchronized
arbitration are correlated. After briefing on traffic characteristics, we give some
background information on the arbitration itself.

2.1 Switching units

In order to explain some of the basic details on switching, let us, for the time
being, assume that every input has a packet to be switched to a unique output
port; meaning there is no contention for the output. The optimal use of switch
matrix happens when all the bus lines (horizontal and vertical) are used at the
same time. Therefore, the best one can do is to switch all the packets at the
input to the corresponding output, so that none of the bus lines goes under
utilized. If the switch fabric is able to switch packets from all inputs to all
outputs at a rate not slower than the transfer rate of packets at the output,

INRIA



A survey on core switch designs and algorithms 5

then the output port will have packets to send as soon as its transfer is over.
This ensures 100% utilization of the output link.

But since packets are of varying sizes, switching time for packets of different
sizes will be different; and hence the switch fabric will experience bandwidth
wastage. To avoid this, traditional packet switches, switch packets in fixed size
smaller blocks called cells. The cell size usually used in commercial switches
is the size of a minimum-sized packet (64 bytes). The time to transfer a cell
is known as cell slot. As said before, to achieve 100% output utilization, the
time to switch a cell should not be greater than the time to transfer it at the
output port. Therefore, the cell size along with the output line rate defines a
cell slot. For example, a switch with 40 Gbps line cards using a cell size of 64
bytes has to switch cells within (64 × 8)/(40 × 109) = 1.28 × 10−8s. Note that,
the switch fabric has to do two distinct functions during a cell slot: (i) It has
to decide which inputs will communicate to which outputs (arbitration), and
(ii) it has to transfer cells between these matched input-output ports. We refer
to crossbars that makes such synchronous transfers as synchronous switches.
We study different kinds of switch designs that fall in the category in Section
3. The asynchronous switch architecture, where packets are switched between
ports asynchronously, attempts to provide better QoS performance compared
to synchronous switches. We study them in Section 4.

2.2 Traffic characterization

Using the above definitions, we now refer to traffic characterization. If λij

represents the average cell arrival rate at input i to output j, then the incoming
traffic is called admissible if

∑N

i=1
λij < 1 and

∑N

j=1
λij < 1; i.e., if none of the

input or output ports is over-subscribed. Traffic is uniform if all arrival processes
have the same arrival rate, and destinations are uniformly distributed over all
outputs. Otherwise, the traffic is non-uniform. An important performance
metric, throughput, of a switch, is the average rate at which bytes leave the switch
per port, expressed as percentage of the line capacity. Thus, a 100 % throughput
means the output ports are fully utilized. But this depends not only on the
switch internals, but also on the arrival pattern. Hence, designers of scheduling
algorithms not only try to achieve 100% throughput, but also stability. For an
admissible traffic, a scheduling algorithm is stable if the expected queue length
is finite. We use this notion of throughput in this paper.

2.3 Contention resolution

Since the crosspoints couple the input and output ports, the key issue in such
crossbar switches is to resolve the contention arising at the inputs for output. As
the vertical bus is shared by all the input ports, only one input can access it at
a time. If there are multiple transfer requests to a single output port, then the
switch fabric arbitrator has the responsibility to select one of the contending
input ports for sending packet in the next time slot. In fact, the arbitrator
has to match different input ports to different output ports for transfer in the
following time slot. This translates to a matching problem in a bipartite graph,
where input ports and output ports form two sets of disjoint nodes, and the
requests form the edges. In Fig. 2 is seen a bipartite graph (showing requests
from input ports), and two of the possible matchings. Finding a matching given

RR n° 6942



6 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

input requests, is precisely what an arbitration algorithm does. To attain high
performance, an arbitration algorithm tries to find a matching which maximizes
the number of input-output port pairs that communicate in parallel.

Note that, in the literature, the word scheduling is also used to refer to
arbitration. The other interpretation of scheduling comes when we talk about
deciding which packet should be selected to be sent out through the output link.
We stick to the term arbitration for the input-output matching, unless explicitly
specified. In the following, we present some definitions on different matchings
from graph theory.

(a) A bipartite graph (b) A maximum matching

(c) A maximal matching

Figure 2: An example of different matchings

Maximum Weight Matching The edges connecting the nodes of a bipar-
tite graph can have weights associated with them. In switch arbitration, these
weights can correspond to queue lengths, for example. In this case, it might
be interesting to find a matching that maximizes the sum of weights of the
matched edges covering all the (connected) vertices. This is called Maximum
Weight Matching (MWM). The complexity of solving MWM is O(N3). A maxi-
mum matching is one that matches the maximum number of inputs and outputs;
i.e, it is special case of MWM with unit weights. Such algorithms that find the
match containing the maximum number of edges are also called Maximum Size
Matching algorithms. The complexity is O(N2.5) for maximum size matching
[2]. Fig. 2(b) is a maximum matching for the graph in Fig. 2(a).

INRIA



A survey on core switch designs and algorithms 7

Maximal matching A maximal matching is a matching where no more
matches can be made without modifying the existing matches. PIM (Paral-
lel iterative matching) and iSLIP algorithms described below, belong to this
category. For example, Fig. 2(c) is a maximal matching corresponding to the
graph of Fig. 2(a). To improve the number of matches, it is necessary to mod-
ify the current matches. Note that a maximal matching need not be maximum;
but, a maximum matching is always maximal.

Having shed lights on the necessary terminologies, we now move on to various
switch architectures.

3 Synchronous switching

In this section, we describe different architectural designs under synchronous
switching. Recollect that, the important feature of synchronous switching ar-
chitectures is, an arbitration decision is taken once every time interval, and cells
of fixed size are switched between input-output pairs, all at the same time.

3.1 Output Queueing

Figure 3: Output Queueing architecture

A distinct and important architecture is the output queued (OQ) architec-
ture. It is distinct in the sense, it is practically impossible to realize an OQ
architecture for reasonable size switches (as we will see later). But still, since it
is considered as an ideal switch for comparing performances, it remains impor-
tant. The idea is to have a queue at each output port (as shown in Fig. 3), and
the packets arriving at the input ports have to be sent without any delay to the
output queue. As there is no blocking at the input, packets are queued at the
output. Therefore, an OQ architecture can always achieve 100% throughput for
all kinds of traffic. For the same reason, different scheduling schemes can be
deployed at the output to meet the required QoS guarantees. In fact, most of
the QoS guaranteeing scheduling algorithms proposed have been designed to be
used at OQ switches [3], [4], [5], [6].

