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Abstract: We present a novel clustering algorithm that combines a mode-
seeking phase with a cluster merging phase. While mode detection is performed
by a standard graph-based hill-climbing scheme, the novelty of our approach
resides in its use of topological persistence theory to guide the merges between
clusters. An interesting feature of our algorithm is to provide additional feed-
back in the form of a finite set of points in the plane, called a persistence
diagram, which provably reflects the prominence of each of the modes of the
density. Such feedback is an invaluable tool in practice, as it enables the user
to determine a set of parameter values that will make the algorithm compute a
relevant clustering on the next run.

In terms of generality, our approach requires the sole knowledge of (approx-
imate) pairwise distances between the data points, as well as of rough estimates
of the density at these points. It is therefore virtually applicable in any arbitrary
metric space. In the meantime, its complexity remains reasonable: although the
size of the input distance matrix may be up to quadratic in the number of data
points, a careful implementation only uses a linear amount of main memory and
barely takes more time to run than the one spent reading the input.

Taking advantage of recent advances in topological persistence theory, we
are able to give a theoretically sound notion of what the correct number k of
clusters is, and to prove that under mild sampling conditions and a relevant
choice of parameters (made possible in practice by the persistence diagram)
our clustering scheme computes a set of k clusters whose spatial locations are
bound to the ones of the basins of attraction of the peaks of the density. These
guarantess hold in a large variety of contexts, including when data points are
distributed along some unknown Riemannian manifold.

Key-words: clustering, topological persistence, Rips graph, barcode, unsu-
pervised learning.
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Clustering dans les variétés riemanniennes basé

sur la persistance

Résumé : Nous présentons un nouvel algorithme de clustering qui combine une
phase de recherche de modes avec une phase de fusion des clusters. Alors que la
recherche de modes s’effectue par une méthode standard d’ascension de gradient
dans un graphe de voisinage, la nouveauté de notre approche réside dans son
utilisation de la persistance topologique pour guider la fusion entre clusters.
Une propriété intéressante de notre algorithme est de retourner un diagramme
de persistance en plus des clusters. Ce diagramme est utile en pratique pour
déterminer des valeurs de paramètres qui permettent à l’algorithme de calculer
un ensemble pertinent de clusters à la prochaine exécution.

Notre approche requiert juste de connâıtre les distances entre points de
données ainsi qu’une estimation de la densité en ces points. Elle peut donc
être appliquée dans pratiquement n’importe quel espace métrique. De plus, sa
complexité reste raisonnable : alors que la taille de la matrice des distances peut
être jusqu’à quadratique en le nombre de points de données, une implémentation
réfléchie de l’algorithme n’utilise qu’une quantité linéaire de mémoire et met à
peine plus de temps à s’exécuter que le temps mis pour lire l’entrée du pro-
gramme.

En nous appuyant sur des résultats récents sur la théorie de la persistance,
nous donnons une définition théoriquement fondée du nombre correct k de
clusters à construire, et nous prouvons que sous des hypothèses raisonnables
d’échantillonnage et modulo un choix judicieux des paramètres notre algorithme
calcule précisément k clusters dont les localisations géographiques sont corrélées
aux bassins d’attraction des pics de la densité. Ces garanties théoriques sont
valides dans un contexte très large, incluant entre autres le cas où les points de
données sont échantillonnés le long d’une variété riemannienne inconnue.

Mots-clés : clustering, persistance topologique, graphe de Rips, code-barre,
apprentissage non supervisé.
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1 Introduction

Unsupervised learning or clustering is an important tool for understanding and
interpreting data in a variety of fields. Although in many settings the natural
clustering is obvious to a person, the problem of clustering remains ill-posed in
general. Nevertheless, its importance as a tool for exploratory data analysis has
grown with the increased avaliability of massive and high-dimensional datasets.
On such data, interpretation by direct inspection is difficult, if not impossible.
A common viewpoint is that a data set consists of samples drawn from some
unknown density function f , and that the ultimate goal of the analysis is to
understand the structure of that density. Since f is usually not provided, it
must be estimated from the available samples. Clustering methods therefore
rely on density estimators, which fall into two broad categories: parametric
estimators, which presuppose a family of functions as a model for the density;
non-parametric estimators, derived from the local behaviour of the density func-
tion. Methods based on parametric estimators use knowledge of the density to
achieve better results, whereas non-parametric methods are more general as
they are not tied to any particular model for the density.

X

R

(a)

X

R

(b)

Figure 1: (a.) A density function f with two peaks. The center-line gives the
separation between their basins of attraction. (b.) The corresponding peaks
and their basins in a piecewise-linear interpolation of f .

With the samples coming from a density function f , clusters can be naturally
identified with the basins of attraction of the peaks of f . Intuitively, considering
f as a terrain, a cluster is the set of all points flowing into the same local
maximum (or peak) along the flow defined by the gradient vector field of f .
This notion of clusters is not novel: it was already proposed by Koontz et al. in
a graph-based gradient ascent algorithm [24], and used in numerous subsequent
mode-seeking algorithms, including Mean-Shift [11] and its successors [30, 34]. A
common problem faced by these methods is that the gradient flow and extremal
points of the density function f are differential quantities that are notoriously
unstable under (even arbitrarily small) perturbations of f . Since f remains
usually unknown to us, we are dependent on an estimator f̃ , whose basins of
attraction are very unlikely to coincide with the ones of the true density. See
Figure 1 for an illustration. To avoid this pitfall, methods such as Mean-Shift
try to smooth the estimated density function, which brings up the question of
how much smoothing is required.

Rather than directly studying the gradient flow of f , topological persis-
tence [18, 35] studies the evolution of the topology of the superlevel-sets of
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4 Chazal & Guibas & Oudot & Skraba

f , i.e. the sets of the form f−1([α,+∞)), as parameter α decreases1 from
+∞ to −∞. In the context of clustering, we are mainly interested in the path-
connectivity of the superlevel-sets, a special instance of persistence theory known
as 0-dimensional persistence or size theory in the literature [13]. Figure 2(a)
shows the connected components of three superlevel-sets. Each component ap-
pears when a local maximum of f is reached. Moreover, topological persistence
imposes a strict hierarchy on the components: when two of them get connected
to each other in some superlevel-set of f , the component generated by the lower
peak is said to be merged into the one generated by the higher peak. Each
component C can then be assigned a lifespan, encoded as a point p in the plane:
the abcissa of p is the time at which C appears in the family of superlevel-sets
of f ; the ordinate of p is the time at which C gets merged into another compo-
nent generated by some higher peak of f . The difference px− py is an indicator
of the prominence of C, or equivalently of its generating peak. This quantity
is equal to twice the distance of point p to the diagonal y = x in the plane.
The collection of such points is called the 0-th persistence diagram of f , noted
D0f [10]. See Figure 2 for an illustration.

R

X

(a)

R

X

(b) (c)

Figure 2: Evolution of the connectivity of the superlevel-sets of a function f
(image a.) and of an approximation f̃ (image b.). In image (c.), the persistence
diagrams of f (red) and of f̃ (blue) are superimposed, thus showing that f̃ has
two prominent peaks corresponding to the two prominent peaks of f , by the
stability properties of such diagrams.

In practice, comparing the diagram of f with the one of an approximation
f̃ (Figure 2(c)), one can see that the points far from the diagonal, which cor-
respond to highly prominent peaks of f , are well-preserved under perturbation,
in contrast to points close to the diagonal, which correspond to non-significant
peaks and can therefore be regarded as noise. This stability property is a fun-
damental result of persistence theory [3, 10] that justifies its use in the context
of data analysis: when the true density f : X → R remains unknown, it is
still possible to approximate D0f via the persistence diagram of some (usually
piecewise-linear) approximation f̃ of f . Nevertheless, building (piecewise-linear)
approximations of f over the entire space X is prohibitively costly when the di-
mensionality of X is high, and it becomes virtually impossible when X is known
solely through the matrix of pairwise distances between the data points, a typ-

1We depart from the classical description of topological persistence by considering
superlevel-sets and reversing the time flow. This is a purely formal choice that does not
affect the validity of the theory.
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Persistence-Based Clustering in Riemannian Manifolds 5

ical scenario in clustering. This may explain why persistence has hardly been
exploited in mode-seeking algorithms so far.

It should be noted however that persistence has been used in other clustering
approaches. For instance, the dendrograms produced by single-linkage cluster-
ing are nothing but alternate representations for persistence diagrams. Here,
the considered function is not the density underlying the input point cloud L,
but rather the opposite of the distance restricted to the product L × L. The
hierarchy of clusterings induced by persistence provides a coarse-to-fine repre-
sentation of the input point cloud, which may help the user find the best scale(s)
at which to process the data.

Our contributions. In this paper we take advantage of a recent stability
result for persistence diagrams [3] that enables the comparison of the diagrams
of functions defined over different spaces. If f is an unknown real-valued function
defined over an unknown space X, of which a finite sampling L is given together
with an approximation f̃ of f over L, then the result of [3] makes it possible to
recover (an approximation of) D0f by building an auxiliary data structure on
top of the point cloud L, such as a neighborhood graph G, and by extending f̃
over this structure. As shown in [6], this approximation property holds provided
that some minimum sampling density is achieved throughout the space X, which
unfortunately may not be the case in the context of clustering, where the input
point cloud L is sampled according to some density function f that may not
have full support. Our first contribution is to show that a weaker version of the
approximation result of [6] holds when only some superlevel-set of the function
f is densely sampled (Theorem 4.5). This weaker setting is well-suited for
clustering applications, where superlevel-sets of density functions are precisely
the regions where more sample points are likely to be present.

With this new result at hand, we propose a novel clustering scheme (Sec-
tion 3) that combines a graph-based mode-seeking step à la Koontz et al. [24]
with a merging step guided by topological persistence, thus taking advantage of
both worlds. Literally, our mode-seeking step is the algorithm of [24]: given a
parameter δ ≥ 0 and a density estimator f̃ , we build a neighborhood graph G
(also called Rips graph) by connecting every pair of input points lying within
distance δ of each other (Figure 3(c)); we then build a spanning forest of G
by connecting each vertex v to its neighbor in G at which the estimator f̃ is
highest. If all the neighbors of v have lower f̃ -values than v, then v is connected
to itself and declared a peak of f̃ : it thus becomes the root of some tree in the
forest, and as such a cluster center. As mentioned above and illustrated in Fig-
ure 3(d), this construction is very sensitive to perturbations of the function: this
instability becomes deadly in pratice since density estimators tend to be noisy.
The novelty of our approach resides in the way we use persistence to guide the
merging of the clusters during our second phase, and thus regain some stability:
given a parameter τ , we merge every cluster of prominence less than τ into its
parent cluster in the hierarchy defined by persistence. Both the prominences
and the hierarchy can be computed on the fly during the first phase, provided
that the vertices are processed in an order prescribed by f̃ . In fact, the sec-
ond phase itself can be done simultaneously to the first phase, as will be seen
in Section 3. The output of the algorithm is a collection of (merged) clusters
whose prominences are at least τ . Additional feedback is provided in the form

RR n➦ 6968



6 Chazal & Guibas & Oudot & Skraba

(a) input point cloud (10, 000
pts).

(b) approximate density func-
tion f̃ at the data points.

(c) Rips graph built on top of
the point cloud, and its upper-
star filtration induced by f̃ .

(d) clusters obtained from the
simple hill-climbing scheme
performed in the Rips graph,
before any merge.

5000

0

5,000

-∞
τ0

(e) persistence diagram show-
ing six points corresponding
to the six prominent peaks
of f , plus a myriad of close-
to-diagonal or late-appearing
points corresponding to topo-
logical noise in the upper-star
filtration.

(f) result obtained after merg-
ing the clusters of Figure
3(d) according to the τ -
thresholded persistence dia-
gram of Figure 3(e). The
small black clusters are in-
dependent connected compo-
nents of the Rips graph that
appear very lately in the
upper-star filtration and can
therefore be treated as noise.

Figure 3: Illustration of our clustering method on a point cloud (a) drawn in
i.i.d. fashion from some unknown probability density function f : after prepro-
cessing (b and c) the data by applying a density estimator f̃ and building the
upper-star filtration of the Rips graph induced by f̃ , we perform our two main
operations sequentially: first, the algorithm of Section 3 is applied with τ = +∞
to approximate the persistence diagram D0f and determine a relevant value for
parameter τ (e); second, the algorithm of Section 3 is applied again with the
new value of τ to produce the final clustering (f). The result of the simple hill-
climbing scheme of [24] (which corresponds to applying the algorithm of Section
3 without any merge (τ = 0)) is shown for comparison (d).

of a persistence diagram that coincides2 with D0f̃ when parameter τ is set to
+∞ (that is, when every cluster is merged into its parent in the hierarchy).

Parameters δ and τ are of very different natures. As in the basic graph-based
gradient ascent algorithm [24], parameter δ controls the spatial scale at which
the input point cloud must be processed. In practice it may be difficult to tune

2Recall that the estimator f̃ is viewed as a function G→ R here.

INRIA



Persistence-Based Clustering in Riemannian Manifolds 7

without any prior knowledge of the data, however dendrograms provided by
single-linkage clustering can greatly help in this task. Differently, parameter τ
controls the degree of prominence above which a peak of the density is considered
as meaningful. Relevant values for this parameter can be inferred by the user
from the diagram output by the algorithm, which suggests a bootstrapping
approach in practice, illustrated in Figure 3: in a first stage, the algorithm is
run with τ set to +∞, in order to compute D0f̃ ; then, in a second stage, the
algorithm is re-run with the value of τ picked up by the user from the persistence
diagram.

The validity of this approach is guaranteed by a sound theoretical framework.
Provided that the input point cloud is large enough and that a suitable choice
of parameter δ is made, our adaptation of the result of [6] guarantees that
the diagram computed by the algorithm is close to the one of the true density
function f . Assuming that there is a clear gap between prominent and non-
prominent peaks of the density in D0f , we can prove that the same kind of gap
appears in the diagram computed during the first run of the algorithm, as it is
the case for instance in Figure 3(e). This means that the user can easily find a
value for parameter τ within the range of admissible values, so that the second
run of the algorithm will produce a number of clusters that corresponds exactly
to the number of significant peaks of the density (Theorem 4.8). This gives a
theoretically-sound meaning to what we mean by correct number of clusters. In
addition to this guarantee on the number of clusters, we can correlate to some
extent the spatial locations of our clusters with the basins of attraction of the
corresponding prominent peaks of f (Theorem 4.9), as suggested by Figure 3(f).
These results are detailed in Sections 4 and 5 of the paper.

