
HAL Id: inria-00390352
https://hal.inria.fr/inria-00390352

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Continuous Collision Detection and Handling for
Desktop Virtual Prototyping

Stephane Redon

To cite this version:
Stephane Redon. Fast Continuous Collision Detection and Handling for Desktop Virtual Prototyping.
Virtual Reality, Springer Verlag, 2004, 8 (1), pp.63-70. �10.1007/s10055-004-0138-9�. �inria-00390352�

https://hal.inria.fr/inria-00390352
https://hal.archives-ouvertes.fr

Fast Continuous Collision Detection and Handling

for Desktop Virtual Prototyping

Stephane Redon

i3D - INRIA - France∗ †

Abstract

This paper presents an overview of our recent work on continuous collision de-

tection methods and constraints handling for rigid polyhedral objects. We demon-

strate that continuous collision detection algorithms are practical in interactive dy-

namics simulation of complex polyhedral rigid bodies and show how continuous col-

lision detection and efficient constraint-based dynamics algorithms allow to perform

various virtual prototyping tasksintuitively, precisely and robustlyon commodity

desktop computers. Especially, we present two applications of our system to actual

industrial cases. We note that both tasks are performed with a simple 2d mouse on a

high-end computer.

1 Introduction

Computer aided design and manufacturing has been a very active research field for

many years, which has contributed to the development of major product lifecycle man-

∗The author is currently affiliated with the University of North Carolina at Chapel Hill.
†Correspondence and offprint requests to: Stephane Redon, Department of Computer Science,

336 Sitterson Hall, CB] 3175 University of North Carolina Chapel Hill, NC 27599-3175. Email: re-
don@cs.unc.edu.

1

agement softwares.

One important aspect of product lifecycle management isvirtual prototyping, which

aims at designing manufactured products throughdigital mock-ups, in order to suppress

the need for expensive real mock-ups. Because the analysis and simulation of a product

through a digital mock-up must provide insight on the productbeforeit is manufactured,

virtual prototyping requires to be able to simulate the physical properties of the objects

being designed.

This paper focuses on a fundamental requirement of virtual prototyping: the ability

to detectandhandlecollisions between virtual objects. Typical applications of collision

detection and handling in virtual prototyping include path-planning, tolerance verification

and assembly/disassembly tasks conception.

Most well-known collision detection methods arediscrete: they sample the objects’

trajectories at discrete times and reportinterpenetrationsonly (recent surveys include

[11, 13]). As a result, they can miss collisions when the objects move rapidly or are

small. Moreover, even when an interpenetration has been detected, it is often difficult to

reposition the objects in acontactingposition (i.e. with no interpenetration). One rea-

son being that computing the penetration depth for general objects is a difficult problem,

which does not take the objects’ motion into account. Relying on the penetration depth

to reposition the objects might thus lead to the well-knownpop-througheffect, where an

object enters an obstacle on one side and goes out of it on the other side, as can be seen

in Figure 1.

Evenbacktracking methods, which attempt to compute the first time of collision by

recursively subdividing the time interval after an interpenetration has been detected, can

fail when the object is not connected. Assume that the current time interval is[tn, tn+1],

and assume an interpenetration has been detected at timetn+1 Essentially, one time of

first contactte is estimatedin this interval (for example, by taking the midpoint of the

2

Figure 1:The pop-through effect: allowing interpenetration between objects can lead to
incoherences in the simulation. In this example, the object penetrates the obstacle at time
t2 and pops out from the wrong side of the obstacle, because of the smaller penetration in
the exit direction.

time interval). Objects’ positions are then computed at this instant and an interpenetration

detection is performed again. Depending on whether the objects interpenetrate or not,

the algorithm decides that the first time of collision is in[tn, te] or [te, tn+1], respectively,

and loops on this new interval. The process stops when the amount of interpenetration is

smaller than a predetermined threshold.

The computational cost of backtracking can be high when objects are complex or

when they have interpenetrated much. Besides, since backtracking is only performed

when an interpenetration has been detected, non-connected objects, or even non-convex

objects, can enter a configuration from which they could not get out (e.g. two torii that

would become interlocked).