RR n° 6942



8 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

But the disadvantage of output queueing is that, to match the rate of the
line cards, the switching fabric should run at N times faster than the link rate.
That is, in the case of all N links having data to be sent to the same output
in a given cell slot, the fabric should run N times faster than the input links
to perform this parallel transfers. More importantly, this also means that the
buffer at the output should be (N + 1) times faster than the link rate. This
requirement is called the internal speedup of the switch [7], and poses a chal-
lenge in the implementation of pure output queueing. Besides, link speeds are
increasing much faster than memory speeds. Therefore, pure output queueing
is too expensive and infeasible to scale to the future demands of bandwidth.

Nevertheless, this architecture is used as a comparison model for its desirable
characteristics like high throughput and low latency. For the same reason,
several new switch architectures proposed in the literature attempt to emulate
an OQ switch. By emulation, we mean, under identical input traffic, identical
packets leave both (proposed and OQ) switches at the same time.

A typical scenario showing the speedup requirement in OQ switches, is a
client/server architecture, where a server is connected to single switch port, and
packets from various clients arrive at multiple (possibly all) ports of the switch
destined to the server. This is also an example of non-uniform traffic.

Shared memory was proposed for OQ architectures. In a shared-memory
switch, memory is shared by all input and output lines. The packets arriving at
the input ports are written to the shared memory, which in due time, are read
out and sent to the output lines. If R represents line rate, the characteristics of
shared memory switches that make it difficult to scale to their capacity can be
summed up as [8]:

• As line rates (R) increase, the memory bandwidth of the switch should
also increase linearly (2NR),

• Memory has to be accessed twice in every cell slot. For a cell size of 64B,
with N = 32 and R = 10 Gbps, the access time is just 800 ps,

• Memory size requirement increases with line rate.

Hence, shared memory architecture is not attractive for high-speed large size
(in number of line cards) switches. For practical purposes, the simplicity in ar-
chitectures that have queues at the input, has attracted the research community
and industry alike. In the following, we look into such switch architectures that
are more practical.

3.2 Input Queueing

A simple scheduler used in the early crossbar switches is the Take-a-ticket sched-
uler, implemented in DEC’s Gigaswitch [9]. Each input line card maintains a
queue where the incoming packets are stored. In the literature, this is often
referred to as the input queueing (IQ) architecture. The architecture is shown
in Fig. 4. If an input line card wants to send a packet to an output line card,
it first makes a request over a separate control bus to the output; whereupon
the output sends a ticket to the input over the control bus. The input line
then monitors the control bus. The output sends the current ticket number
it is serving, as soon as it has finished processing a packet. When the input

INRIA



A survey on core switch designs and algorithms 9

notices that its number is being served, it places its packet on the input data
bus for the specific output line. At the same time, the output ensures that the
corresponding crosspoint is turned on. This mechanism avoids contention at
the output port.

Figure 4: Input Queueing architecture

For each incoming packet in a time slot, an input buffer has to make two
operations per time slot: (i) write the incoming packet, and (ii), copy a buffered
packet on to the switch fabrics. IQ architecture is thus attractive in high speed
networks, as the buffers that queue the incoming packets need run only at twice
as fast as the line rates.

IQ architecture as such is uninteresting due a major disadvantage it holds:
the head-of-line (HOL) blocking. A packet at the head of the queue, destined to
a busy output port, blocks all the packets behind it in the queue (even if they
are destined to other free output ports). This reduces the throughput to 58.6%
for Bernoulli packet arrivals with uniformly randomly selected output port [10].

3.2.1 Virtual output queueing

On the other hand, IQ architecture is attractive in high speed networks, as the
buffers that queue the incoming packets need run only at twice as fast as the link
rates. Researchers proposed new methods to combat the HOL blocking without
resorting to output queueing [11, 12, 13, 14]. The essence is to decompose the
single input queue in the IQ architecture into multiple queues at the input.
More precisely, there will be N queues at each input port, one for each output.
These are called virtual output queues (VOQs) Fig. 5 is an example of a 3 × 3
VOQ switch. With the VOQs, a cell at the head of a queue can no more block
any cell destined to another output.

RR n° 6942



10 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

3.2.2 Parallel iterative matching

Parallel iterative matching, or PIM [15], was one among those that came with
the idea of using VOQ to achieve high throughput. It consists of three phases.
In the request phase, the scheduling requests for an input port is communicated
using a bitmap of N bits. A 1 in the i-th position of the bitmap implies that
there is a cell destined to i-th output port. The contention at the output
port (arising when multiple input ports requests to the same output port) is
solved by randomization; this forms the grant phase, where one of the inputs
is given grant to send data. Similarly, if an input port receives grants from
more than one output port, it randomly accepts one and signals the same -
and this forms the final phase, accept phase. To improve the throughput, the
algorithm iterates converging to a maximal match, on an average, in O(logN)
iterations. Note that, even if there is no centralized scheduler, the switching
is still synchronized due to the iterations; in practice, after a fixed number of
iterations, the matching is used to switch cells in the next time slot. As PIM
can not totally avoid contention, it can not achieve 100% throughput under
admissible uniform traffic. There is also a cost involved in generating random
numbers at a very good pace.

Figure 5: VOQ architecture

3.2.3 Achieving 100% throughput using maximum weight matching

Two Maximum Weight Matching (MWM) algorithms were proposed in [16]. In
an MWM algorithm each input-output pair {i,j} (which is treated as an edge)
is assigned a weight that is a measure of congestion. The algorithm selects a
set of input-output pairs with the highest sum weight. The weights determine
various strategies. The longest queue first (LFQ) strategy uses the number of
cells in each VOQ as weight. Similarly, the wait time of the HOL cells is taken
as weights in oldest cell first algorithm (OCF) [17]. It has been proved that
the MWM algorithms achieve 100% throughput under Bernoulli i.i.d packet
arrival process, be it uniform or non-uniform [18], [16]. Later, the results were

INRIA



A survey on core switch designs and algorithms 11

also extended for more general arrival processes and admissible traffic in [19].
Additionally the algorithms also provide low delay. However, it is challenging
to compute the maximum weight matchings at line speeds. The high complexity
involved makes MWM scheduling algorithms prohibitively expensive for practical
implementations in high speed switches.