In order to illustrate the practicality of our clustering scheme, we provide
in Section 6 a series of experimental results obtained in several applications,
including segmenting color images and classifying protein configurations. Be-
yond these sample applications, our algorithm can be used in a large variety
of contexts, including when the data are massive, high-dimensional, or non-
Euclidean. Such versatility and effectiveness are made possible by the following
two properties of our approach:
• It only requires to know the (approximate) pairwise distances between the

data points, as well as rough estimates of the density at these points. It is
therefore virtually applicable in any arbitrary metric space.
• In the meantime, its complexity remains reasonable: although the size

of the input distance matrix may be up to quadratic in the number n of data
points, our implementation only uses an amount of main memory that is linear
in n, and it has a running time of O(n + mα(n)), where m is the number of
edges in the neighborhood graph G and α is the inverse Ackermann function.
This means that a practical run of the program barely takes more time than
the one necessary to read the input distance matrix.

2 Mathematical Background

Our analysis uses singular homology with coefficients in a commutative ring,
assumed to be a field throughout the paper and omitted in the notations. We
also use some elements of Riemannian geometry and Morse theory. We refer
the reader to [19, 20, 25] for comprehensive introductions to these topics.

RR n➦ 6968



8 Chazal & Guibas & Oudot & Skraba

2.1 Riemannian manifolds and probability density func-

tions

Throughout the paper, and unless otherwise stated, X denotes a Riemannian
manifold possibly with boundary, and dX denotes its geodesic distance. Given
a point x ∈ X and a real value r ≥ 0, let BX(x, r) denote the closed geodesic
ball of center x and radius r, namely: BX(x, r) = {y ∈ X, dX(x, y) ≤ r}. For all
sufficiently small values r ≥ 0, the ball BX(x, r) is known to be strongly convex,
that is: for every pair of points y, y′ in BX(x, r), there exists a unique shortest
path in X between y and y′, and this path is included in BX(x, r). Let ̺c(x) > 0
be the supremum of the radii such that this property holds. The infimum of
̺c(x) over the points of X is known as the strong convexity radius of X, noted
̺c(X). This quantity is positive for instance when X is compact [19, ➜2.89] or
when X = R

m.
Given an m-dimensional Riemannian manifold X, we call Hm the m-dimen-

sional Hausdorff measure determined by the Riemannian metric of X [1, ➜5.5].
By probability density function over X with respect to Hm we mean a non-
negative function f : X → R that is integrable with respect to Hm and such
that

∫

X
f dHm = 1. In the rest of the paper, all probability density functions

will be understood as being defined over X with respect to Hm.

2.2 Filtrations and Persistent Homology

Persistent homology is one of the central concepts used in the paper. It was
first introduced by Edelsbrunner et al. [17] and later developped in [18, 35]. It
has proven to be a powerful tool for data analysis, as reported in two recent
surveys [2, 16]. We only give a brief description here, and refer the reader to
these surveys for further details.

A filtration X of a topological space X is a finite sequence of nested subspaces
∅ = X

αm ⊆ X
αm−1 ⊆ · · · ⊆ X

α1 ⊆ X
α0 = X, where αm > αm−1 > · · · > α1 > α0

is a decreasing sequence of real numbers. The inclusion maps between the
subspaces induce a directed system of vector spaces, called a persistence module,
involving their k-dimensional homology groups:

Hk(Xαm)
φm

m−1

−→ Hk(Xαm−1)
φm−1

m−2

−→ · · ·
φ2

1−→ Hk(Xα1)
φ1

0−→ Hk(Xα0). (1)

The structure of this persistence module can be encoded as a multi-set DkX ,
called the k-th persistence diagram of X , and defined as follows: DkX is a multi-

set of points in the extended plane R
2
, where R = R ∪ {−∞,+∞}, contained

in the union of the extended diagonal ∆ = {(x, x) : x ∈ R} and of the grid
{+∞ = α∞, αm, αm−1, · · · , α1, α0}× {αm, αm−1, · · · , α1, α0}. The multiplicity
of the points of ∆ is set to +∞, whereas the multiplicities of the (αi, αj),
+∞ ≥ i > j ≥ 0, are defined in terms of the ranks of the homomorphisms
φi

j = φi
i−1 ◦ · · · ◦ φ

j+1
j (see e.g. [3]). Intuitively, each point (px, py) of DkX

encodes the lifespan of some k-dimensional homological feature appearing at
time px and dying at time py ≤ px in the filtration X . Note that we depart
from the usual way of introducing persistence by reversing the time flow, which
goes from +∞ to −∞ here. As mentioned in the introduction, this choice is
purely formal and does not affect the validity of the theory. Its motivation will
become clear thereafter.

INRIA



Persistence-Based Clustering in Riemannian Manifolds 9

In this paper we consider uncountable sequences of nested spaces, defined
as the superlevel-sets of some continuous function f : X → R. Specifically, the
subspace of X of index α ∈ R is the closed superlevel-set F

α = [α,+∞). Here,
the sequence of spaces is indexed over whole R, and no longer over a finite subset.
However, the notion of k-th persistence diagram Dkf can be extended to this
continuous setting under some tameness condition [10] stating basically that the
family of inclusions F

α ⊆ F
β for α ≥ β induces at k-dimensional homology level

a persistence module of the same finite type as in Eq. (1). Under this condition,
the persistence diagram Dkf contains only finitely many points off the extended
diagonal ∆.

In the context of clustering, we are primarily concerned with 0-dimensional
homology, which encodes the path-connectivity of spaces. As far as 0-dimensional
homology is concerned, assuming that the filtration defined by the superlevel-
sets of f is tame boils down to assuming that f has only finitely many peaks. In
the rest of the paper, we will restrict our focus to the 0-dimensional homology
level to simplify the exposition and make our algorithms and theoretical results
more intuitive. It should be noted however that our approach is more general
and ultimately enables to compute the topology of the clusters, and not only
their number and locations.

In order to make effective computations, we will build discrete structures on
top of point clouds. Since we are mainly concerned with 0-dimensional homol-
ogy, our structures will be simple unoriented graphs, as opposed to general ab-
stract simplicial complexes when higher-dimensional homologies are concerned.
A type of graph that will play a central role in our work is the so-called Rips
graph, also known as δ-neighborhood graph in the literature:

Definition 2.1 Given a finite point cloud L in a metric space (X,dX), and a
parameter δ > 0, the Rips graph Rδ(L,dX) is the graph of vertex set L whose
edges correspond to the pairs of points x, y ∈ L such that dX(x, y) ≤ δ.

In the rest of the paper, the choice of the metric dX will be obvious and therefore
omitted in our notations. Given a real-valued function f : X → R and a
parameter α ∈ R, let Lα denote the trace of the superlevel-set F

α over the point
cloud L, that is:

Lα = L ∩ F
α. (2)

The upper-star Rips filtration, noted Rf
δ (L), is the following nested family of

subgraphs of Rδ(L):

Rf
δ (L) = {Rδ(L

α)}α∈R, (3)

where parameter α ranges from +∞ to −∞. The name upper-star filtration
stems from the fact that whenever a vertex v ∈ L enters the filtration, its whole
upper star (i.e. the set of edges of Rδ(L) connecting v to other vertices with
higher function values) enters at the same time. Observe that, even though
parameter α ranges over whole R, the connectivity of the subgraph Rδ(L

α)
only changes when a new vertex v is added, at time α = f(v). As a result, the

filtration Rf
δ (L) is composed of a finite family of different graphs, therefore it

induces a persistence module of the same finite type as in Eq. (1) at homology
level.

RR n➦ 6968



10 Chazal & Guibas & Oudot & Skraba

2.3 0-Dimensional Persistence of Morse Functions

Consider an m-dimensional Riemannian manifold X and a real-valued function
f : X → R that is assumed to be of Morse type, i.e. at least C2-continuous
with non-degenerate critical points. Assume also that f has a finite number
of critical points. The ascending region of a critical point m, noted A(m), is
the subset of the points of X that eventually reach m by moving along the flow
induced by the gradient vector field of f . For all x ∈ A(m), we call m the root of
x. Ascending regions of the peaks of f are known to form pairwise-disjoint open
cells homeomorphic to R

m. Furthermore, assuming X to have no boundary and
f to be bounded from above and proper3, the ascending regions of the peaks of
f cover X up to a subset of Hausdorff measure zero. It is then natural to use
them to partition (almost all) the space X into regions of influence.

For any x ∈ X and α ∈ R, let C(x, α) ⊆ F
α denote the path-connected com-

ponent of the superlevel-set F
α that contains x. Morse theory tells us that when

a local maximummp of f enters the superlevel-sets filtration, at time α = f(mp),
a new path-connected component C(mp, α) appears in the superlevel-set F

α. In
homological terms, the peak mp is called the generator of the component born
at time f(mp). C(mp, α) ceases to be an independent connected component in
F

α when it gets connected to another component generated by a higher peak
mq. At that particular time α, persistence theory tells us that the component
C(mp, α) gets merged into C(mq, α). While mq remains the generator of the
component C(mq, α), mp ceases to be a generator, and by analogy we call mq

its root, noted mq = r(mp). In the 0-th persistence diagram D0f , the lifes-
pan of mp as a generator is encoded by the point p of coordinates px = f(mp)
and py = α ≤ px. The difference τ = px − py ≥ 0 between birth and death
times is called the prominence of the peak mp. Equivalently, we say that p is
τ -prominent.

Given a thresholding parameter τ ≥ 0, we restrict our focus to the peaks mp

of f of prominence at least τ . Intuitively, the points of X that are attracted by
mp are the ones belonging to ascending regions that are eventually merged by
persistence into the connected component of mp before being merged into the
component of any other peak of prominence at least τ . Formally, for every peak
mq of f (of arbitrary prominence), let us iterate the root map mq 7→ r(mq) until
some peak of prominence at least τ is reached4. We call r∗τ the thus iterated
root map, and we point out that every peak of prominence at least τ is a fixed
point of r∗τ . The basin of attraction of mp (of parameter τ) is defined as the
union of the ascending regions of all the peaks mapped to mp through r∗τ :

∀mp s.t. px − py ≥ τ, Bτ (mp) =
⋃

r∗

τ (mq)=mp

A(mq). (4)

Note that Bτ (mp) contains A(mp) sincemp is a fixed point of r∗τ . More precisely,
we have A(mp) = B0(mp) ⊆ Bτ (mp). In addition, since the iterated root map
mq 7→ r∗τ (mq) is uniquely defined, the basins of attraction form a partition of
the union of all ascending regions.

3This means that for any bounded closed interval [a, b] ⊂ R, the pre-image f−1([a, b]) is a
compact subset of X.

4Such a prominent peak is always reached, since the tame function f has finitely many peaks
and since the root map satisfies f(mq) < f(r(mq)), meaning that r(mq) is more prominent
than mq .
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3 Algorithm

Our clustering algorithm takes as input a n-dimensional vector f with real
coordinates, a n × n symmetric matrix D with non-negative real coefficients,
and two real parameters δ, τ ≥ 0. The n dimensions represent the n points of
a point cloud L; the vector represents a function f : L → R, while the entries
Di,j = Dj,i of the matrix give the distance between the i-th and j-th points of L.
No geographic coordinates are assumed to be given, so that the algorithm can
be applied virtually in any metric space. However, for the sake of our proofs,
we will later assume that the point cloud L lies on some unknown Riemannian
manifold X, such that the matrix D encodes the pairwise geodesic distances
between the points of L, while f encodes the values (at the points of L) of the
probability density function according to which the dataset has been generated.
Details on how these quantities can be estimated in practice are provided in
Section 5.

In a preprocessing step, our algorithm computes the Rips graph Rδ(L) from
the input D and δ. Then, the main phase of our algorithm consists in mimicking
within the Rips graph the construction of the basins of attraction of parameter
τ described in Section 2.3. We proceed as follows:
1. First, we iterate over the points of L by decreasing function values: at
each vertex i, we approximate the gradient of the underlying probability density
function by connecting i to its neighbor in the graph Rδ(L) with highest function
value. If all neighbors of i haver lower function values, then i is declared a peak
of f and its gradient nullified. The resulting collection of gradients forms a
spanning forest of the graph Rδ(L): each tree in this forest can be viewed as
the analog within the graph Rδ(L) of the ascending region of a peak in the
continuous setting.
2. Second, to handle merges between trees, we maintain a union-find data
structure [12, Chapter 21] where each entry corresponds to a union of trees of
the spanning forest. We call root of an entry e, or r(e) for short, the vertex
contained in e whose function value is highest. By construction, this vertex
must be the root of one of the trees contained in e, and therefore a peak of f
in the graph Rδ(L). The merge of an entry into another entry is the analog
in our discrete setting to the merge of a basin of attraction into another basin
in the continuous setting. Merges are performed in the order prescribed by
persistence. More precisely, we iterate once again over the vertices of Rδ(L)
by decreasing order of function values, considering at each vertex i the edges
of the upper star of i in Rδ(L). Letting ei be the entry of the union-find data
structure containing i, if any edge of the upper star of i connects ei to some other
entry ej whose root r(ej) has lower function value than the root r(ei), then the
persistence algorithm prescribes that ej be merged into ei: we depart from this
prescription and perform the merge only if the prominence of r(ej) (viewed as a
peak of f in the graph Rδ(L)) is less than the threshold τ . This condition comes
down to checking whether fr(ej) − fi < τ . Once all non-prominent neighboring
clusters have been merged into ei, we check whether ei itself should be merged.
Letting ē be the neighboring cluster with highest root, we merge ei into ē if and
only if the prominence of r(ei) is less than τ , i.e. fr(ei) − fi < τ .

The pseudo-codes for steps 1. and 2. of our algorithm are given in Proce-
dures 1 and 2 below. As shown in Procedure 1, both steps can be performed
during a single pass over the vertices of Rδ(L): for each considered vertex i, the
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12 Chazal & Guibas & Oudot & Skraba

approximate gradient at i is computed, then the possible merges in the union-
find data structure are operated5. The neighborhood graph Rδ(L) itself does
not have to be pre-computed, since only the upper star of i is involved when
vertex i is processed.