Consequently, discrete collision detection methods cannot guarantee the existence of

completeinterpenetration-free paths, and can lead to inconsistent, unrealistic, or even un-

reachable states in the virtual scene. This may be a problem for simulation and analysis of

digital mock-ups whenprovableinformation is required. Especially, somead hocstrate-

3

gies have sometimes to be defined when using a discrete collision detection method in

a virtual prototyping context in order to attempt to guarantee interpenetration-free paths.

One of them consists in not moving the object when the next position involves a penetra-

tion. While this may be sufficient when few obstacles only surround the moving object,

this may lead to an impossibility of manipulating the object when the environment is clut-

tered. Moreover, this method guarantees interpenetration-freepositionsonly, as collisions

can still be missed. Other strategies consist in using force fields and haptic interface to

guarantee that the manipulated object remains far from the environment.

In the following, we present an overview of our recent work oncontinuouscollision

detection methods and constraints handling for rigid polyhedral objects. We demonstrate

that continuous collision detection algorithms are possible in interactive dynamics simu-

lation of rigid bodies and show how continuous collision detection and constraint-based

dynamics algorithms allow to perform various virtual prototyping tasksintuitively, pre-

cisely and robustlyon commodity desktop computers. Especially, we present two appli-

cations of our system to actual industrial cases. We note that both tasks are performed

with a simple 2d mouse.

2 Continuous collision detection

2.1 Arbitrary in-between motion

Despite their shortcomings, it is understandable why discrete collision methods have

been developed and used to such a large extent in dynamics simulations. Besides their

assumed lower cost, it must be noticed that, most of the time,the actual objects’ mo-

tions are not known. One important reason is that the differential equations governing

the system’s dynamics are solved using discretized methods (e.g. Euler or Runge-Kutta

schemes). Another reason is that, in an interactive application, the user interface (e.g. the

4

mouse, or a haptic device) sends the user’s actions to the system at discrete instants only.

Other interfaces such as tracking systems, which are not necessarily interactive, also pro-

vide discretized data only. For all these reasons, it is most of the time impossible to have a

closed-form expression of the objects’ motions, and the objects’ positions, velocities and

accelerations are available at discrete times only.

Because the actual motion of an object is not known, we have proposed to replace it

by anarbitrary in-between motion, which interpolates successive available data to pro-

duce a continuous object motion [20, 23]. Thanks to the interpolation, the global aspect of

the objects’ trajectories is conserved, while thelocal motion (the unknown one, between

two available positions) is modified. The continuous object motion is used both for col-

lision detection and object positioning when a collision has been detected, to ensure that

the scene is always in a consistent state, without any interpenetration. The choice of the

in-between motion depends on the application. It must be general enough to satisfy the

various constraints imposed by the application (e.g. objects rigidity, ability to reach any

configuration required in the application), but at the same time must be such that the con-

tinuous collision detection equations can be solved very efficiently. Any motion meeting

these requirements can bearbitrarily chosen. Note that the interpolation order depends

on the application as well. While it may be sufficient to interpolate positions only, some

applications may require higher-order interpolations.

It can be argued that using an interpolating motion which has been arbitrarily chosen

does not allow to determine the exact collision times and positions corresponding to the

actual objects’ motions. Obviously, using an arbitrary in-between motion only allows

to report those collisions which occurwhen the objects move according to this arbitrary

motion. However, by using the same arbitrary motion to place the objects at the time of

collision, the virtual scene is always in a consistent state, andno interpenetration ever

occurs. Moreover, this method guarantees interpenetration-freepaths, and not only con-

5

sistent positions at discrete times.