3.2.4 The iSLIP scheduling algorithm

As the implementation of MWM algorithms posed significant challenges, re-
searchers proposed many practical algorithms such as MUCS [20], iSLIP [21],
and RPA [22]. Here, we will look into the iSLIP algorithm proposed by McKe-
own for input-queued switches [21].

iSLIP diverts from PIM when it comes to resolving contentions. When PIM
uses randomness to select one of the contending ports, iSLIP uses round-robin
to choose on port among those contending. This permits simpler hardware
implementations compared to PIM, besides making iSLIP faster. Basically,
each input and output ports maintains accept and grant pointers to ports. When
there are multiple input requests at an output port, the output chooses the next
input port following the one pointed by the grant pointer. The same logic is
used by the input port to accept one of the grants from multiple output ports.
iSLIP achieves close to maximal matches after just one or two iterations. The
round robin policy ensures fairness among contenders (a variant of iSLIP, called
FIRM [23] was later proposed to improve fairness of iSLIP by approximating
FCFS in a better way). Though iSLIP achieves 100% throughput under uniform
traffic, it is unable to sustain the same throughput under non-uniform traffic,
like MUCS and RPA.

3.2.5 Randomized algorithms for scheduling

Despite being unstable, iSLIP is commonly implemented in commercial switches
due to its simplicity. Research works continue to explore the possibility of
new scheduling algorithms that are both simple and stable. One way is to use
randomized algorithms to perform approximate MWM [24, 25, 26, 27, 28, 29].
Most of these approaches are based on the following three observations [24]:

• The queue lengths do not change much between two consecutive time slots

• Given a matching at time t, a randomly generated matching can be used
to improve it, and obtain a matching for t + 1

• For randomization, either a matching can be generated at random, or
edges at random. Intuitively, keeping (remembering) a few good edges
of the previous matching(s), and randomly generating a matching for the
remaining edges would turn out to be more useful.

For example, L. Tassiulas exploited the first two observations and came up
with the following randomized algorithm [30]: Generate a random matching Q
uniformly from N ! possible matchings at time t+1. If S is the matching used at
time t, compare weights of Q with that of S, and use the more heavily weighted
matching for scheduling cells at time t + 1. Though this algorithm achieves up
to 100% throughput, the delay experienced by packets tend to be longer.

RR n° 6942



12 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

Shah et al. improved this randomized algorithm by exploiting all the three
observations given above [24]. The proposed algorithm provides good delay
performance, apart from achieving throughput of up to 100% (this was shown
using simulations using i.i.d Bernoulli arrival processes). The skeleton of their
approach is based on the following: Instead of generating a random matching
at time t + 1, the algorithm stores a set of edges in the matching S that carries
at least a fraction, say η, of the total weight of S. The matching Q uses these
edges, and connects the remaining input/outing nodes using a randomly chosen
matching. Finally, the heavier (in weights) of Q and S are chosen for time slot
t + 1. An enhanced version of this algorithm, called Serena, has a complexity
of O(N) [25]. In this version, an ‘arrival graph’ is formed for time t using edges
eij , such that, eij is present if there was an arrival at input i to output j at
time t. From this arrival graph, for each output, the heaviest weighted edge is
retained, and the other edges are generated randomly to obtain the matching
Q. The matching for the time slot t + 1 is obtained by merging Q and the S
(matching of the previous time slot) in such a way that the resultant matching
has weight equal or greater than the maximum weights of S and Q.

Though the randomized algorithms are simple and achieve high throughput,
theoretical bounds on the delay have not been shown yet.

3.2.6 Pros and cons

As seen in the above algorithms, one of the challenges in the VOQ architecture,
is to have a scheduler that resolves the input-output match, so that, at each time
slot, each input sends one cell to at most one output, and each output receives
one cell from at most one input (in other words, IQ-VOQ architecture requires
switch matrix scheduling algorithms to achieve high throughput). Overcoming
these two constraints at the same time, leads to complex scheduling algorithms.
This is equivalent to choosing a permutation of an NxN matrix with at most
one 1 in each row, and one 1 in each column; and there are N ! ways of choosing
one such matrix. To stress on the time constraint, consider a switch with 40
Gbps port. If the cells are of 64 bytes, the time to transmit a cell, or the cell slot
is 12.8 ns. Assuming arbitration may take up half of a cell slot (cell transmission
and memory write are also done during this time slot, though they might be
pipelined), a matching has to be found within 6.4 ns. Therefore, not only the
throughput, but also the delay, largely depend on the scheduling algorithm.
The arbitration scheme, that determines which packets from which input queues
should be sent to the output, also governs the wait time of the packets in the
queue.

Another major criticism facing IQ (IQ-VOQ) architecture is that its perfor-
mance do not match that of the OQ architecture. This is where it lags behind
the OQ architecture. In the OQ architecture, it is much more convenient to
provide QoS guarantees for architectures with queueing at the output. An ar-
chitecture that take advantages of both input queueing and output queueing
can be a better option.

3.3 Combined Input/Output Queueing (CIOQ)

CIOQ architecture combines the main features of input queueing and output
queueing by having queues both at the inputs and the outputs. If input queueing

INRIA



A survey on core switch designs and algorithms 13

is more practical for implementation, the scheduling algorithms proposed for
output queueing help in realizing essential QoS guarantees. Where the switch
fabric in IQ architecture doesn’t require any speedup, an ideal OQ architecture
requires a speedup of N . For a speedup value in between 1 and N , packets have
to be buffered at the inputs before switching, and outputs after switching. Such
an architecture is termed as CIOQ architecture (refer Fig. 6). This approach
was first proposed by Prabhakar and McKeown [31], and they showed that a
CIOQ switch with a speedup of four can behave identical to a FIFO-OQ switch
for arbitrary input traffic. Later work showed that a CIOQ switch running
at approximately twice the line rate can emulate an output queued switch,
using a stable marriage matching algorithm for any traffic arrival pattern [7]
Therefore the FQ (Fair Queueing) scheduling algorithms can be used to provide
QoS guarantees. It should, however, be noted that the speedup also implies a
speedup of memory at the inputs and outputs, as well as at the switch fabrics.
With speedup, the access time of memory is shortened, and the scheduling
decisions should be performed in shorter time intervals. The algorithm used to
find a matching of input-output ports has a complexity of O(N). This algorithm
has to be run twice every time-slot; and hence is inapt for high speed switches
with large number of ports.