Procedure 1 Clustering

Input: n-dimensional vector f , n × n symmetric matrix D, real parameters
δ, τ ≥ 0.

1: Sort the index set L so that f1 ≤ f2 ≤ · · · ≤ fn;
2: Initialize the union-find data structure U ;
3: for i = n to 1 do
4: compute the upper star Si = {(i, j1), · · · , (i, jk)} of vertex i in Rδ(L);
5: if Si = ∅ then {vertex i is a local maximum of f within Rδ(L)}
6: g(i)← null; {g(i) stores the approximate gradient at vertex i}
7: Create a new entry in U containing the tree {i};
8: else {vertex i is not a local maximum of f within Rδ(L)}
9: g(i)← arg maxj∈{j1,··· ,jk} f(j);

10: Attach vertex i to the tree t containing g(i);
11: U ← Merge (f , U , i, Si, τ);
12: end if
13: end for

Output: the set of entries e of U satisfying fr(e) ≥ τ .

Upon termination, the algorithm outputs the collection of entries of the
union-find data structure, which partitions the input point cloud L into clusters.
In fact, it only outputs those entries e whose root r(e) satisfies fr(e) ≥ τ .
This additional filtering step is motivated by the fact that some outliers in the
point cloud L may form independent connected components in the graph Rδ(L)
that cannot be merged, as shown in Figures 3(c) and 3(f). Such connected
components generate entries in the union-find data structure that have very
low (density) function values and can therefore be discarded using the above
filtering criterion, illustrated in Figure 3(e).

Step 2. of our algorithm provides additional feedback in the form of a col-
lection of intervals, each representing the lifespan of an entry in the union-find
data structure (the endpoints of the interval correspond to the creation and
merge times of the entry). When parameter τ is set to infinity, step 2. becomes
nothing but the standard persistence algorithm applied to the upper-star filtra-
tion Rf

δ (L), therefore the output collection of intervals coincides with the 0-th
persistence diagram of this filtration. We will see in Section 4 that this dia-
gram faithfully approximates the persistence diagram of the underlying density
function under some mild conditions on the input.

This observation suggests a two-stages recipe to cluster point cloud data in
practice, illustrated in Figure 3: in a first stage, the clustering algorithm is run
with τ = +∞ to approximate the persistence diagram of the underlying density
function; this diagram is used as feedback by the user to choose a relevant value
for parameter τ , which is then fed to the algorithm in a second stage to produce
the desired number of clusters.

5These involve only previously visited vertices.
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Procedure 2 Merge

Input: n-dimensional vector f , union-find data structure U , integer i, integer
list S = {j1, · · · , jk}, a parameter τ ≥ 0.

1: Let ei be the entry of U containing i;
{find entries of U intersecting S whose roots are less than τ -prominent;
merge those into ei}

2: for j ∈ {j1, · · · , jk} do
3: Let ej be the entry of U containing j;
4: if ej 6= ei and fr(ej) − fi < τ then
5: Remove entry ej from U and attach it to ei;
6: end if
7: end for
{find entry ē of U intersecting S whose root is highest}

8: ē← null;
9: for j ∈ {j1, · · · , jk} do

10: Let ej be the entry of U containing j;
11: if ē = null or fr(ej) > fr(ē) then
12: ē← ej ;
13: end if
14: end for
{merge ei into ē if the prominence of the root of ei is less than τ}

15: if ē 6= ei and fr(ei) − f(i) < τ then
16: Remove entry ei from U and attach it to ē;
17: end if

Output: updated union-find data structure U .

Running time and main memory usage. As mentioned above, the neigh-
borhood graph Rδ(L) does not have to be pre-computed and stored, since only
the star of the node being processed is involved at each step of the algorithm.
This means that the main memory usage is O(n), where n is the size of the
input point cloud. In addition, each vertex of Rδ(L) creates a new entry in the
union-find data structure U , while each edge of Rδ(L) generates two finds plus
potentially one union in U . Since there are n vertices and m = O(n2) edges,
there cannot be more than n− 1 unions and 2m finds, therefore the total run-
ning time of the algorithm is O(n+mα(n)), where α is the inverse Ackermann
function. In many practical scenarios, such as the ones considered in Section 6,
parameter δ is chosen small enough so that m = O(n). The running time of the
algorithm becomes then almost-linear in the size of the point cloud, excluding
the time spent reading the input.

4 Theoretical Guarantees

Throughout our analysis (Sections 4 and 5), we assume X to be anm-dimensional
Riemannian manifold with positive convexity radius, and f : X → R to be
a c-Lipschitz probability density function with respect to the m-dimensional
Hausdorff measure. We further assume that the input point cloud L has been
sampled over X according to f in i.i.d. fashion.
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14 Chazal & Guibas & Oudot & Skraba

In this section we assume for simplicity that the values of f at the points of
L, as well as the pairwise geodesic distances between the points of L, are given
as input to the algorithm. The analysis of practical scenarios where geodesic
distances or function values are unknown and need to be approximated is de-
ferred to Section 5. Both sections make an extensive use of the following concept
of geodesic ε-sample:

Definition 4.1 Given a subset Y ⊆ X and a parameter ε > 0, L is a geodesic
ε-sample of Y if every point of Y lies within geodesic distance ε of L, that is:
∀y ∈ Y, minv∈L dX(y, v) ≤ ε.

They also rely on a well-separatedness condition applied to the 0-th persistence
diagram of f , as defined below and illustrated in Figure 4:

Definition 4.2 Given two values d2 > d1 ≥ 0, the persistence diagram D0f is
called (d1, d2)-separated if every point of D0f lies either in the region D1 above
the diagonal line y = x− d1 or in the region D2 below the diagonal y = x− d2

and to the right of the vertical line x = d2.

This condition makes precise the intuitive notion that the points of the per-
sistence diagram can be separated between prominent peaks (region D2) and
topological noise (region D1). This acts very similarly to a signal-to-noise ratio
condition: the larger the difference d2−d1, the more clearly we can separate the
prominent peaks from the noise. In the limit scenario where d1 = 0, all peaks of
f must be at least d2-prominent and none of them is considered as noise. The
additional condition that the points of D2 must lie to the right of the vertical
line x = d2 is purely technical and will be explained in Section 4.4.

-∞
0

0

d2

d1

D1

D2

d2

Figure 4: The separation of the persistence diagram D0f between prominent
peaks (region D2) and topological noise (region D1).

4.1 Overview of the results of the section

Our first main result relates the number of clusters computed by the algorithm to
the number of prominent peaks of f . Using the stabillity of persistence diagrams
to relate the diagram of f to the diagram ouptut by step 2. of the algorithm, we
can prove that the regions D1 and D2 remain disjoint under pertubations caused
by our approximation, and can therefore be separated using some thresholding
parameter τ (to be determined by the user). With such a value of parameter
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m1 m2

m

z

m
s2

s2
s1

z

s2 s2

z

Figure 5: A function f with unstable basins of attraction, defined over the unit
square [0, 1]2 ⊂ R

2. For a persistence threshold τ > f(m)−f(s2), the ascending
region of the peak m is merged into the basin of attraction of the peak m2 of
parameter τ . However, since f(s2) − f(s1) is arbitrarily small, A(m) can be
merged into Bτ (m1) instead under small perturbations of f .

Figure 6: Outputs of the algorithm obtained from a uniform ε-sample L of the
unit square (ε = 0.15) endowed with the function f of Fig. 5. We chose a value
of τ that gives two clusters, and we used three different values for the Rips
parameter: δ = 0.27 (left), δ = 0.28 (center), δ = 0.6 (right). Notice how some
values of δ induce a correct merge of A(m) into Bτ (m2) whereas others induce
an incorrect merge of A(m) into Bτ (m1). The limit value of ε below which no
such failure of the algorithm occurs depends on the arbitrarily small quantity
f(s2)− f(s1).

τ as input, the algorithm computes the correct number of clusters with high
probability:

Result 1 (Theorem 4.8) If D0f is well-separated and the number n of input
points is large enough, then there exist values for the Rips parameter δ and
the thresholding parameter τ such that the number of clusters computed by the
algorithm is equal to the number of peaks of f of prominence at least τ with high
probability.

Explicit bounds are given in the full statement of the theorem. Once it is known
that there exist some values for parameters δ, τ that make the algorithm separate
prominent peaks from noise in the persistence diagram of f , it is natural to ask
how such values can be found in practice. This aspect will be discussed in the
experimental Section 6.
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16 Chazal & Guibas & Oudot & Skraba

Another question is how well the output of the algorithm approximates the
basins of attraction of the prominent peaks over the point cloud, assuming that
f is of Morse type. In full generality, this is a hopeless question since the basins
of attaction are not stable even in the smooth case. There are indeed many
examples of very close Morse functions having very different basins of attraction,
and clearly the algorithm cannot provably-well approximate the unstable parts
of the basins. An illustrative example is given in Figures 5 and 6. Nevertheless,
we can guarantee that the algorithm does provably well approximate some stable
parts of the basins:

Result 2 (Theorem 4.9) If D0f is well-separated and the number of input
points is large enough, then there exist values of the Rips parameter δ and thresh-
olding parameter τ such that, for each peak m of f of prominence at least τ ,
with high probability the algorithm outputs a cluster that coincides (over the
point cloud L) with the basin of attraction Bτ (m) up to the time ατ (m) when
Bτ (m) gets connected to the basin of another peak of f of prominence at least
τ .

As shown by the example of Figure 5, the basin Bτ (m) may start being unstable
as soon as time ατ (m), therefore Theorem 4.9 means that the algorithm pro-
vides approximations to the basins of attractions that are the best possible in
the worst case. Our proof of the theorem also shows an important fact, namely:
that each basin of attraction Bτ (m) is stable under small perturbations of the
function f , at least between times f(m) and ατ (m). This fact opens the door
to a more statistical approach to clustering: since we know the top parts of
the basins (and therefore of the clusters computed by the algorithm) are stable
under small perturbations of the function, we can conduct multiple runs of the
algorithm with random pertubations of the input data, and then find correspon-
dences between the outputs of different runs. Each point can then be assigned
a quantitative measure of its classification stability over the runs. This aspect
is deferred to the conclusion Section 7, as it lies somewhat beyond the scope of
the paper.

Note finally that our main results are inherently probabilistic. This is not due
to the algorithm itself, which is deterministic, but rather to the simple fact that
the input point set L must form a dense sampling of some superlevel-set of f for
the algorithm to have a chance of approximating D0f accurately, which can only
occur with high probability since the points of L are sampled at random. This
point will be addressed in Section 4.2. We will then introduce some background
results in scalar field analysis (Section 4.3), which will be instrumental in proving
Theorems 4.8 and 4.9 (Sections 4.4 and 4.5 respectively).

4.2 Sampling superlevel-sets of a probability density func-

tion

As mentioned previously, our main results rely on the property that the input
point cloud L forms a geodesic ε-sample of some superlevel-set of f . Intuitively,
since the points of L are drawn according to f in i.i.d. fashion, the more points
are drawn the more chances we have that L satisfies the above property. This
simple fact is proved formally in Lemma 4.3 below. Before stating the lemma,
we need to introduce a few measure-theoretic concepts. For any subset A of
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X and any parameter r > 0, we let Vr(A) be the infimum of the Hausdorff
measures achieved by geodesic balls of radius r centered in A, namely:

Vr(A) = inf
x∈A

Hm(BX(x, r)) ≥ 0, where BX(x, r) = {y ∈ X, dX(x, y) ≤ r}. (5)

Let alsoNr(A) ∈ N∪{+∞} be the r-covering number of A, that is, the minimum
number of closed geodesic balls of same radius r needed to cover A (the balls
do not have to be centered in A).

Lemma 4.3 Let X be an m-dimensional Riemannian manifold, and f : X→ R

a c-Lipschitz probability density function. Consider a set L of n points sampled
according to f in i.i.d. fashion. Then, for any parameters ε > 0 and α >
cε, we are guaranteed that L forms an ε-sample of F

α with probability at least
1−Nε/2(F

α) e−n(α−cε)Vε/2(F
α).

This result can be interpreted in various different ways:
• When the probability density function f is provided and a fixed superlevel-

set F
α is considered, the lemma ensures that after drawing sufficiently

many points according to f in i.i.d. fashion the superlevel set F
α will be

densely sampled with high probability.
• Conversely, when the set L of sample points is fixed and a target sampling

parameter ε is given, the lemma ensures that for large enough values6

of α the superlevel-set F
α is ε-sampled by L with high probability. In

particular, α has to be larger than cε.
In both scenarios, the probability of success is influenced by two quantities that
are intrinsic to the Riemannian manifold X: the covering number Nε/2(F

α),
and the minimum geodesic ball measure Vε/2(F

α). Note that the probability of
success can be positive only when Nε/2(F

α) is finite and Vε/2(F
α) is positive.

These conditions are met in a wide range of settings, including:
a) X is compact. In this case, F

α is compact since it is a closed subset of X,
f being continuous and [α,+∞) being closed. Then, Nε/2(F

α) is trivially
finite. Moreover, since the map x 7→ Hm(BX(x, ε/2)) is continuous, the
infimum in Eq. (5) is a minimum, which by the Area Formula [26, ➜3.7] is
positive. Therefore, Vε/2(F

α) > 0.
b) X has bounded absolute sectional curvature7. In this case, the Bishop-

Gunter inequality [19, Theorem 3.101] ensures that for any r > 0, the
Hausdorff measures of the geodesic balls of same radius r are bounded
from below by the same positive quantity. As a consequence, Vr(F

α) ≥
Vr(X) > 0. In addition, since f is a probability density function, we have:

1 =

∫

X

f dHm ≥

∫

Fα

f dHm ≥ α Hm(Fα),

which implies that Hm(Fα) is finite when α > 0. Combining this with

the fact that Vε/4(F
α) > 0, we deduce that no more than Hm(Fα)

Vε/4(Fα) < +∞

pairwise-disjoint geodesic balls of same radius ε
4 can be packed inside

F
α, which by the Kolmogorov-Tikhomirov inequality [23] implies that
Nε/2(F

α) < +∞.