2.2 Elementary tests

Since we perform continuous collision detection tests, only three types of contact can

occur between two general polyhedral objectsi andj:

• An edge ofi contacts an edge ofj

• A face ofi contacts a vertex ofj

• A vertex ofi contacts a face ofj

The last two contact types are equivalent and we thus have to perform two different types

of elementary tests: edge/edge or vertex/face tests. The continuous collision detection

equations for both tests are derived simply. Whatever the motions of objectsi andj, a

collision occurs between an edgea(t)b(t) of i and an edgec(t)d(t) of j if there exists a

time t for which:

a(t)c(t).(a(t)b(t) ∧ c(t)d(t)) = 0 (1)

which means that the lines containing the edges are colliding, and if at that time theedges

(not only the lines) are intersecting. Similarly, a collision occurs between a vertexa(t) of

i (respj.) and a triangleb(t)c(t)d(t) of j (resp.i) if there is a timet for which:

a(t)b(t).(b(t)c(t) ∧ b(t)d(t) = 0 (2)

which means that the vertex is inside the plane containing the triangle, and if at that time

the vertex isinside the triangle. Equations (1) and (2) are the ones which have to be solved

efficiently when a specific interpolating motion is chosen. Our initial work has focused

on these equations to show that using a specific arbitrary in-between motion derived from

a screw motion allowed to reduce them to third-degree polynomial equations when one of

6

the objects is static [20, 21]. A method proposed by Canny in [7] obtains a similar result

with a different motion, but its use of quaternions and of a translation along a different

axis than the one of rotation makes it more computationally expensive to determine the

coefficients of the polynomials.

2.3 Bounding-volumes hierarchies

In order to avoid performing all possible edge/edge or vertex/face face tests for any

object pair, many collision detection algorithms rely onbounding-volume hierarchies.

Basically, if two objects are enclosed in bounding volumes which do not overlap, then

it is known for sure that they do not collide. Hierarchies of bounding volumes are used

to recursively perform such overlap tests which can conservatively cull away large parts

of the objects when testing for a collision. Typical bounding volumes used for collision

detection include spheres [19, 10, 25, 6], axis-aligned bounding boxes (AABBs) [28],

oriented bounding boxes (OBBs) [8], andk-dops [9].

Forcontinuouscollision detection, it is necessary to perform continuous overlap tests

between bounding volumes. We have proposed in [23] to extend the discrete OBB/OBB

overlap test proposed by Gottschalket al. [8] to the continuous domain by usinginterval

arithmetic[17, 26]. The static test relies upon the separating axis theorem. Let us assume

that the first OBB is described by three axese1, e2 ande3, a centerTA, and its half-sizes

along its axesa1, a2 anda3. In the same way, the second OBB is described by its axesf1,

f2 andf3, its centerTB, and its half-sizes along its axesb1, b2 andb3. The separating axis

theorem states that two static OBBs overlap if and only if all of fifteen separating axis

tests fail. A separating test is simple: the axisa separates the OBBs if and only if:

|a ·TATB| >
3∑

i=1

ai|a · ei|+
3∑

i=1

bi|a · fi| (3)

7

The sufficient set of fifteen axes is:

{ei, fj, ei ∧ fj, 1 6 i 6 3, 1 6 j 6 3} (4)

Since each member of the inequality (3) is a function of time depending on the specific

arbitrary in-between motion chosen for the application, interval arithmetic can be used

to bound both members very efficiently over a time interval[tn, tn+1]. When the lower

bound on the left member is larger than the upper bound on the right member, the axis

a separates the boxes during the whole time interval[tn, tn+1], and the pair of boxes can

thus be discarded. Note that basing the continuous overlap test upon bounds computed

over a whole time interval produces conservative results only: two moving boxes can be

separated over[tn, tn+1] even when there does not existoneaxis which separates them

on the whole time interval. Because of this, we have proposed a heuristic based upon the

boxes’ velocities to determine when it may be useful to subdivide the time interval. This

allows to cull away more pairs of boxes by a better detection of these situations where

more than one axis is required to separate the boxes over the whole time interval.

3 Handling constraints

Closely related to the collision detection problem is the one of handling the geomet-

rical constraints imposed by the collisions which have been detected. In a rigid body

dynamics simulation, two different problems have to be solved:

Collision response problemWhenever a new collision occurs, the simulator must deter-

mine the objects’post-impact velocitiesfrom their pre-impact velocities and their

dynamic properties.