Figure 6: A Combined Input Output Queueing architecture

3.3.1 Parallel packet switching (PPS)

One of the toughest constraints in designing high speed switches is memory speed.
All though memory size is also considered as one of the issues, the required
amount of buffering is decreasing, and the VLSI density is increasing. Whereas,
slow memory will always remain a bottleneck for packets flowing at a higher
line rate. A recent study to approach the performance of OQ switch with no
speedup of memories is the parallel packet switching architecture (PPS).

RR n° 6942



14 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

Figure 7: A PMIOQ switch architecture with three crossbars

PPS architecture consists of multiple identical lower-speed parallel switches,
operating independently and in parallel [32], [33]. The buffering happens only
in these lower-speed switches. Broadly, the operations can be branched into
three stages. In the first stage, the incoming stream of packets are spread
packet-by-packet by a demultiplexer across k parallel slower switches. In the
second stage, the packets are switched to the output port; and finally in the
third stage, the packets are recombined by a multiplexer at the output line
for transmission. During congestion, cells are stored at the output queues of
the slow-speed switches in the second stage. The multiplexer chooses one cell
from among the k output queues, when the corresponding output line is free.
The slower switches can be CIOQ switches, and need operate only at a rate of
S ∗ R/k, where R is the line rate and S is the speedup required. The authors
prove that if S ≥ 2, the PPS switch can emulate a FIFO OQ switch. Finally in
[34], the authors conclude that the same can be achieved using parallel switches
operating at R/k within a bounded delay of 2N time slots. Since the packets
are buffered at the slower speed switches, buffers in a PPS need not run at line
rate. Note that, such architectures lead to mis-sequence of cells, and therefore
has to be taken care in the design.

3.3.2 Multiple input/output-queued switch

Along the lines of PPS architecture, [35] proposes a ‘parallel multiple input/output
queued’ (PMIOQ) switch that exactly emulates an OQ switch with a broad class
of service scheduling algorithms. An example of of a PMIOQ switch architec-
ture is given in Fig.7. A PMIOQ switch consists of k parallel crossbars, where
each crossbar is connected to each input and each output. The architecture
uses a stable strategic alliance different from the stable marriage matching al-

INRIA



A survey on core switch designs and algorithms 15

gorithm, in the sense that the former is a many-to-many matching problem.
This is because, multiple cells from the same input can depart at the same time
slot, but to different outputs. To elaborate, if there are k parallel switches, up
to k cells can be transmitted at the same time, provided they are destined to
k different outputs. Similarly, an output port can receive up to k packets at
the same time slot, provided they are from k different input ports. To cope
up with the switching rate, buffers are maintained at the inputs (VOQs) and
outputs. Though the scheduling decision has to be taken just once a time slot,
the runtime complexity (of the stable strategic alliance algorithm) is O(N2).

3.4 Disadvantages of synchronous switching

The synchronous switching of cells between input-output pairs brings in some
disadvantages. One major negative point we have seen is that, coupling of input-
output pairs increases the complexity of the arbitration algorithms, making
fast contention resolution a challenge. It is practically difficult to achieve high
throughput and tight QoS guarantees, both, at the same time. We discuss how
this barrier can be circumvented (to an extent) by introducing buffers at the
switch crosspoints, in Section 4.1

Other disadvantages are associated with one of the common practices in
packet switch design. All the scheduling algorithms we discussed until now
belong to a class of cell-mode scheduling algorithms, wherein packets at the
input are segmented to cells of smaller fixed sizes, switched, and reassembled at
the output. Reassembly units are required at the output, as cells belonging to
different packets can be interleaved at the same output. This indeed gives the
switch, its nonblocking capability and simplicity.

On the negative, besides the complexity involved in the segmentation and
reassembly, there are mainly two disadvantages associated with the characteris-
tics of cell-mode scheduling: (1) Since packet sizes are generally not multiples of
cell size, the segmentation into cells wastes switch bandwidth; or in other words,
the crossbar is required to have higher bandwidth in order to compensate the
lost bandwidth when switching incomplete cells (in fact, such cells are padded
with zeroes). In the worst case, a packet might be just one byte greater than
a cell size, effectively wasting (almost) half the switch bandwidth. (2) If cells
are switched independent of packet boundaries, delay guarantees become hard
to achieve. For example, if there are N packets of size K cells, from N different
inputs, all to the same output, the transmission of a complete packet can be
made only after N × (K − 1) cell slots.

As described in [7], the second disadvantage can be overcome by using a
Push-In-First-Out (PIFO) queue. In a PIFO queue, incoming packet is pushed
in anywhere in the queue based on some criteria, whereas the retrieval is always
from the head of the queue. Using PIFO, an arriving cell can be pushed behind
the previous cell of the same packet, ensuring the continuous placement of cells
of same packet in the queue. Once such a system is in place, the line card can
start transmitting the cells of a packet without needing to wait for all the cells
forming the packet. Researchers have also used packet-mode scheduling algo-
rithm that schedules cell trains (cells belonging to a single packet) contiguously,
thus simplifying the complexity at the output [36].

But one major disadvantage, namely the need for higher switch bandwidth,
still remains. In [37] Kar et al. came up with the solution of having a larger

RR n° 6942



16 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

Figure 8: CICQ switch with VOQ

switching unit, which they refer as envelope. An envelop is different from a cell
in the sense that, it can carry more than one packet, or parts of one or more
packets, in general. The goal was to reduce the frequency of scheduling decisions,
and one way to achieve this is to increase the size of the switching entity. Since
increasing the cell size will result in increase of ”wasted” bandwidth, an efficient
method is to have an envelope in which the remaining empty space can be filled
up by the backlogged packet(s). This gives freedom to increase the envelope size
in order to reduce the scheduling frequency. The limitation in the envelop size
is revealed under varying traffic characteristics. Under low load, when there
is no backlogged packet, envelopes can not wait until packets arrive (as that
increases the delay), and hence are switched in partial sizes. Hence, a noted
negative point of this method is the increase in jitter with increase in envelope
size. In Section 4.2, we look into schemes that switches in packets instead of
cells.