6As α grows, Nε/2(Fα) decreases while Vε/2(Fα) increases, therefore the probability of
success increases.

7This case occurs e.g. when X is the Euclidean space R
m.
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Our proof of Lemma 4.3 is an easy application of the union bound:

Proof of Lemma 4.3. If Nε/2(F
α) = +∞ or Vε/2(F

α) = 0, then the lower
bound provided by the lemma is non-positive and therefore the conclusion holds
trivially.

Assume from now on that Nε/2(F
α) < +∞ and Vε/2(F

α) > 0. Consider
a family {Bi}1≤i≤l of closed geodesic balls of same radius ε

2 such that F
α ⊆

⋃l
i=1Bi and l = Nε/2(F

α) is minimal. Let pi be a point of Bi ∩ F
α. Such a

point exists because otherwise the cover would not be minimal. Since f is c-
Lipschitz, at every point p ∈ Bi we have f(p) ≥ f(pi)−c dX(p, pi) ≥ α−cε > 0.
Therefore,

∀i ∈ {1, · · · , l},

∫

Bi

f dHm ≥ (α− cε)Hm(Bi) ≥ (α− cε)Vε/2(F
α).

Let Ei denote the event that L∩Bi = ∅. The probability with which this event
occurs is

P[Ei] =

(

1−

∫

Bi

f dHm

)n

≤
(

1− (α− cε)Vε/2(F
α)

)n
.

Then, by the union bound, we have

P[∪iEi] ≤
l

∑

i=1

P[Ei] ≤ l
(

1− (α− cε)Vε/2(F
α)

)n
.

Note that when ∪iEi does not occur, every ball Bi contains at least one point of
L, therefore by the triangle inequality L is an ε-sample of F

α. Hence, our goal
is to work out an upper bound on P[∪iEi]. Observe that the quantity g(x) =
e−x +x−1 is non-negative for all x ≥ 0. Letting x be equal to (α−cε)Vε/2(F

α),
we obtain:

1− (α− cε)Vε/2(F
α) ≤ e−(α−cε)Vε/2(F

α),

which implies that

P[∪iEi] ≤ l
(

1− (α− cε)Vε/2(F
α)

)n
≤ l e−n(α−cε)Vε/2(F

α).

�

4.3 Background on scalar field analysis over point cloud

data

From now on, we endow the extended plane R
2

with the l∞-norm, noted ‖ · ‖∞.

Given two multi-subsets A,B of R
2
, a multi-bijection γ between A and B is a

bijection

γ :
⋃

p∈|A|

µ(p)
∐

i=1

p→
⋃

q∈|B|

µ(q)
∐

i=1

q,

where |A| denotes the support of A, i.e. the set A considered as a subset of

R
2

without any multiplicities, and where µ(p) denotes the multiplicity of point
p ∈ |A| in A. The bottleneck distance d∞

B (A,B) between A and B is the quantity
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minγ maxp∈A ‖p − γ(p)‖∞, where γ ranges over all multi-bijections between A
and B. The bottleneck distance is a natural measure of proximity between
persistence diagrams [10]. With this concept at hand, we can introduce a result
from [6] that will play a central role in our analysis8:

Theorem 4.4 Let X be a compact Riemannian manifold, possibly with bound-
ary, and f : X → R a tame c-Lipschitz function. Let also L be a geodesic
ε-sample of X. If ε < 1

4̺c(X), then for any δ ∈ [4ε, ̺c(X)), the bottleneck dis-
tance between the 0-dimensional persistence diagrams of f and of the upper-star
Rips filtration Rf

δ (L) is at most cδ.

This result suffers from two major limitations that make it inapplicable as is to
our context:

1. the point cloud L must be dense over the entire manifold X, which is not
true when the data points are drawn from some non-uniform probability
distribution;

2. the manifold X must be compact, which prohibits simple scenarios such
as X = R

m.
Theorem 4.5 below addresses these two issues provided that the point cloud
L forms a dense sampling of some superlevel-set of the function f , as guaran-
teed by Lemma 4.3. In the statement of the theorem, QNE

α , QSE
α , QSW

α , and
QNW

α denote respectively the quadrants (α,+∞]× (α,+∞], (α,+∞]× [−∞, α],

[−∞, α]× [−∞, α], and [−∞, α]× (α,+∞] in the extended plane R
2
.

Theorem 4.5 Let X be a Riemannian manifold, possibly non-compact, possibly
with boundary. Assume that the convexity radius ̺c(X) is positive. Let L ⊆ X

be a finite point cloud and f : X → R be a tame c-Lipschitz function. Then,
for any positive δ < ̺c(X), for any α ∈ R such that L is a geodesic δ

4 -sample
of F

α = f−1([α,∞)), there is a multi-bijection γ between the 0-th persistence

diagrams of f and of the upper-star Rips filtration Rf
δ (L), such that:

(i) ∀p ∈ D0f ∩Q
NE
α , ‖p− γ(p)‖∞ ≤ cδ.

(ii) ∀q ∈ D0R
f
δ (L) ∩QNE

α , ‖γ−1(q)− q‖∞ ≤ cδ.

(iii) ∀p ∈ D0f ∩Q
SE
α , |px − γ(p)x| ≤ cδ.

(iv) ∀q ∈ D0R
f
δ (L) ∩QSE

α , |γ−1(q)x − qx| ≤ cδ.

The theorem is illustrated in Figure 7 (left). Assertions (i)-(ii) ensure that the
multi-bijection γ does not move the points of both diagrams by more than cδ
within the upper-right quadrant QNE

α corresponding to the superlevel-set of f
that is δ

4 -sampled by L. In cases where L is a δ
4 -sample of the entire manifold X

(α = −∞), assertions (i)-(ii) imply that the bottleneck distance between both
persistence diagrams is at most cδ, as stated in Theorem 4.4.

Assertions (iii)-(iv) provide weaker guarantees in the lower-right quadrant
QSE

α , by ensuring that every 0-dimensional homology class [c] appearing at time
αb > α in the superlevel-sets filtration of f must appear within [αb − cδ, αb +

cδ] in the filtration Rf
δ (L), and vice-versa. By contrast, death times are not

8The result of [6] holds in fact for persistence diagrams of arbitrary dimensions, but it uses

two upper-star Rips filtrations in parallel: Rf
δ/2

(L) and Rf
δ (L). As reported in the research

report version of that paper [5, ➜4.3], in the special case of 0-dimensional homology, using

both filtrations or only Rf
δ (L) gives the same result.
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Figure 7: Left: the multi-bijection of Theorem 4.5. Right: for the proof of
Lemma 4.6.

fully controlled: if [c] dies at time αd < α in the superlevel-set filtration of f ,

then all we can say is that its death time in Rf
δ (L) must be less than α + cδ,

since otherwise by (ii) [c] would be located in QNE
α , thereby contradicting the

assumption that [c] ∈ QSE
α .

Due to the lack of sample points outside the superlevel-set F
α, there is

no guarantee concerning the portion of D0f lying in the quadrants QNW
α and

QSW
α located to the left of the vertical line x = α. This part of the diagram

corresponds indeed to homological features appearing at times less than α in
the superlevel-sets filtration of f , which may not be captured at all in Rf

δ (L).
The proof of Theorem 4.5 relies on the following technical result, inspired

from recent advances on the stability of persistence diagrams [3], whose purely
algebraic proof is deferred to Appendix A:

Lemma 4.6 Let X and Y be two tame persistence modules that are (strongly)
ε-interleaved above some given time α ∈ R. Then, there is a multi-bijection
γ : DX → DY satisfying assertions (i) through (iv) of Theorem 4.5, with D0f

replaced by DXR and D0R
f
δ (L) replaced by DYR.

Here, X and Y stand for two persistence modules {Xα}α∈R and {Y α}α∈R,
indexed over whole R, that are of same finite type as in Eq. (1). The notion
of (strong) ε-interleaving above time α is derived from [3]. It means that there
exist two families of homomorphisms {φβ : Xβ → Y β−ε}β≥α and {ψβ : Y β →
Xβ−ε}β≥α, such that for all values β′ ≥ β ≥ α the following diagrams of vector
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spaces commute:

Xβ′+ε

##GGGGGGGG
// Xβ−ε

Y β′ // Y β

<<yyyyyyyy

Xβ′−ε // Xβ−ε

Y β′ //

;;wwwwwwww

Y β

::vvvvvvvvv

Xβ′ // Xβ

""EEEEEEEE

Y β′+ε

;;wwwwwwww
// Y β−ε

Xβ′ //

##GGGGGGGG
Xβ

##HHHHHHHHH

Y β′−ε // Y β−ε

(6)

Intuitively, the commutativity of these diagrams means that every homological
feature appearing (resp. dying) in X at some time β ≥ α must appear (resp.
die) in Y within [β − ε, β + ε], and vice-versa. This statement is the analog
of assertions (i)-(ii) of Theorem 4.5. Furthermore, every homological feature
appearing in X at time βb ≥ α and dying at time βd ≤ α must appear within
[βb−ε, βb +ε] and die at some time below α+ε in Y, and vice-versa. This state-
ment is the analog of assertions (iii)-(iv) of Theorem 4.5. Thus, the conclusion
of Lemma 4.6 is intuitively clear.

Proof of Theorem 4.5. With Lemma 4.6 at hand, the proof of the theorem
becomes a straightforward adaptation of the proof of Theorem 4.4 given in
[6]. Indeed, the same exact sequence of arguments as in [6, ➜3.1] shows that
there exist two families of homomorphisms {φβ : H0(Rδ(L

β))→ H0(F
β−cδ)}β≥α

and {ψβ : H0(F
β) → H0(Rδ(L

β−cδ))}β≥α that make the persistence modules
{H0(F

β)}β∈R and {H0(Rδ(L
β))}β∈R (strongly) cδ-interleaved above time α. It

follows then from Lemma 4.6 that there is a multi-bijection γ : D0f → D0R
f
δ (L)

satisfying assertions (i) through (iv) of the theorem. �

4.4 Estimating the number of prominent peaks

In this section, we prove that if the peaks of the density function f are prominent
enough compared to the noise, the algorithm will recover the correct number
of clusters. To state the result formally, we need to define some notation for
partitioning the persistence diagram of f .

In the extended plane R̄
2, let ∆ denote the diagonal y = x. For any d > 0,

we call ∆d the line y = x − d, parallel to ∆, lying below ∆, at l∞ distance d
2

of ∆. Let ∆S
d denote the closed half-plane lying below ∆d, and ∆N

d the open
half-plane lying above ∆d. Similarly, we call ΛW

d (resp. ΛE
d ) the closed (resp.

open) half-plane lying to the left (resp. right) of the vertical line x = d, and
ΛS

d (resp. ΛN
d ) the closed (resp. open) half-plane lying below (resp. above) the

horizontal line y = d. Definition 4.2 can now be restated as follows:

Definition 4.7 Given two values d2 > d1 ≥ 0, the persistence diagram of f is
called (d1, d2)-separated if it has the following structure:

D0(f) = D1 ∪D2, where D1 ⊂ ∆N
d1

and D2 ⊂ ∆S
d2
∩ ΛE

d2
.

As mentioned at the beginning of Section 4, the condition that D0f is parti-
tioned into two disjoint subsets D1 ⊂ ∆N

d1
and D2 ⊂ ∆S

d2
with d2 > d1 can be
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interpreted as a signal-to-noise ratio condition: the relevant peaks of f (in D2)
must be significantly more prominent than the non-relevant ones (in D1) for the
algorithm to be able to detect the correct number of clusters. The additional
condition that D2 ⊂ ΛE

d2
stems from the observation that only some superlevel-

set F
α of f can be densely sampled by the input point set L drawn according

to f , as expressed in Lemma 4.3. Due to a lack of sample points outside F
α,

the persistence diagram of the upper-star Rips filtration built by the algorithm
cannot be controlled in the region ΛW

α , as illustrated in Figure 3(e). This re-
gion must therefore be discarded by the algorithm, and the condition D2 ⊂ ΛE

d2

simply states that the prominent peaks of f must reach high enough altitudes
so as not to be discarded themselves.

Theorem 4.8 Let X be a Riemannian manifold with positive convexity radius,
and let f : X → R be a tame c-Lipschitz probability density function. If D0(f)
is (d1, d2)-separated, with d2 > d1 ≥ 0, then for any positive parameter δ <
min{̺c(X), d2−d1

5c } and any threshold τ ∈ (d1 + 2cδ, d2 − 3cδ), on any input of
n sample points drawn according to f in an i.i.d. fashion the number of clusters
computed by the algorithm is equal to the number of peaks of f of prominence

at least d2 with probability at least 1−Nδ/8(F
cδ)e−n 3

4
cδVδ/8(F

cδ).

Proof. Let α = cδ and ε = δ/4. According to Lemma 4.3, the input
point set L forms a δ

4 -sample of the superlevel-set F
cδ with probability at least

1−Nδ/8(F
cδ)e−n 3

4
cδVδ/8(F

cδ). Assume from now on that L is indeed a δ
4 -sample of

F
cδ. By Theorem 4.5, there is a multi-bijection γ : D0f → D0R

f
δ (L) satisfying

conditions (i) through (iv) of Theorem 4.5. Let us prove that under these

conditions the diagram of Rf
δ (L) is separated into two parts, one of which is in

(multi-)bijection with the set of peaks of f of prominence at least d2. The proof
requires us to analyze where an arbitrary point p of D0(f) can be mapped to
by γ. Our analysis is split into five different cases, depending on which region
of Figure 8(a) point p belongs to. We first consider Regions I and II, which
correspond to cases where p ∈ D1:
• p lies in Region I, i.e. p ∈ ∆N

d1
∩ ΛN

cδ. Then, we have p ∈ QNE
cδ , and (i)

implies that ||p− γ(p)||∞ ≤ cδ. Therefore, γ(p) ∈ ∆N
d1+2cδ.

• p lies in Region II, i.e. p ∈ ∆N
d1
∩ ΛS

cδ. Then, a quick computation (see

Figure 8(b)) shows that p lies in ΛW
d1+cδ. If γ(p) were located in ΛE

d1+2cδ,

then (iv) would imply that p = γ−1(γ(p)) ∈ ΛE
d1+cδ, thereby raising a

contradiction. Therefore, γ(p) ∈ ΛW
d1+2cδ.