4 Asynchronous switching

As described earlier, the synchronization in switch arbitration was brought
by the need to achieve high throughput when the input and output lines are
coupled. One simple way out of this problem, is to introduce buffers at the
crosspoints. Such an architecture is called Crosspoint queued (or Crosspoint
buffered) architecture. With the introduction of crosspoint buffers, coupling no
more exists, and it is now possible to switch packets asynchronously. Later, as
we will see, this also removes the constraint on having to switch fixed sized cells.

4.1 Crosspoint queued switches

As the name indicates, crosspoint queued switches have buffers at the cross-
points of a crossbar. Similarly, a Combine Input Crosspoint Queued (CICQ)
switch has buffers at the inputs as well as at the crosspoints. Doi and Yamanaka

INRIA



A survey on core switch designs and algorithms 17

proposed such an architecture in the early nineties, where each input port has a
large buffer, and each crosspoint has a small buffer [38]. Therefore the crossbar
buffer size is quadratic in N . Ironically, this is also considered as the major
drawback of the buffered crossbar architecture.

Just like the IQ architecture, this architecture suffers from HOL blocking;
and hence a CICQ switch with VOQ was proposed in [39]. The architecture
is illustrated in Fig.8. Such a switch uses two scheduling algorithms. One
is used to determine the cell to be transmitted from the input buffer to the
crosspoint (input scheduling); and the second algorithm determines the cell to
be transmitted from the crosspoint buffer to the output port. The scheduling
algorithms presented in [39] selects the cells (to be scheduled) based on delay
times at the buffers.

There are at least two advantages of using internal buffered crossbar. First,
the scheduling becomes completely distributed due to the crosspoint buffers.
The processing can run on each input and output, thus eliminating the need for
a centralized scheduler. Second, and equally important, multiple input buffers
can transfer cells to the same output, i.e., simultaneous cell transfers to the
same output can be made as the cells can be stored at the crosspoint buffers.

4.1.1 Combined Input Crosspoint Buffered Switch

The CICQ switch is also known as Combined Input Crosspoint Buffered (CIXB)
switch. The initial algorithms for CIXB switch with VOQ that achieved 100%
throughput assumed infinite buffer size at the crosspoints [40], [41]. The authors
of [42] came up with a one-cell crosspoint (X) buffer (B) architecture, called
CIXB-1 architecture. It uses round-robin input and crosspoint arbitrations to
achieve 100% throughput under uniform traffic. The input arbiter selects a
VOQ in a round-robin fashion, to determine the cell to be sent to the corre-
sponding crosspoint buffer. Likewise, the crosspoint buffer eligible to send cell
to the output is chosen in round-robin. Later in [43], the authors show that the
throughput is as high as 84% under non-uniform traffic, and increases slowly
and asymptotically as the crosspoint buffer size increases. A similar round-
robin scheme was also proposed by K. Yoshigoe and K. J. Christensen in [44]
(refer Fig. 9). The authors confirmed that the RR/RR (round-robin at input
and crosspoints) CICQ switch has lower delay at high offered loads (for both
Bernoulli arrivals and bursty arrivals, with uniformly randomly chosen output
port) than IQ switch with PIM or iSLIP scheduling [45].

Recently, a fair scheduling algorithm was proposed for CICQ switches with
fixed-size crosspoint buffers in [46]. The algorithm allocates fair quotas to ports
depending on its queue length. The more quotas a port receives, the more it
lags behind, and hence it gets prioritized. A threshold based mechanism is used
to determine the input-output pairs that need prioritization. Dual round-robin
pointers are used for input scheduling, and RR is used for output scheduling.
One of the dual pointers points to the highest priority VOQ, and the other to a
non-prioritized VOQ. The input scheduler selects the first pointer, as long as it
is valid. This scheme is shown to achieve over 99% throughput and relatively low
mean delay under different traffic patterns, besides providing max-min fairness.

RR n° 6942



18 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

Figure 9: A round robin scheme for a CIXB-1 switch architecture

4.1.2 Combined Input-Crosspoint-Output Buffered

As the CIXB-1 switch doesn’t provide 100% throughput for unbalanced traffic,
Rojas-Cessa et al. extended the work on buffered crossbar to an architecture
with buffers not only at the inputs and crosspoints, but also at the outputs [47].
It is referred to as CIXOB-k architecture, where k is the size of the crosspoint
buffer. The proposed architecture depicted in Fig. 10, uses a small speedup
along with round-robin arbitrations to to achieve 100% throughput under both
uniform as well as non-uniform traffic. The speedup factor and the value of
k are inter-dependent here. Still, to achieve 100% throughput with k = 1,
the speedup factor is lesser than that required by an unbuffered crossbar using
maximal-matching arbitration scheme.

Later, in [48], the authors prove that a CIXOB switch can achieve 100%
throughput with any Bernoulli i.i.d admissible traffic. They also show that such
an architecture can provide both rate and delay guarantees.

4.2 From cell switching to packet switching

Distinguishing from cell-mode scheduling, variable length packet scheduling,
or packet scheduling for short, transmits packets through the switch fabrics.
This kind of switching removes the disadvantage of cell-mode switching, and
achieves greater throughput compared to cell scheduling. Moreover, packet
scheduling also completely removes segmentation and reassembly, in the process
removing the need for buffers that were otherwise required for segmentation and
reassembly. These reduce delay and hardware cost. In the following, we look
into some advance in asynchronous packet switching architecture. Note that,
since there is no more centralized arbitration function, and instead what we
have are packet schedulers at inputs, crosspoints and outputs, we refer to the
function as scheduling.

INRIA



A survey on core switch designs and algorithms 19

Figure 10: Combined Input Crosspoint Output Buffered Architecture

4.2.1 Asynchronous packet scheduling in CICQ architecture

A variable-size packet scheduling scheme for CICQ architecture was proposed
in [49]. The authors present chip layout, and consider the hardware implemen-
tation and give cost numbers (in terms of power consumption and silicon). The
schedulers are placed on the input line cards and output line cards. The input
scheduler is notified of the crosspoint buffer occupancy and the corresponding
departing output port. The output scheduler can be made as sophisticated as
desired, with the common requirement that information from the buffers be
fed to it. With no speedup, the authors show that the proposed design out-
performs synchronized unbuffered crossbar (with iSLIP) in terms of delay and
throughput.

4.2.2 Asynchronous packet scheduling in CIXOB architecture

In [50], Deng Pan and Yuanyuan Yang proposed LAPS, localized asynchronous
packet scheduling, in crossbar switches (CIXOB architecture). The switch fabric
has a speedup of two. At the input, a packet is transmitted from a backlogged
VOQ (using arbitration rule such as RR) to the corresponding crosspoint buffer
when it is free, and the output selects a crosspoint buffered packet and saves it
in the output queue; both these functions being executed independently. The
scheme also uses cut-through switching, in which buffering is minimized by send-
ing a packet directly, say, from a VOQ to the output queue, or even to the
output line card (if it supports such a mechanism) without being buffered at
the crosspoint buffer or output queue. The authors prove that LAPS achieve
100% throughput for any admissible traffic, with a buffer length equal to the
maximum packet size at the crosspoints, and a speedup of two.

RR n° 6942



20 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

Turner studied the performance of two algorithms that switch packets asyn-
chronously in [51, 52]. The conditions for preserving packet arrival order (while
forwarding) and for the scheduler to be work conserving was revealed in this
work. It was proved that for packets of maximum length L, with a speedup of
two and buffer sizes greater than or equal to 2L, a buffered crossbar (CIXOB)
scheduler can provide work conserving guarantees. These schedulers can also
emulate an OQ switch within a class of restricted queueing disciplines.

4.3 Pros and cons

The need for a synchronous centralized scheduler, that doesn’t scale up with
the number of ports, is removed with buffered crossbars. Though asynchronous
mode of input-output transfers can be made with bufferless crossbar [53], the
performance (in terms of throughput and delay) is better with crosspoint buffered
crossbars. The addition of crosspoint buffers had been considered too expensive
with the need to have O(N2) buffer space at the crosspoints. But as the au-
thors in [48] argue, with today’s technology, it is now practical to have buffers
as the crosspoints. With buffered crossbars, using either cell-based switching or
packet-based switching, it is possible to achieve strong performance guarantees,
though with a speedup of two.

5 Conclusions

Table 1: A summary of different crossbar architectures
Arch. Advantage Disadvantage
OQ 100 % throughput

for any traffic, QoS
guarantees

Speedup of N re-
quired, impractical

IQ-VOQ Simplicity, No HOL
blocking

No performance
guarantees

CIOQ Emulation of OQ
behaviour

Speedup, com-
plex scheduling
algorithms

CICQ Decoupling of in-
put and output,
better performance
than unbuffered
crossbars

Compromise be-
tween crosspoint
buffer size and
performance

CIXOB 100 % throughput
for any traffic, QoS
guarantees, simple
schedulers

Switch speedup

Table 1 summarizes the main advantages and disadvantages of different ar-
chitectures. While the OQ switch achieve 100% throughput for any traffic, it
is impractical. The simple IQ switch was extended with the VOQ structure to
mitigate the HOL blocking problem. With internal speedup and output queues,

INRIA



A survey on core switch designs and algorithms 21

the CIOQ switch has been able to match the OQ switch in performance. Par-
allel packet switches used slower speed switches to emulate an OQ switch. The
introduction of buffer at the crosspoints removed the coupling of input and out-
put lines, making the arbitration decision completely decentralized. Switches
with buffered crossbars are now feasible, and as a result recent research works
have been using buffered crossbar to provide strong performance guarantees.

We see that the evolution of switch designs has been more or less driven by
the need for performance, besides the advancement in technology. Achieving
100% throughput has been one important design criteria that most research
works focussed on. The need to provide QoS guarantees also gained equal
importance during these years. Similarly, technology has now facilitated the
incorporation of queues at the crosspoints, although the idea was introduced in
early nineties.

To get an insight into future switch designs and architectures, we need to
understand the driving force. One such driving force is, perhaps, power con-
sumption. Lately, power consumption at the interconnects has been drawing se-
rious attention to such an extent that, operators have started to demand greener
interconnects [54, 55]. Consequently, techniques for power-efficient computer ar-
chitectures are being explored [56], and solutions such as dynamic speed scaling
are being proposed [57, 58]. Therefore, it is possible that the future switch archi-
tectures will be evolving to meet the design criteria of lower power consumption.
The reduction in power consumption might bring in performance degradation.
The question then becomes, how much of degradation is the operator (and in
turn, the users) ready to sacrifice to reduce energy cost.

Similarly, with the new trend in ‘flow-aware’ networking, researchers have
maintained the need to provide QoS at flow level [59]. While all the switching
designs explored in this article have focussed on packet-level QoS, the future
might tend to operate at larger units which make sense for users, such as flows
or sub-flows. In such scenarios, the definition of QoS will also turn out to be at
flow level rather than at packet level.

Yet another possible step will be in the direction of optical switching. With
the optical technologies such as OCS (Optical Circuit Switching), OPS (Optical
Packet Switching) and OBS (Optical Burst Switching) attaining more and more
importance in the research community, the eventuality of optical networks using
optical cross-connects is certain. The cross-connect here resembles the switch
in packet-switched network; and it can be realized in electronic domain, or in
optical domain, or even using both electronic and optical modules to perform
different tasks. All-optical switch fabrics are known to be power-efficient com-
pared to their counterparts in the electronic domain. Besides, they do not have
the scalability problem that electronic switches face in keeping up with the in-
creasing capacity. Again, it will be technology that determines which among
these three (OCS, OPS or OBS) paradigms or a hybrid will finally define the
future networks1. If an all-optical switching network becomes a reality, the
emergence of new switching designs will take place depending on factors such as
existence or non-existence of memory (using delay loops) at the cross-connects,
technological development of wavelength converters, the level of QoS guarantees
required etc.

1We refer readers to [60] and references therein for related pointers.

RR n° 6942



22 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

References

[1] George Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices (The Morgan Kaufmann Series in
Networking), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[2] Robert Endre Tarjan, Data structures and network algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1983.

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in SIGCOMM ’89: Symposium proceedings on
Communications architectures & protocols, 1989, pp. 1–12.

[4] Abhay K. Parekh and Robert G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[5] Abhay K. Parekh and Robert G. Gallagher, “A generalized processor shar-
ing approach to flow control in integrated services networks: the multiple
node case,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137–150, 1994.