It follows that γ(D1) ⊆ ∆N
d1+2cδ ∪ ΛW

d1+2cδ. We now proceed with Regions III,
IV, V, which correspond to cases where p ∈ D2, and we show that under our
assumptions their images through γ do not intersect ∆N

d1+2cδ ∪ ΛW
d1+2cδ:

• p lies in Region III, i.e. p ∈ ∆S
d2
∩ ΛN

cδ. Then, we have p ∈ QNE
cδ and

therefore ||γ(p)−p||∞ ≤ cδ, by (i). This implies that γ(p) ∈ ∆S
d2−2cδ∩ΛE

d2
,

since ∆S
d2
∩ ΛN

cδ ⊂ ∆S
d2
∩ ΛE

d2+cδ. Now, ∆S
d2−2cδ ∩ ΛE

d2
is disjoint from

∆N
d1+2cδ ∪ ΛW

d1+2cδ because by hypothesis we have d2 > d1 + 4cδ.

• p lies in Region IV, i.e. p ∈ ΛE
d2+cδ ∩ ΛS

cδ. Then, (iii) implies that γ(p) ∈

ΛE
d2

. In addition, we have γ(p) ∈ ΛS
2cδ since otherwise γ(p) would belong

to QNE
cδ and by (ii) p = γ−1(γ(p)) would belong to ΛN

cδ, a contradiction.
Thus, we have γ(p) ∈ ΛE

d2
∩ΛS

2cδ, which is disjoint from ∆N
d1+2cδ ∪ΛW

d1+2cδ

since by hypothesis we have d2 > d1 + 4cδ.
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• p lies in Region V, i.e. p ∈ ∆S
d2
∩ ΛE

d2
∩ ΛW

d2+cδ. Then, p belongs to QSE
cδ ,

therefore (iii) implies that γ(p) ∈ ΛE
d2−cδ. In addition, γ(p) must lie in

ΛS
2cδ or we have a contradiction by (ii) as in the previous case. Hence,

γ(p) ∈ ΛE
d2−cδ ∩ ΛS

2cδ, which is disjoint from ∆N
d1+2cδ ∪ ΛW

d1+2cδ since by
hypothesis we have d2 > d1 + 5cδ.

Thus, the persistence diagram D0R
f
δ (L) is partitioned into two disjoint subsets:

DR
1 and DR

2 , which are the respective images of D1 and D2 through γ, and
which lie respectively in the disjoint regions γ(I ∪ II) and γ(III ∪ IV ∪ V), as
depicted in Figure 8(b). Then, for any choice of parameter τ within the range
(d1 + 2cδ, d2 − 3cδ), the subset DR

2 (as well as D2) is located in the region
∆S

τ ∩ ΛE
τ , whereas DR

1 (as well as D1) is located in its complement ∆N
τ ∪ ΛW

τ .
This implies that the algorithm discards DR

1 and keeps only DR
2 , which has same

(finite) total multiplicity as D2 since both sets contain no point of the diagonal
∆ and are in multi-bijection. This concludes the proof, since D2 represents
precisely the set of peaks of f of prominence at least d2. �

-∞
0
cδ

III

I

0

d2

d1

IV

II

V

d2 d2+cδ

(a) Regions of D0(f)

-∞
0

cδ
IV

III

I

II

0 τ

τ

d2

d1

V

d1

(b) Images of the regions through γ

III

IVV

cδ

0
-∞

d2d2 - cδ d2+cδ

2cδ

(c) Close-up of Region V

Figure 8: For the proof of Theorem 4.8.
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4.5 Approximating the basins of attraction of the promi-

nent peaks

The next natural question is whether the clusters output by the algorithm are
faithful approximations to the actual basins of attraction of the underlying
probability density function f . Using the terminology of Section 2.3, given
a parameter τ ≥ 0 and a peak mp of f of prominence at least τ , we call basin
of attraction of mp of parameter τ , noted Bτ (mp), the union of the ascending
regions of all the peaks mapped to mp through the iterated root map r∗τ , as per
Eq. (4). Recall that the root map r takes a peak of f and maps it to the peak
of higher prominence such that the connected component generated by the first
peak in the superlevel-sets filtration of f gets merged by persistence into the
component generated by the second peak. The iterated root map r∗τ iterates
this process until some peak of prominence at least τ is reached. Given such a
peak mp, we call ατ (mp) the time at which the connected component generated
by mp gets connected to the one generated by another peak of prominence at
least τ . Assuming D0f to be (d1, d2)-separated and τ to lie within the range
[d1, d2], we have the following inequalities:

∀mp s.t. px − py ≥ τ, px − d2 ≥ ατ (mp) ≥ py. (7)

The first inequality follows from the fact that for any peak mq 6= mp of promi-
nence at least τ , C(mp, α) and C(mq, α) cannot get connected with each other
above time α = px − d2, because otherwise the prominence of the younger con-
nected component would be less than d2 and therefore less than τ since D0f is
(d1, d2)-separated. The second inequality follows from the fact that, at time py,
C(mp, py) is merged into some older connected component C(q, py) such that
qx − qy ≥ px − py ≥ τ .

As reported in the overview Section 4.1, guaranteeing that the entire basins
of attraction of the prominent peaks are approximated is hopeless. However,
Theorem 4.9 gives a partial approximation guarantee (where we abuse notations
by letting Bτ (p) = Bτ (mp) and ατ (p) = ατ (mp)):

Theorem 4.9 Let X be a Riemannian manifold with positive convexity radius,
and let f : X → R be a tame c-Lipschitz probability density function. If D0(f)
is (d1, d2)-separated, with d2 > d1 ≥ 0, then for any positive parameter δ <
min{̺c(X), d2−d1

5c } and any threshold τ ∈ (d1 + 2cδ, d2 − 3cδ), on any input L
of n sample points drawn according to f in an i.i.d. fashion the following is true

with probability at least 1−Nδ/8(F
cδ)e−n 3

4
cδVδ/8(F

cδ): for each point p ∈ D2 there
is a cluster BR

τ (p) output by the algorithm such that BR
τ (p)∩F

α = Bτ (p)∩L∩F
α

at all times α ∈ (ατ (p) + d1 + 5
2cδ, px].

In plain words, the conclusion of the theorem means that, within the superlevel-
set F

α, the cluster BR
τ (p) is the trace of the basin of attraction Bτ (p) over the

point cloud L. This holds from the time px at which the basin Bτ (p) appears
in the superlevel-sets filtration of f , almost until the time ατ (p) at which Bτ (p)
ceases to be disconnected from the other basins of attraction in the filtration.
In view of Eq. (7), the duration of this phase is at least d2−d1−

5
2cδ > 0, which

as in Theorem 4.8 can be interpreted as a signal-to-noise ratio condition. As
explained in Section 4.1 and illustrated in Figures 5 and 6, below time ατ (p) it
is not possible to guarantee the approximation of the basin of attraction Bτ (p)
on all instances.
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The rest of Section 4.5 is devoted to the proof of Theorem 4.9. A noticeable
feature of our proof is to not rely on a precise definition of approximate gradient
within the Rips graph Rδ(L), as used in the algorithm (see Procedure 1). This
means that the theorem is true regardless of the actual choice of approximate
gradient g(i) at point i, as long as this choice satisfies fg(i) > fi. This is yet
another indicator of the stability of our clustering approach.

Proof of Theorem 4.9. Recall from Lemma 4.3 that, under the hypotheses
of Theorem 4.8, the point cloud L forms a δ

4 -sample of F
cδ with probability at

least 1 −Nδ/8(F
cδ)e−n 3

4
cδVδ/8(F

cδ). We assume from now on that L is indeed a
δ
4 -sample of F

cδ.
The equality BR

τ (p)∩F
α = Bτ (p)∩L∩F

α will be proved by mutual inclusion:
BR

τ (p)∩ F
α ⊆ Bτ (p)∩L∩ F

α (Lemma 4.14) and BR
τ (p)∩ F

α ⊇ Bτ (p)∩L∩ F
α

(Lemma 4.15). We begin with a series of easy technical results (Lemmas 4.10
through 4.13) that will be key to proving the theorem:

Lemma 4.10 For any p, q ∈ D2 and any α, α′ ∈ R, if p 6= q then

∀x ∈ Bτ (p)∩F
α, ∀y ∈ Bτ (q)∩F

α′

, dX(x, y) ≥
max{α− αm, 0}+ max{α′ − αm, 0}

c
,

where αm = min{ατ (p), ατ (q)}.

Proof. If α > f(mp) or α′ > f(mq), then Bτ (p) ∩ F
α = ∅ or Bτ (q) ∩ F

α′

= ∅

and the conclusion trivially holds. If Bτ (p) ∩ F
α 6= ∅ and Bτ (q) ∩ F

α′

6= ∅,
then take x ∈ Bτ (p) ∩ F

α, y ∈ Bτ (q) ∩ F
α, and consider a shortest path9 [x, y]

between x and y in X. Let z be a point of [x, y] where the value of f is minimal.
Since Bτ (p) and Bτ (q) can only get connected to each other at time αm, we
have f(z) ≤ αm. By the fact that f is a c-Lipschitz function, we deduce that

dX(x, z) ≥ α−αm

c and dX(y, z) ≥ α′−αm

c . Note that these lower bounds are
negative when α, α′ < αm. Since z is on a shortest path between x and y, we
conclude that

dX(x, y) = dX(x, z) + dX(z, y) ≥
max{α− αm, 0}+ max{α′ − αm, 0}

c
.

�

For any p ∈ D2, we let

vp = argmaxv∈Bτ (p)∩Lf(v).

Lemma 4.11 For any p ∈ D2, we have f(mp) ≥ f(vp) ≥ f(mp)− c
δ
4 .

Proof. The first inequality follows from the definition of mp as the argmax
of f over Bτ (p), which contains vp. To prove the second inequality, we use our
assumption that L forms a δ

4 -sample of F
cδ and therefore of F

d2 since d2 ≥ cδ
by hypothesis. Then, because p belongs to D2 ⊂ ΛE

d2
, we have mp ∈ F

d2

9Since we did not assume X to be a compact manifold, it may happen that no shortest
path exists between x and y. However, we can always consider paths [x, y] of length at most
dX(x, y) + ζ, for arbitrary positive values of ζ.
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and therefore there is a point v ∈ L such that dX(v,mp) ≤ δ/4. Since f is
c-Lipschitz, we have f(v) ≥ f(mp) − cδ/4. To complete the proof, we only
need to show that v actually lies in the basin Bτ (p), which will imply that
f(vp) ≥ f(v) ≥ f(mp) − cδ/4. By Lemma 4.10, the geodesic distance of mp

to X \ Bτ (p) is at least
f(mp)−ατ (p)

c = px−ατ (p)
c , which by Eq. (7) is at least

d2

c , which by hypothesis is greater than 5δ. It follows then from the triangle
inequality that the geodesic distance of v to X \B(p) is strictly positive, which
means that v ∈ Bτ (p). �

It follows from the above result that vp is a peak of f in the Rips graphRδ(L).
Indeed, Lemma 4.11 guarantees that f(vp) ≥ f(mp)− cδ/4 = px − cδ/4, which
by Eq. (7) is at least ατ (p) + d2 − cδ/4. Therefore, Lemma 4.10 ensures that
the geodesic distance of vp to X\Bτ (p) is at least d2

c −
δ
4 , which by hypothesis is

greater than δ. This implies that every neighbor v of vp in the Rips graph Rδ(L)
lies in the basin Bτ (p), and by definition of vp that f(v) ≤ f(vp). Thus, vp is a
local maximum in Rδ(L). As a result, at time f(vp) a new connected component

CR(vp, f(vp)) appears in the upper-star Rips filtration Rf
δ (L), or more precisely

in the subgraph Rδ(L∩F
α). In homological terms, this connected component is

generated by the peak vp. Its lifespan is encoded as a point pR in the persistence

diagram D0R
f
δ (L). Note that this point may or may not be identical to the point

γ(p) associated with p by the multi-bijection introduced in the proof of Theorem
4.8. Defining regions DR

1 and DR
2 as in the proof of Theorem 4.8, we have:

Lemma 4.12 For all p ∈ D2, p
R ∈ DR

2 .

Proof. At any time α ∈ (ατ (p) + cδ/2, f(vp)], Lemma 4.10 guarantees that
every point of L ∩ F

α ∩ Bτ (p) (including vp itself) is disconnected from every
point of L ∩ F

α \ Bτ (p) in the subgraph Rδ(L ∩ F
α), therefore the connected

component CR(vp, α) is included in Bτ (p). This implies that vp remains the
argmax of f over CR(vp, α), and therefore that CR(vp, α) still exists as an
independent connected component in the subgraph Rδ(L ∩ F

α). It follows that
pRy ≤ ατ (p)+cδ/2, which in turn implies that pRx −p

R
y ≥ f(vp)−ατ (p)−cδ/2. By

Lemma 4.11, this quantity is at least f(mp)−ατ (p)−3cδ/4 = px−ατ (p)−3cδ/4,
which by Eq. (7) is at least d2−3cδ/4. Thus, pR lies in ∆S

d2−3cδ/4 ⊂ ∆S
d2−3cδ. In

addition, we have pRx = f(vp) ≥ f(mp)−
cδ
4 = px−

cδ
4 , which is at most d2− c

δ
4

since by hypothesis p ∈ D2 ⊂ ΛE
d2

. Hence, pR also lies in ΛE
d2−cδ/4 ⊂ ΛE

d2−3cδ,

which proves that pR ∈ DR
2 since d2 > d1 + 5cδ. �

According to Lemma 4.12, p 7→ pR is a map D2 → DR
2 . This map is clearly

injective, since by definition pR corresponds to the connected component of
Rf

δ (L) generated by the peak vp which belongs to the basin Bτ (p) and to no
other. In fact, the map is bijective since by Theorem 4.8 the cardinalities of D2

and DR
2 are the same. Another important consequence of Lemma 4.12 is that

vp is in fact the generator of a whole cluster output by the algorithm. We call
BR

τ (p) this cluster.
Given a point x ∈ L, we denote by r(x) the root of the tree to which x

is attached in the forest built at step 1. of the algorithm of Section 3. For
each merge of an entry e into another entry e′ performed in the union-find
data structure at step 2. of the algorithm, we call e′ the root of e, noted
e′ = r(e). We can then iterate the root map, starting at x, until we reach the
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root of the cluster containing x in the output of the algorithm. This root is
denoted r∗τ (x), by analogy with the continuous setting described in Section 2.3.
By construction, r∗τ (x) is the only peak (of f within the Rips graph Rδ(L))
of prominence at least τ in its cluster. Therefore, in the persistence diagram
D0R

f
δ (L), r∗τ (x) corresponds to some point [r∗τ (x)] ∈ DR

2 . Let p ∈ D2 be such
that pR = [r∗τ (x)]. Such a point exists since the map p 7→ pR is a bijection
D2 → DR

2 . The cluster of root r∗τ (x) output by the algorithm is then identified
with BR

τ (p), and the root itself is identified with vp.