[6] M. Shreedhar and George Varghese, “Efficient fair queueing using deficit
round robin,” in SIGCOMM ’95: Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer communi-
cation, 1995, pp. 231–242.

[7] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output
qeueueing with a combined input/output-queued switch,” IEEE J. Selected
Area in Commun., vol. 17, no. 6, pp. 1030–1039, Jun 1999.

[8] Sundar Iyer and Nick McKeown, “Techniques for fast shared memory
switches,” Tech. Rep. HPNG Technical Report - TR01-HPNG-081501,
Stanford University, 2001.

[9] Robert J. Souza, P. G. Krishnakumar, Cüneyt M. Özveren, Robert J. Sim-
coe, Barry A. Spinney, Robert E. Thomas, and Robert J. Walsh, “GI-
GAswitch System: A High-performance Packet-switching Platform,” Dig-
ital Technical Journal, vol. 6, no. 1, pp. 9–22, 1994.

[10] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on
a space division switch,” IEEE Trans. Commun., vol. 35, pp. 1347–1356,
Dec. 1987.

[11] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for
VLSI communications switches,” SIGARCH Comput. Archit. News, vol.
16, no. 2, pp. 343–354, 1988.

[12] H. Obara, “Optimum architecture for input queuing ATM switches,” Elec-
tronics Letters, vol. 27, no. 7, pp. 555–557, Mar. 1991.

[13] H. Obara and Y. Hamazumi, “Parallel contention resolution control for
input queuing ATM switches,” Electron. Lett., vol. 28, no. 9, pp. 838–839,
Apr. 1992.

INRIA



A survey on core switch designs and algorithms 23

[14] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P.
Thacker, “High-speed switch scheduling for local-area networks,” ACM
Trans. Comput. Syst., vol. 11, no. 4, pp. 319–352, 1993.

[15] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P.
Thacker, “High speed switch scheduling for local area networks,” in Pro-
ceedings of the fifth international conference on Architectural support for
programming languages and operating systems, ASPLOS-V, 1992, pp. 98–
110.

[16] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Trans. Commun., vol.
47, no. 8, pp. 1260–1267, Aug. 1999.

[17] Adisak Mekkittikul and Nick McKeown, “A Starvation-free Algorithm for
Achieving 100% Throughput in an Input-Queued Switch,” in Proc. ICCCN
’96, Oct. 1996, pp. 226–231.

[18] L. Tassiulas and A. Ephremides, “Stability properties of constrained queue-
ing systems and scheduling for maximum throughput in multihop radio
networks,” IEEE Transactions on Automatic Control, vol. 37, no. 12, pp.
1936–1949, Dec. 1992.

[19] J. G. Dai and Balaji Prabhakar, “The Throughput of Data Switches with
and without Speedup,” in Proc. IEEE INFOCOM, 2000, pp. 556–564.

[20] H. Duan, J. Lockwood, and S. Kang, “Matrix unit cell scheduler (MUCS)
for input-buffered ATM switches,” IEEE Commun. Lett., vol. 2, no. 1, pp.
20–23, 1998.

[21] Nick McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, 1999.

[22] M.A. Marsan, A. Bianco, E. Leonardi, and L. Milia, “RPA: A flexible
scheduling algorithm for input buffered switches,” IEEE Trans. Commun.,
vol. 47, no. 12, pp. 1921–1933, 1999.

[23] Dimitrios N. Serpanos and Panagiotis Antoniadis, “FIRM: A Class of Dis-
tributed Scheduling Algorithms for High-Speed ATM Switches with Mul-
tiple Input Queues,” in Proc. IEEE INFOCOM, 2000, pp. 548–555.

[24] Devavrat Shah, Paolo Giaccone, and Balaji Prabhakar, “Efficient Random-
ized Algorithms for Input-Queued Switch Scheduling,” IEEE Micro, vol.
22, no. 1, pp. 10–18, 2002.

[25] Paolo Giaccone, Balaji Prabhakar, and Devavrat Shah, “Towards Simple,
High-performance Schedulers for High-aggregate Bandwidth Switches,” in
Proc. INFOCOM, 2002.

[26] Gagan Aggarwal, Rajeev Motwani, Devavrat Shah, and An Zhu, “Switch
Scheduling via Randomized Edge Coloring,” in Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’03,
2003, p. 502.

RR n° 6942



24 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

[27] Adnan Aziz, Amit Prakash, and Vijaya Ramachandra, “A near optimal
scheduler for switch-memory-switch routers,” in Proceedings of the fifteenth
annual ACM symposium on Parallel algorithms and architectures, SPAA
’03, 2003, pp. 343–352.

[28] Devavrat D. Shah, Randomization and heavy traffic theory: new approaches
to the design and analysis of switch algorithms, Ph.D. thesis, Stanford, CA,
USA, 2005, Adviser-Balaji Prabhakar.

[29] Petar Momčilović, “A distributed switch scheduling algorithm,” Perform.
Eval., vol. 64, no. 9-12, pp. 1053–1061, 2007.

[30] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” in Proc. IEEE INFOCOM,
1998, pp. 533–539.

[31] Balaji Prabhakar and Nick McKeown, “On the Speedup Required for Com-
bined Input and Output Queued Switching,” Tech. Rep., Stanford, CA,
USA, 1997.

[32] Sundar Iyer, A. Awadallah, and N. McKeown, “Analysis of a packet switch
with memories running slower than the line rate,” in Proc. IEEE INFO-
COM, 2000, pp. 529–537.

[33] Sundar Iyer and Nick McKeown, “Making Parallel Packet Switches Prac-
tical,” in Proc. IEEE INFOCOM, 2001, pp. 1680–1687.

[34] Sundar Iyer and Nick W. McKeown, “Analysis of the parallel packet switch
architecture,” IEEE/ACM Trans. Netw., vol. 11, no. 2, pp. 314–324, 2003.

[35] Hyoung-Il Lee and Seung-Woo Seo, “Matching output queueing with a
multiple input/output-queued switch,” IEEE/ACM Trans. Netw., vol. 14,
no. 1, pp. 121–132, Feb 2006.

[36] Marco Ajmone Marsan, Andrea Bianco, Paolo Giaccone, Emilio Leonardi,
and Fabio Neri, “Packet-mode scheduling in input-queued cell-based
switches,” IEEE/ACM Trans. Netw., vol. 10, no. 5, pp. 666–678, 2002.