Lemma 4.13 ∀x ∈ L, ∀α ≤ f(x)− d1 − 2cδ, CR(x, α) = CR(r∗τ (x), α).

Proof. By definition of the root r(x), there is a path from x to r(x) in the
Rips graph Rδ(L) such that f increases along this path. This means that x and
r(x) belong to the same connected component of the subgraph Rδ(L ∩ F

f(x)).
Since α ≤ f(x), we deduce that CR(x, α) = CR(r(x), α).

For convenience, we let x0 = r(x), x1 = r(x0), · · · , xl−1 = r(xl−2), and
xl = r(xl−1) = r∗τ (x). We have f(xl) ≥ f(xl−1) ≥ · · · ≥ f(x0) ≥ f(x). By
construction, the cluster output by the algorithm that contains the xi does not
contain any peak of f of prominence τ or more beside xl. This means that, for
any i < l, the peak xi is less than τ -prominent and therefore corresponds to some
point of DR

1 in the diagram D0R
f
δ (L). It follows in particular that the promi-

nence of xi is less than d1 + 2cδ, which means that CR(xi, f(xi)− d1 − 2cδ) =
CR(xi+1, f(xi)−d1−2cδ). Now, we have f(xi)−d1−2cδ ≥ f(x)−d1−2cδ ≥ α,
which implies that CR(xi, α) = CR(xi+1, α). Since this is true for all i < l,
we conclude that CR(x0, α) = CR(x1, α) = · · · = CR(xl, α) = CR(r∗τ (x), α).
Combined with the fact that CR(x, α) = CR(r(x), α) = CR(x0, α), this proves
the lemma. �

We are now ready to prove our first inclusion:

Lemma 4.14 For all p ∈ D2 and all α > ατ (p) + d1 + 5
2cδ, B

R
τ (p) ∩ F

α ⊆
Bτ (p) ∩ L ∩ F

α.

Proof. For any α > f(vp), B
R
τ (p) ∩ F

α is empty and so the inclusion holds
trivially. Otherwise, consider a point x ∈ BR

τ (p) ∩ F
α. Since f(x) ≥ α, Lemma

4.13 guarantees that CR(x, α − d1 − 2cδ) = CR(r∗τ (x), α − d1 − 2cδ). In other
words, x and r∗(x) belong to the same connected component of the subgraph
Rδ(L∩F

α−d1−2cδ). Since by hypothesis α−d1−2cδ is greater than ατ (p)+cδ/2,
Lemma 4.10 ensures that every point of L ∩ F

α−d1−2cδ ∩Bτ (p), including vp =
r∗(x) itself, is disconnected from every point of L ∩ F

α−d1−2cδ \ Bτ (p) in the
subgraph Rδ(L ∩ F

α−d1−2cδ). This implies that x belongs to Bτ (p). �

We now proceed with the inclusion in the other direction:

Lemma 4.15 For all p ∈ D2 and all α > ατ (p) + d1 + 5
2cδ, Bτ (p) ∩ L ∩ F

α ⊆
BR

τ (p) ∩ F
α.

Proof. Since by definition vp is the argmax of f over Bτ (p) ∩ L, for all α >
f(vp) the set Bτ (p)∩L∩F

α is empty and so the inclusion holds trivially. Assume
from now on that ατ (p)+d1 + 5

2cδ < α ≤ f(vp), and let x ∈ Bτ (p)∩L∩F
α. Let

q ∈ D2 be such that vq = r∗(x). Since f(x) ≥ α, Lemma 4.13 guarantees that
CR(x, α−d1−2cδ) = CR(vq, α−d1−2cδ). Now, since α−d1−2cδ > ατ (p)+cδ/2,
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Lemma 4.10 ensures that every point of L ∩ F
α−d1−2cδ ∩ Bτ (p), including x

itself, is disconnected from every point of L∩F
α−d1−2cδ \Bτ (p) in the subgraph

Rδ(L ∩ F
α−d1−2cδ). This implies that vq belongs to Bτ (p), and therefore that

vq = vp. Hence, x belongs to BR
τ (p). �

The conclusion of Theorem 4.9 follows from the mutual inclusions stated in
Lemmas 4.14 and 4.15. �

5 Practicality of the approach

In some practical scenarios the probability density distribution f according to
which the input point cloud L has been sampled is known. However, in most
cases it remains unknown, and in order to apply the clustering algorithm the
values of f at the points of L must be estimated. Density estimation is an
extensive research area and many methods to estimate the values of f from the
data L can be used (see e.g. [14]). Nevertheless, one has to take care that the
choice of the estimator does not break the validity of the assumptions made by
the theoretical results of Section 4. To bridge the gap between the theoretical
results of previous section and the practical cases where only L is known, we
provide a simple condition on the estimated density to guarantee the quality of
the output of our algorithm. We also show through standard arguments that
this condition is satisfied for some simple estimators used in the experiments
reported in Section 6.

Let X be a Riemannian manifold, possibly non-compact, possibly with bound-
ary, with positive convexity radius ̺c(X), and let L ⊂ X be a finite set sampled
according to some c-Lipschitz probability density f : X → R. Since Theo-
rem 4.5 and Lemma 4.3 are the key properties from which all our guarantees on
the output of the algorithm derive, all we need to do is to adapt them to the
present setting where only an approximation of f is known. This will ensure
that the theoretical guarantees provided in the previous section still hold in the
new setting:

Theorem 5.1 Let C > 0 and f̃ be an approximation of f such that

sup
ℓ∈L
|f(ℓ)− f̃(ℓ)| < C.

For any positive δ < ̺c(X) and any α > 0, with probability at least
(

1 −

Nδ/8(F
α) e−|L|(α−cδ/4)Vδ/8(F

α)
)

there is a multi-bijection γ between the 0-th per-

sistence diagrams of f and of the upper-star filtration Rf̃
δ (L) induced by f̃ on

the Rips graph Rδ(L), such that:

(i) ∀p ∈ D0f ∩Q
NE
α+C , ‖p− γ(p)‖∞ ≤ cδ + C.

(ii) ∀q ∈ D0R
f̃
δ (L) ∩QNE

α+C , ‖γ−1(q)− q‖∞ ≤ cδ + C.

(iii) ∀p ∈ D0f ∩Q
SE
α+C , |px − γ(p)x| ≤ cδ + C.

(iv) ∀q ∈ D0R
f̃
δ (L) ∩QSE

α+C , |γ−1(q)x − qx| ≤ cδ + C.

Proof. First, it follows from Lemma 4.3 that L forms a δ
4 -sample of the

superlevel-set F
α with probability 1 − Nδ/8(F

α) e−|L|(α−cδ/4)Vδ/8(F
α). So, with
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the same probability L statisfies the assumptions of Theorem 4.5, which means
that D0f and D0R

f
δ (L) satisfy assertions (i) through (iv) of Theorem 4.5. Now,

Theorem 3.7 of [5] ensures that the upper-star filtrations Rf
δ (L) and Rf̃

δ (L) are
(strongly) C-interleaved. As a consequence, the bottleneck distance between
their 0-th persistence diagrams is bounded by C, by the extended stability
result of [3]. Combining these two results concludes the proof. �

As mentioned above, density estimation is an extensive research area, and
identifying the families of density estimators that satisfy the conditions of The-
orem 5.1 is beyond the scope of this paper. Nevertheless, in many cases con-
structing such an estimator is not difficult. We illustrate this in the Euclidean
case with a very simple estimator that is used in the experimental section. We
now assume that X = R

m is endowed with the Euclidean metric and we denote
by Vr = Hm(B(ℓ, r)) the m-dimensional Hausdorff measure of the ball of radius
r. Let L be a finite set of data points sampled according to some probability
density function f : R

m → R. We assume that the coordinates of the points of
L are given, so that their pairwise Euclidean distances can be computed exactly.
The density f can thus be approximated using the following ball estimator:

f̃r(ℓ) =
1

Vr

|L ∩ B(ℓ, r)|

|L|
. (8)

Lemma 5.2 If f is c-Lipschitz, then for any value of parameter r and any
ζ ≥ 0,

sup
ℓ∈L
|f(ℓ)− f̃r(ℓ)| ≤ cr + ζ

with probability at least 1− 2|L|e−2|L|(ζVr)2).

Proof. Let µ be the probability measure such that for any ball B(ℓ, r),

µ(B(ℓ, r)) =

∫

B(ℓ,r)

fdHm. (9)

By the Intermediate Value Theorem, there exists a point y ∈ B(ℓ, r) such that

f(y) equals the average value of f inside the ball, that is: f(y) = µ(B(ℓ,r))
Hm(B(ℓ,r)) .

Since f is c-Lipschitz, we have |f(y)− f(ℓ)| ≤ cr, which implies:

∣

∣

∣

∣

f(ℓ)−
µ(B(ℓ, r))

Vr

∣

∣

∣

∣

≤ cr. (10)

By the Bounded Difference inequality, we know that

∣

∣

∣

∣

|L ∩ B(ℓ, r)|

|L|
− µ(B(ℓ, r))

∣

∣

∣

∣

≤ η (11)

with probability at least e−2|L|η2

. Letting η = ζVr in the above expression and
combining it with Eq. (10), we obtain a bound on the difference between the
ball estimator (8) and the true density value at point l. The conclusion of the
lemma follows then from the application of the union bound. �
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Notice that the ball estimator (8) strongly relies on the property that the
volume of a ball of radius r in R

m does not depend on its center. This is not
the case in general Riemannian manifolds. To overcome this issue it is possible
to consider kernel based estimators of the following form:

g̃(ℓ) =

∑

p∈LK(dX(p, ℓ))

|L|
, (12)

where K : R → R is a non negative function such that
∫ ∞

−∞
K(u)du = 1 and

K(u) = K(−u). Under some conditions and if L is sampled according to f , g̃
can be seen as an estimator of the convolution of f with K ◦ dX. We refer the
reader to [15, 33] for further details on kernel density estimation.

Another issue that may occur in practice is that the geodesic distances be-
tween the data points are not given. It is then necessary to approximate them
in order to feed in our clustering algorithm. The data structure used for the ap-
proximation depends on the particular scenario considered: for instance, when
the data points lie in Euclidean space R

d with known coordinates, and X is an
unknown m-submanifold of R

d, geodesic distances in X can be approximated
through graph distances within some well-chosen neighborhood graph; in wire-
less sensor networks scenarios, the geographic locations of the nodes are usually
not available but graph distances within the communication network can be
used instead. We refer the reader to [5, ➜3.3] for further discussion on geodesic
distances approximation: the bottom line is that in many practical scenarios
geodesic distances can be approximated within some small additive error. It is
then possible to combine Theorem 4.5 with Theorem 3.9 of [5] in the same way
as we did in the proof of Theorem 5.1, to prove an equivalent of Theorem 5.1
that guarantees that the theoretical results of Section 4 still hold. We refer the
reader to [5, ➜3.3] for the formal statement and proof of this result, which is
rather technical and does not present any conceptual difficulty.

6 Experimental Results

We will now present the results of our clustering scheme on various datasets.
The latter are of three different types: synthetic (Section 6.1), color components
of 2-d images (Section 6.2), and protein conformations (Section 6.3).

The synthetic dataset is sampled from 4 interlocking rings in R
3. It is highly

non-linear and non-separable, implying that standard techniques such as k-
means will fail. On the other hand, it is relatively easy to interpret by visual
inspection, which makes it suitable for highlighting the main ideas underlying
our approach, especially the interpretation of the output of the algorithm. We
use this toy example to discuss the role of the persistence diagram in choosing
suitable parameter values; we also show how this choice influences the final
result.

The second type of data comes from 2-d color image segmentation applica-
tions. Each pixel in a given image is mapped to a point in some 3-dimensional
color space (typically Luv), to which two additional coordinates corresponding
to the spatial location of the pixel may be added. These experiments illustrate
how different estimators emphasize different features of the image at different
scales.
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The third type of data comes from computational biology. We consider a
set of protein conformations computed from simulations of the dynamics of the
alanine-dipeptide molecule. Each point in the dataset represents a conformation
of the molecule. It lives in 22-dimensional space equipped with a non-Euclidean
norm. The resulting clusters are called metastable states, meaning that transi-
tions between these states are largely Markovian. This example is perhaps the
closest to unsupervised learning, as direct data inspection in conformation space
is not possible. Although it is an already well-studied data, we show that, in
addition to finding 6 clusters as previous work has done, the persistence diagram
produced by our algorithm suggests that 7 clusters would be just as reasonable.

Our density estimators. In all our experiments, our first task was to es-
timate the density. To do so we used two estimators: a truncated Gaussian
estimator, and the distance to a measure introduced in [4]. For completeness,
we recall the definitions of both estimators. The truncated Gaussian is given
by

f(x) =

∑

ℓ∈LK(d(x, p))

|L|
, (13)

where K(·) is define as follows:

K(d(x, p)) =

{

e−d2(x,p)/2h d(p, q) ≤ h

0 else
(14)

Here, parameter h is called the bandwidth of the estimator.
Our second estimator is the so-called distance to a measure, which computes

the root-mean-squared distance to the k nearest neighbors of the considered
query point:

f(x) =

√

√

√

√

1

k

k
∑

i=1

d2(x, pi). (15)

Here, pi denotes the i-th nearest neighbor of x among the point set L. This
estimator can be seen as an improved version of the standard k-NN estimator.
It enjoys interesting stability properties – see [4] for more details. In contrast
to the Gaussian estimator, it has a fixed complexity since it only considers the
k nearest neighbors of the query point. Note that the resulting function f is
a distance rather than a density, so we take (-f) as the input of the clustering
algorithm.