[37] K. Kar, T. V. Lakshman, D. Stiliadis, and L. Tassiulas, “Reduced com-
plexity input buffered switches,” in Proc. Hot Interconnects VIII, Aug
2000.

[38] Y. Doi and N. Yamanaka, “A High-Speed ATM switch with Input and
Cross-Point Buffers,” IEICE Transactions on Communications, vol. E76-
B, no. 3, pp. 310–314, Mar 1993.

[39] Masayoshi Nabeshima, “Performance Evaluation of a Combined Input- and
Crosspoint-Queued Switch,” IEICE Transactions on Communications, vol.
vE83-B, no. 3, pp. 737–741, Mar 2000.

[40] F. A. Tobagi, “Fast Packet Switch Architectures for Broadband Integrated
Services Digital Networks,” Proc. of the IEEE, vol. 78, no. 1, pp. 133–167,
1990.

INRIA



A survey on core switch designs and algorithms 25

[41] R. Y. Awdeh and H. T. Mouftah, “Survey of ATM Switch Architectures,”
Computer Networks and ISDN Systems, vol. 27, pp. 47–93, 1995.

[42] R. Rojas-Cessa, E. Oki, Z. Jing, and H.J. Chao, “CIXB-1: Combined input-
one-cell-crosspoint buffered switch,” in Workshop on High Performance
Switching and Routing (HPSR2001), May 2001, pp. 324–329.

[43] R. Rojas-Cessa, E. Oki, and H. J. Chao, “On the combined input-crosspoint
buffered switch with round-robin arbitration,” IEEE Transactions on Com-
munications, vol. 53, no. 11, pp. 1945–1951, 2005.

[44] K. Yoshigoe and K.J. Christensen, “A parallel-polled virtual output queued
switch with a buffered crossbar,” in Proc. IEEE Workshop on High Per-
formance Switching and Routing, 2001, pp. 271–275.

[45] K. Yoshigoe and K. J. Christensen, “An evolution to crossbar switches
with virtual output queuing and buffered cross points,” IEEE Network,
vol. 17, no. 5, pp. 48–56, 2003.

[46] N. Hua, P. Wang, D. Jin, L. Zeng, B. Liu, and G. Feng, “Simple and Fair
Scheduling Algorithm for Combined Input-Crosspoint-Queued Switch,” in
Proc. IEEE International Conference on Communications, ICC ’07, Jun
2007, pp. 6305–6310.

[47] R. Rojas-Cessa, E. Oki, and H. Jonathan Chao, “CIXOB-k: Combined
Input-Crosspoint-Output Buffered Packet Switch,” in Proc. IEEE Globe-
com ’01, 2001, pp. 2654–2660.

[48] Shang tse Chuang, Sundar Iyer, and Nick Mckeown, “Practical algorithms
for performance guarantees in buffered crossbars,” in IEEE INFOCOM,
Mar 2005, pp. 981–991.

[49] Manolis Katevenis, Georgios Passas, Dimitrios Simos, Ioannis Papaefs-
tathiou, and Nikos Chrysos, “Variable packet size buffered crossbar (CICQ)
switches,” in IEEE International Conference on Communications (ICC
2004), Jun 2004, pp. 1090–1096.

[50] Deng Pan and Yuanyuan Yang, “Localized asynchronous packet scheduling
for buffered crossbar switches,” in Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications systems,
ANCS ’06, 2006, pp. 153–162.

[51] Jonathan Turner, “Strong Performance Guarantees for Asynchronous
Crossbar Schedulers,” in Proc. IEEE INFOCOM, Apr 2006, pp. 1–11.

[52] Jonathan Turner, “Strong Performance Guarantees for Asynchronous
Buffered Crossbar Schedulers,” IEEE/ACM Trans. Netw., 2009, To ap-
pear.

[53] G. Passas and M. Katevenis, “Asynchronous operation of bufferless cross-
bars,” in Workshop on High Performance Switching and Routing, HPSR
’07, Jun 2007, pp. 1–6.

[54] J. Baliga, R. Ayre, W.V. Sorin, K. Hinton, and R.S. Tucker, “Energy
consumption in access networks,” Feb. 2008, pp. 1–3.

RR n° 6942



26 D. M. Divakaran, S. Soudan, P. V.-B. Primet, E. Altman

[55] “Telcos demand greener network equipment,”
http://www.reuters.com/article/idUSN1847837420080619, 2008.

[56] Stefanos Kaxiras, Computer Architecture Techniques for Power-Efficiency,
Morgan and Claypool Publishers, 2008.

[57] Sebastian Herbert and Diana Marculescu, “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,” in ISLPED ’07: Proceed-
ings of the 2007 international symposium on Low power electronics and
design. 2007, pp. 38–43, ACM.

[58] Adam Wierman, Lachlan L. H. Andrew, and Ao Tang, “Power-aware speed
scaling in processor sharing systems,” in Proc. IEEE INFOCOM, Apr 2009.

[59] T. Bonald, S. Oueslati-Boulahia, and J. Roberts, “IP traffic and QoS con-
trol: the need for a flow-aware architecture,” in World Telecommunications
Congress, Sep. 2002.

[60] Andrew Zalesky, “To burst or circuit switch?,” IEEE/ACM Trans. Netw.,
vol. 17, no. 1, pp. 305–318, 2009.

INRIA



Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


	Introduction
	Organisation

	Preliminary background
	Switching units
	Traffic characterization
	Contention resolution

	Synchronous switching
	Output Queueing
	Input Queueing
	Virtual output queueing
	Parallel iterative matching
	Achieving 100% throughput using maximum weight matching
	The iSLIP scheduling algorithm
	Randomized algorithms for scheduling
	Pros and cons

	Combined Input/Output Queueing (CIOQ)
	Parallel packet switching (PPS)
	Multiple input/output-queued switch

	Disadvantages of synchronous switching

	Asynchronous switching
	Crosspoint queued switches
	Combined Input Crosspoint Buffered Switch
	Combined Input-Crosspoint-Output Buffered

	From cell switching to packet switching
	Asynchronous packet scheduling in CICQ architecture
	Asynchronous packet scheduling in CIXOB architecture

	Pros and cons

	Conclusions