Our choices of values for parameters δ and τ . As mentioned in the in-
troduction, parameters δ and τ are of very different natures. To set δ, we com-
puted a single-linkage clustering and chose a relevant scale from the resulting
dendrogram (omitted in our experimental results). Then, we ran our clustering
algorithm with the chosen value of δ and with τ = +∞, to produce an ap-
proximation of the persistence diagram of the density, from which we inferred
a relevant value for parameter τ . The diagram and its interpretation are shown
in our experimental results for demonstration purposes. Finally, a second run
of our algorithm was performed, with the chosen parameter values, to produce
the final clustering.
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6.1 Synthetic dataset

(a) (b)

(c) (d)

Figure 9: Our synthetic dataset. (a.) The four interlocked rings. (b.) The four
rings convolved with a gaussian distribution and sampled with 100,000 points.
(c.) The input point cloud (600,000 points), obtained by adding background
noise to the sample of Figure (b). (d.) Density estimation on the input point
cloud using the distance to a measure. Exceptionally, density values range
from orange to blue, and not from blue to orange. This choice was made for
visualization purposes.

The dataset is shown in Figure 9. The clusters are highly non-linear and
non-separable. To generate the point cloud, one of the rings was first chosen
at random with equal probabilities, and then a sample point was chosen from
the uniform distribution over this ring convolved with a Gaussian distribution.
Using this procedure, 100,000 points were generated, shown in Figure 9(b).
Note that differences in lengths of the rings result in differences in sampling
densities. For instance, the larger outer rings are sampled more sparsely that
the smaller inner rings. To ensure that the rings were not completely disjoint,
500,000 uniformly distributed points were added, giving the input point cloud
shown in Figure 9(c).

As a density estimator we used the distance to a measure with k = 500
nearest neighbors. Different numbers of points and neighbors were used as well,
yielding similar results. The resulting approximate density function is shown in
Figure 9(d). The Rips graph in the standard Euclidean metric was computed
using the ANN library [36]. We tested the algorithm with up to 5 million input
points, in which case it concluded in around 1 hour. The example shown in
the paper has 600k points and took approximately 5 minutes to process. It is
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important to note that the experiments were run with various samplings and
numbers of points, to ensure that the results were not obtained by chance.

(a) Persistence diagram using
Rips parameter δ = 1
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(b) Histogram of prominences
ignoring infinitely persistent
components.

(c) Resulting clustering.

(d) Persistence diagram using
Rips parameter δ = 0.3.
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(e) Histogram of prominences
ignoring infinitely persistent
components and components
born after 0.5.

(f) Resulting clustering with
independent components born
after 0.5 filtered out.

Figure 10: Influence of parameter δ on the result: δ = 1 (top row) versus δ = 0.3
(bottom row).

The influence of the choice of parameter δ on the output of the algorithm
is illustrated in Figure 10. With δ = 1, the persistence diagram (Figure 10(a))
shows one infinitely-persistent cluster, which means that with this Rips parame-
ter all the points are connected in the Rips graph. Upon closer inspection, it can
be seen that there are potentially 1 to 7 clusters. This is more clearly visible in
the histogram of the prominence values shown in Figure 10(b). The histograms
were used to choose parameter τ , as they clearly stress the relationship between
the merging parameter and the number of clusters10. The arrow in the figure
shows the gap corresponding to values of τ that make the algorithm recover the
four rings. The gap, though narrow, is still significant, especially considering
the amount of noise present. The resulting clustering (Figure 10(c)) illustrates
that the four most prominent clusters do indeed correspond to the four rings.
The persistence diagram shows that the next three most prominent clusters are
also significantly more prominent than the others. If the merging parameter is
set to recover these clusters as well, we see that each of the outer rings is split
into two pieces. This is a consequence of the sparser and uneven sampling on the
outer rings. While all the points are clustered, the outermost points are assigned

10In the histograms we do not show the clusters with infinite lifetimes.
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somewhat randomly, since they are generated from a uniform distribution and
so are sensitive to the instantiation of the samples.

As we have a rather dense sampling, we can obtain better results by choosing
a smaller Rips parameter. With Rδ = 0.3, we obtain many local maxima as
well as many independent components. The persistence diagram (Figure 10(d))
has over 200,000 points! However, almost all of them correspond to hardly
persistent or late-appearing connected components. As before, we choose the
merging parameter from the persistence histogram (Figure 10(e)). We also
choose to ignore infinitely persistent components that born after −0.5, that is,
that lie to the left of the vertical line x = −0.5 in Figure 10(d). Note that there
is only one infinitely persistent component remaining, which means that the
four rings are still connected with each other in the Rips graph. The resulting
clustering is shown in Figure 10(f). The original four rings are recovered as
before but most of the background noise is removed since it generated late-
appearing clusters. Notice also that the gap in the histogram has increased.
The large number of points along the diagonal in the diagram indicates how
the smaller Rips parameter captures smaller variations in density as more local
maxima are captured. As these are not significant, they are quickly merged into
more relevant clusters.

6.2 Image Segmentation

We ran two sets of experiments: the first one was performed in Luv color space,
while during the second one we incorporated spatial information into the point
cloud data. The reason why Luv components were used instead of, say, RGB
components, is that in Luv space the Euclidean distance is known to capture
the subjective notion of perceptual difference reasonably well [11].

For each of the test images, we show the original and corresponding point
cloud in Luv space as well as the resulting segmentation. Along with the his-
togram, we also show the persistence diagram in the form of a barcode. In this
representation, each point p = (px, py) becomes an interval [py, px] (recall that
px is larger than py since time flows from +∞ to −∞). When px = +∞, the
interval is infinite and therefore terminated by an arrow. This visualization
contains exactly the same information as the persistence diagram, but it can
sometimes be clearer since the more prominent intervals are longer and so are
more easily seen.

In the first set of experiments we cluster the point clouds in the 3-d Luv
space directly, ignoring all spatial information in the image domain. Initially,
areas of uniform color proved challenging because a large number of points were
in close proximity in Luv space, resulting in a large number of edges in the
Rips graph. To speed-up the computation, we used the following downsampling
procedure: We begin by making all points unmarked. Considering each point p
in order: if p is unmarked, then we detect all the data points within Euclidean
distance δ of p, and we create Rips edges as usual. Then, we detect all the data
points within a smaller distance δ/m of p and mark them: these points are to be
removed from the dataset for the clustering phase. Their cluster center will be
the same as p’s. Typically, we chose m between 10 and 20 in our experiments.
This downsampling procedure can be shown to induce a small additive error
(in the order of δ/m) on the persistence diagram approximation, therefore it is
provably safe. We now go through the examples in detail:
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(a) The original 512×512 im-
age.

(b) Segmentation into 3 clus-
ters using the distance to a
measure.

(c) Segmentation into 5 clus-
ters using the Gaussian esti-
mator.

(d) Point cloud in Luv space
and estimated density using
the distance to a measure with
k = 1000.
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(e) Persistence barcode ob-
tained from the point cloud of
(d).

(f) Segmentation of the point
cloud of (d) in 3 clusters.

(g) Point cloud and estimated
density using the Gaussian es-
timator with h = 25.
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(h) Persistence barcode ob-
tained from the point cloud of
(g)

(i) Segmentation of the point
cloud of (g) into 5 clusters.

Figure 11: Results of our approach on the Mandrill dataset.

Mandrill dataset. The results are shown in Figure 11. We tried both the
distance to a measure estimator with k = 1000 and a Gaussian estimator with
a bandwidth of h = 25. These parameter values were chosen by examining the
range of the dataset. In the case of the distance to a measure (Figure 6.2(d-
f)), we show the result with 3 clusters. They can be clearly seen in the point
cloud 11(f). When we map this back to the image we see that the clusters corre-
spond to the nose, cheeks and fur. Using the Gaussian estimator (Figure 6.2(g-
i)), we show 5 clusters where further features can be identified including the
eyes and the yellow part of the fur. Note that the 5th cluster corresponds to
very dark colors and lies therefore on the underside of the point cloud in Fig-
ure 11(i), which makes it invisible in the picture. It is also barely visible in the
image since there are few very dark patches. It is important to note that in the
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(a) The original image. (b) Segmentation into 6 clus-
ters.

(c) Point cloud in Luv space
and estimated density using
the Gaussian estimator with
h = 25.
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(d) Persistence barcode ob-
tained from the point cloud of
(c).

(e) The point cloud in Luv
space segmented into 6 clus-
ters.

Figure 12: Results of our approach on the Street dataset.

Gaussian case, black is the third most promininent cluster, whereas in the case
of the distance to a measure it is the fourth one.

Our experiments on subsequent images followed the same procedure. How-
ever, to save space we only report the results obtained using the Gaussian esti-
mator with bandwith parameter h = 25.

Street dataset. The results are shown in Figure 12. In this picture of a
San Francisco street, we see 4 different colored buildings, the road, the sky,
and a few cars. Figure 12(c) shows the result of the Gaussian estimator, while
Figures 12(e) and 12(b) show the six clusters output by the algorithm, both in
Luv color space and mapped back onto the image. As can be seen, we recover
the sky, the 4 houses and the street. Note that in the barcode there is a small gap
between 6 and 7 clusters, the 7th cluster being texture resulting from shadows
on some of the houses. By contrast, the gap between 7 and 8 clusters is clear.
Alternatively, if we choose 5 clusters, then the street merges with the left-most
house.

Landscape dataset. The results are shown in Figure 13. This data set is
interesting because in color space, an obvious cluster appears which is invisible
in the image. This is the purple cluster in Figure 13(e). Although it is seeminlgy
absent in the image, it is in fact present in the outline of the trees, which makes
it hardly visible. In the barcode, we can clearly see this cluster as the second
infinitely persistent bar, since it is sufficiently far from the rest of the data
points. There are 4 other clusters in the image. The trees form one cluster,
the sky and water another cluster and the reflections, clouds and sails a third
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(a) The original image. (b) Segmentation into 5 clus-
ters.

(c) Point cloud in Luv space
and estimated density using
the Gaussian estimator with
h = 25.
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(d) Persistence barcode ob-
tained from the point cloud of
(c).

(e) The point cloud in Luv
space segmented into 5 clus-
ters.

Figure 13: Results of our approach on the Landscape dataset.

cluster. Finally, we have the grassy area as our fourth cluster. These 4 clusters
are clearly seen in the barcode, which may be due to the fact that the image is
a painting, not a photograph.

Koala dataset. The results are shown in Figure 14. Our segmentation sepa-
rates the koala, the tree, the background and the other plants. The 5th cluster
(shown in blue) is again the shadows which are significantly darker than the
other parts of the image. The interesting thing to note about this example is
that there is a clear quantization effect in the point cloud, due to the fact that
this image was converted to JPEG format. Note nevertheless that this effect
did not adversely affect our algorithm.

Taking spatial information into account. Clustering in Luv space is obliv-
ious to proximity relations between pixels in the image. Thus, it allows pixels
that are far apart in the image to end up in a same cluster. Depending on
the context, this property can be viewed either as a feature or as a drawback.
Removing it requires to take spatial information into account during the clus-
tering phase. The most naive way of doing so consists in appending the two
pixel coordinates to the three color channels, thus yielding point cloud data in
a 5-dimensional space. The big disadvantage is that the contributions of color
and spatial coordinates must be balanced appropriately in the computation of
distances, because the scales of the color channels and spatial coordinates are
unrelated. This is a whole issue in its own right.
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(a) The original im-
age.

(b) Segmentation
into 5 clusters.

(c) Point cloud in Luv space
and estimated density using
the Gaussian estimator with
h = 25.
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(d) Persistence barcode ob-
tained from the point cloud of
(c).

(e) The point cloud in Luv
space segmented into 5 clus-
ters.

Figure 14: Results of our approach on the Koala dataset.

To avoid this pitfall, we still consider our point clouds in 3-dimensional Luv
space and compute our density estimates as above. However, for two data points
to be connected in the Rips graph we now require that they be close both in
Luv space and in the image domain. Basically, this boils down to pruning the
previously computed Rips graph using a spatial filter. In practice, we proceed
in the opposite order, that is: we first connect points that are close in the image
domain, then we prune out the edges whose vertices are far apart in Luv space.
The reason for doing so is obvious: thanks to the grid structure of the image,
the number of neighbors of a pixel is constant and therefore the algorithm runs
much faster (less pruning occurs as well). In practice, we typically we chose
patches of size 5× 5 around each pixel, to ensure a mostly connected graph11.

The results obtained with this approach are shown in Figure 15. We use
the same images as before and notice some interesting results. In the case of
the mandrill (Figures 15(a) and 15(d)), we are able to discriminate the left
cheek from the right cheek and the left eye from the right eye. The dark pixels
correspond to very small clusters due to the texture of the fur: these were
discarded in a post-processing step. In the persistence histogram we see a clear
gap, within which we chose the value of the merging parameter τ . In the case
of the street, there is significantly more noise and less of a gap, as can be
seen in from the histogram (Figure 15(e)). In the image (Figure 15(b)), we

11In practice, natural images have textures that create very small clusters independent from
the rest of the data. These are simply ignored in practice. More precisely, once the clustering
is done, we discard all clusters of cardinality less than a threshold, taken to be 100 in our
experiments. These discarded clusters are shown in black in our results.
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(a) Mandrill segmented with
color and spatial information.

(b) Street image segmented
with color and spatial infor-
mation.

(c) Landscape image seg-
mented with color and spatial
information.

(d) Persistence histogram for
the mandrill. The arrow indi-
cates the merging parameter.

(e) Persistence histogram for
the street image.

(f) Persistence histogram for
the landscape image.

Figure 15: Results of our approach, taking both color and spatial information
into account.

recover not only the buildings, sky and road, but also the windows as individual
clusters. Finally, on the landscape image (Figure 15(b)), trees appear as the
major cluster. The sky is merged with the clouds and the water is split into
two parts by the sailboat. The outline of the trees is spatially a small cluster.
The histogram shows many small clusters that were filtered out in the post-
processing step.

6.3 Alanine-dipeptide dynamics

For the study of a biological system, it is often desirable to obtain accurate sim-
ulations of its dynamics. In the case of a protein, this requires the simulations
to be done at the level of atoms, a computer-intensive task that limits the dura-
tion of the simulations to picoseconds even for small molecules. One proposed
approach around this is to use metastable states of the protein. These are states
between which transitions are infrequent and independent. This allows for ac-
curate simulations using Markovian models [7, 8, 9], which are computationally
much easier to simulate. A key issue is to discover the metastable states. The
metastability of a clustering is defined as the sum of the self-transition prob-
abilities for a given lag time [21]. In other words, a good clustering should
produce states that are stable with high probability under random transitions
of the protein within the specified lag time.

As an illustration, we now look at the conformational dynamics of the ter-
minally blocked alanine-dipeptide molecule. The choice of this paricular protein
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(a) Input point cloud after
projection down to the (φ, ψ)
domain.

(b) Segmentation with 6 clus-
ters.

(c) Segmentation with 7 clus-
ters.
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(d) Barcode computed using the Gaussian estima-
tor.

Rank (Unnormalized) Prominence
1 ∞
2 5677
3 3828
4 1335
5 850
6 316
7 258
8 72
9 30
10 22

(e) Intervals sorted by decreasing prominence.

Figure 16: Results of our clustering method, visualized in the (φ, ψ) domain.

is motivated by the fact that this is a small molecule whose dynamics is rela-
tively well-understood. It is known that there are only two relevant degrees of
freedom, parametrized by two angles φ and ψ. This makes it possible to visual-
ize the conformation data by projecting the points from the 22-d conformation
space down to the 2-d (φ, ψ) domain, as shown in Figure 16(a). It is in this
2-d domain that the previous gold standard for metastable clustering was done,
resulting in 6 clusters.
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2 0.9594
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5 0.9467
6 0.9427
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8 0.8549

Figure 17: Left: metastability versus number of clusters. Right: normalized
metastability versus number of clusters. Normalization is done with respect to
the number of clusters.

Our input consists of a set of conformations obtained from simulations at
400 Kelvins with 192 trajectories of 1000 configurations each. The spacing be-
tween samples in the time domain is 0.1 ps. In the simulations, the peptide was
modeled by the AMBER 96 forcefield [29] and solvated in TIP3P water [22].
The simulations themselves where done using the parallel tempering method
of [8]. We refer the reader to these texts for a more in-depth discussion. For
our experiments, we took the 192,000 conformations along the trajectories and
treated them as independent samples in 22-d space. The distance metric used
was root-mean-squared deviation (RMSD) after the best rigid motion match-
ing. This was done using the Theobald method [32]. The point cloud in 22
dimensions, together with the pairwise RMSD distances between the samples,
were the only two inputs to the algorithm. Figure 16(a) shows the input point
cloud after projection in the (φ, ψ) domain.

We tried our two density estimators on this data set, with similar outcomes.
Figure 16(d) shows the persistence barcode computed using the Gaussian esti-
mator, which suggests that there are 4 main clusters. In order to distinguish
between the other intervals in the barcode, we have sorted them according to
prominence in the table of Figure 16(e). In this representation it also appears
that there could be anywhere from 5 to 7 clusters. Figure 17 shows the metasta-
bilities achieved by our clusterings with different numbers of clusters. This data
corroborates the observation made from our barcode that it sounds reasonable
to consider 7 metastable clusters instead of 6. It also suggests that the quality
of our clustering is slightly better than the one achieved by previous methods:
for instance, the normalized metastability computed in [7] is about 0.94 for 6
clusters, against 0.9427 with our method. Of course, these observations need to
be validated by further data inspection, which is beyond the scope of the paper.

In terms of running time, computing RMSD distances between conforma-
tions was by far the longest phase (about a day). For each data point, only
the closest 15000 conformations where recorded. The clustering itself only took
10 minutes on a personal computer, most of which were spent on disk accesses.
The main memory usage remained constant throughout the clustering phase,
and as a result several runs could be done in parallel on a multi-core processor.
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7 Conclusion

We have presented a novel clustering scheme that combines a mode-seeking
phase with a cluster merging phase. While mode detection is done by a standard
graph-based technique, the true novelty of our approach resides in its use of
topological persistence to guide the merges between clusters. The outcome does
not reduce to a mere set of clusters, but it also includes visual feedback in
the form of a persistence barcode or diagram, which can be used to tune the
parameters.

Taking advantage of recent advances in persistence theory, we have given
a theoretically sound notion of what a good clustering is, and we have proved
that our algorithm produces such clusterings. Furthermore, we have given prob-
abilistic statements relating the probability of success and the number of samples
drawn. We have also addressed several practical issues including the effect of
density estimation and of uncertainty in distance measurements on the quality
of the output. These theoretical guarantees hold in a very large setting, thereby
making the approach quite general. They have been validated on practical data,
both synthetic and real, coming from various fields of application.

This work has raised numerous questions that deserve further treatment.
First, we only used two density estimators for illustration purposes. Density
estimation is an area of research in its own right, and many other estimators
could have been considered as well, leading to different results. An important
goal for us would be to be able to reliably estimate densities over Riemannian
manifolds. There has recently been some work in this direction [27, 28, 31], but
what can be said when the manifold underlying the data remains unknown?

Another important aspect in our work is the metric. Here we mainly used
Euclidean or geodesic distances in Riemannian manifolds, but other metrics
could be considered as well. For instance, diffusion distances within the neigh-
borhood graph are likely to affect the behaviour of our algorithm, making it less
sensitive to the local connectivity of the graph. In some sense, this would be
like using or algorithm in stead of k-means in spectral clustering.

In this paper we concentrated on 0-dimensional homology, but as mentioned
in Section 4.1 our theoretical results can be extended to higher dimensions,
where all the arguments follow through. With higher-dimensional persistence
information at hand, we can detect more subtle phenomena such as the fact that
one of the clusters in Figure 3 has an annulus shape. Unfortunately, the com-
plexity of the algorithm increases significantly in higher dimensions, potentially
taking O(m3) time and O(m2) space, where m is the size of the Rips complex
(the generalization of the Rips graph in higher dimensions). Furthermore, m
is known to grow exponentially with the dimension of the complex, thus mak-
ing the approach tractable only when the intrinsic dimensionality of the data
remains small.

Our theoretical guarantees on the spatial stability of the clusters opens the
door to a more statistical approach to clustering: since we know some parts of
the clusters computed by the algorithm are stable under small perturbations
of the density, we can conduct multiple runs of the algorithm with random
pertubations of the input data, and then find correspondences between clusters
generated at different runs. Thus, a soft clustering of the dataset can be built,
where the probability that a given data point p is assigned to a given cluster C
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corresponds to the fraction of the runs that actually connected p to C. It would
be interesting to study the stability properties of such a clustering.
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A Appendix — Proof of Lemma 4.6

Let X = {Xβ}β∈R and Y = {Y β}β∈R be two tame persistence modules that are

(strongly) ε-interleaved above some given time α. Let {xβ′

β : Xβ′

→ Xβ}β′≥β

be the family of homomorphisms associated with X , and {yβ′

β : Y β′

→ Y β}β′≥β

the family of homomorphisms associated with Y. We define a new persistence
module X̃ from X as follows:

{

∀β ≥ α, X̃β = Xβ

∀β < α, X̃β = 0

{

∀β ≥ α, ∀β′ ≥ β, x̃β′

β = xβ′

β

∀β < α, ∀β′ ≥ β, x̃β′

β = 0
(16)

Clearly, x̃β′

β ◦ x̃
β′′

β′ = xβ′

β ◦x
β′′

β′ = xβ′′

β = x̃β′′

β when β ≥ α, whereas x̃β′

β ◦ x̃
β′′

β′ = 0 =

x̃β′′

β when β < α. Thus, X̃ is indeed a persistence module. Its relationship with
X is encoded in the following commutative diagram, where iβ is the identity

over Xβ = X̃β when β ≥ α and the constant zero map otherwise:

Xβ′
xβ′

β
→ Xβ

iβ′ ↓ iβ ↓

X̃β′
x̃β′

β
→ X̃β

(17)

Since iβ′ and iβ are isomorphisms whenever β′ ≥ β ≥ α, the commutativity of
(17) implies that

∀β′ ≥ β ≥ α, rank xβ′

β = rank x̃β′

β . (18)

Then, using the terminology of [3], for any discrete set B ⊂ R containing α
and no accumulation point, the B-discretizations XB and X̃B of the persistence
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modules X and X̃ satisfy DXB ∩ Q
NE
α = DX̃B ∩ Q

NE
α . It follows then from

the definition of persistence diagram12 that DX ∩ QNE
α = DX̃ ∩ QNE

α . Let
γX : DX → DX̃ be a multi-bijection such that γX and γ−1

X leave the points

within QNE
α fixed. We will now show that the total multiplicities of DX and DX̃

are equal within any given vertical half-line {β′} × [−∞, β] where β′ > β ≥ α,
which will enable us to further assume that γX and γ−1

X only move the points
vertically within the lower-right quadrant QSE

α , as illustrated in Figure 7 (right).
Given any η > 0, we discretize X and X̃ over the integer scale α+ηZ, to get

respectively Xα+ηZ and X̃α+ηZ. Their persistence diagrams are then snapped
onto the regular grid (α+ηZ)×(α+ηZ), as per Theorem 3.7 of [3] (the snapping
directions are in fact reversed here, since time flows from +∞ to −∞). For any
integers m > n ∈ Z, the total multiplicity of DXα+ηZ within the vertical half-
line {α + mη} × [−∞, α + nη] is given by the sum of the multiplicities of the
points (α+mη, α+ (n− l)η) for l ranging over N ∪ {+∞}:

µtot
η,m,n(DXα+ηZ) = µ(α+mη,−∞) +

∑

l∈N

µ(α+mη, α+ (n− l)η). (19)

By definition13, the multiplicity of each point (α+mη, α+ (n− l)η), l ∈ N, is
given by:

µ(α+mη, α+ (n− l)η) =
(

rank x
α+(n−l+1)η
α+mη − rank x

α+(n−l+1)η
α+(m+1)η

)

−
(

rank x
α+(n−l)η
α+mη − rank x

α+(n−l)η
α+(m+1)η

)

.

(20)
Since the persistence module X is tame, its persistence diagram (and thus the
one of its discretization Xα+ηZ) contains only finitely many points off the diag-
onal. This implies that the sum in Eq. (19) is a finite sum, where the terms of
Eq. (20) pairwise cancel out:

∑

l∈N
µ(α+mη, α+ (n− l)η) =

∑lmax

l=0 µ(α+mη, α+ (n− l)η)

=
(

rank x
α+(n+1)η
α+mη − rank x

α+(n+1)η
α+(m+1)η

)

−
(

rank x
α+(n−lmax)η
α+mη − rank x

α+(n−lmax)η
α+(m+1)η

)

.

The second term of the subtraction is precisely the multiplicity of (α+mη,−∞),
which cancels out with µ(α+mη,−∞) in Eq. (19). Hence, the total multiplicity
of DXα+ηZ within the vertical half-line {α+mη} × [−∞, α+ nη] is:

µtot
η,m,n(DXα+ηZ) = rank x

α+(n+1)η
α+mη − rank x

α+(n+1)η
α+(m+1)η. (21)

The same is true for X̃α+ηZ (which is tame since Xα+ηZ is), namely:

µtot
η,m,n(DX̃α+ηZ) = rank x̃

α+(n+1)η
α+mη − rank x̃

α+(n+1)η
α+(m+1)η. (22)

Assume that m > n ≥ 0, i.e. that the endpoint of the vertical half-line lies
on or above the horizontal line y = α. Under this asssumption, Eqs. (18) and

12See Definition 3.6 of [3].
13See Definition 3.2 of [3] and recall that coordinates are reversed here because time flows

from +∞ to −∞.
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(21)-(22) imply that µtot
η,m,n(DXα+ηZ) = µtot

η,m,n(DX̃α+ηZ). Since this is true for

all η > 0, we deduce that the total multiplicities of the diagrams DX and DX̃
in any vertical half-line {β′} × [−∞, β] with β′ > β ≥ α are the same. We
may thus further assume that the multi-bijection γX : DX → DX̃ defined above
is such that γX and γ−1

X move the points within the lower-right quadrant QSE
α

vertically, in addition to keeping the points within the upper-right quadrant
QNE

α fixed.
The same construction as in Eq. (16) can be applied to the tame persistence

module Y, thus yielding another tame persistence module Ỹ. By the same
sequence of arguments as above, we know that there is a multi-bijection γY :
DY → DỸ such that γY and γ−1

Y move the points within QSE
α vertically while

keeping the points within QNE
α fixed.

Observe now that the newly-introduced persistence modules X̃ and Ỹ are
(strongly) ε-interleaved. Indeed, let {φβ : Xβ → Y β−ε}β≥α and {ψβ : Y β →
Xβ−ε}β≥α be two families of homomorphisms that make X and Y (strongly)
ε-interleaved above time α. We define two new families of homomorphisms
between X̃ and Ỹ, indexed over R, as follows:

{

∀β ≥ α, φ̃β = φβ and ψ̃β = ψβ ,

∀β < α, φ̃β = 0 and ψ̃β = 0.

The fact that these two families of homomorphisms make the diagrams of Eq.
(6) commute for all β′ ≥ β ≥ α comes from the fact that {φβ}β≥α and {ψβ}β≥α

themselves make the diagrams commute. The fact that the families {φ̃β}β∈R and

{ψ̃β}β∈R make the diagrams commute across and below time α comes from the

fact that they are identically zero below time α. Thus, X̃ and Ỹ are (strongly)
ε-interleaved over whole R, which implies by the Extended Stability Theorem14

that there is a multi-bijection γ̃ : DX̃ → DỸ that moves the points by at most
ε in the l∞-distance. The map γ−1

Y ◦ γ̃ ◦ γX is then a multi-bijection DX → DY
satisfying assertions (i) through (iv) of Theorem 4.5. This concludes the proof
of Lemma 4.6.

14See Theorem 4.4 of [3].
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