Constrained motion problem When the collision response problem has been solved,

the simulator has to compute the objects’constrained accelerationsfrom their un-

8

constrained accelerations (the ones the objects would have if there weren’t any con-

straints acting on them) and the geometrical constraints imposed by the transient

contacts (those for which the relative velocity is zero,i.e. those which have a non-

zero duration).

Numerous approaches have been suggested to solve both problems and traditional al-

gorithms include penalty methods [18, 12], impulse-based methods [16] and constraint-

based methods [14, 3, 4, 27, 1, 2, 15]. Penalty methods are generally used when no precise

contact information is available, as they compute the contact forces from the amount of

interpenetration between contacting objects. Continuous collision detection naturally pro-

vides all the necessary contact information: the contact position, the contacting elements

and the contact normal. Consequently, impulse-based or constraint-based methods are

a natural choice. We have opted for constraint-based methods because they can handle

simultaneous constraints.

Most constraint-based methods formulate both dynamics problems as a linear com-

plementarity problem (LCP) in thecontact-space, which relates contact forces and accel-

erations. For example, in the frictionless constrained motion problem, the LCP expresses

the relation between the normal contact forces and the relative normal accelerations at the

contact points. Iff andacp are two vectors inIRm describing the normal contact forces (in

a frictionless system, the contact forces are normal to the contact plane) and the normal

relative accelerations to them contact points, then there exists anm×m matrixA and a

vectorb in IRm such as:

acp = Af + b

acp > 0

f > 0

aT
cpf = 0

(5)

9

The complementarity relationaT
cpf = 0 expresses the fact that, for each contact point,

either the relative normal acceleration is non-zero (the contact breaks) and then the normal

contact force is zero, or the contact force is non-zero (objects remain in contact) and

therefore the relative normal acceleration is zero.

The matrixA is traditional computed from the constraints created by the contact

points [3, 24]. Leti andj denote two contacting objects.I is a contact point,n is the

contact normal directed fromj to i. Depending on the object it belongs to,I is denotedIi

or Ij.

Note that this distinction is necessary to establish the constraint equations. Although

these two points are identical in theory, it is not the case in practice, for example because

of the finite precision of the computations. Moreover, we will see in the next section

that the method we use to combine the continuous collision detection algorithms to the

dynamics algorithms requires us to maintain a distinction betweenIi etIj which become,

in practice, the closest points belonging to the polyhedral primitives. In a vertex/face case,

for example,Ii is the vertex andIj is the point in the face which is the closest toIi.

With this notation, thenon-penetration constrainton the relative normal acceleration

of I is [3]:

(ai(Ii)− aj(Ij)).n + 2.(vi(Ii)− vj(Ij)).
dn

dt
> 0 (6)

Similarly, acollision response constrainton the relative normal velocity can be derived

when a collision occurs, to solve the collision response problem:

(v+
i (Ii)− v+

j (Ij)).n > −e(v−i (Ii)− v−j (Ij)).n (7)

wheree is the restitution coefficient at the contact point.

We have shown in [22] that for frictionless systems Gauss’ least constraint principle

provides amotion-spaceformulation of both dynamics problems, through a projection

10

problem which relates the object’s accelerations or velocities and the contact forces. Al-

though the two formulations are mathematically equivalent, the motion-space formulation

presents several algorithmic benefits: it is better conditioned, always sparse, requires less

memory and allows to avoid some redundant computations performed by an algorithm

operating in the contact-space. An experimental comparison has suggested that an algo-

rithm operating in the motion-space takes advantage of sparsity to perform increasingly

better than a contact-space algorithm as the average number of contact points per object

increases. As a result, our system uses a motion-space algorithm based upon Wilhelm-

sen’s projection algorithm [29].

4 Combining continuous collision detection and response

Because we use an arbitrary in-between motion to interpolate successive objects’ po-

sitions, we need to permanently maintain a smallsecurity distancebetween contacting

objects. Most of the time, indeed, the arbitrarily chosen in-between motion does not

satisfy the dynamics constraints during the successive time intervals.

Consider for example the case of a rectangular box in transient contact with a plane

surface, as visible in Figure 2.a. In this example, the contact pointI should be perma-

nently on the contact planeP during the considered time interval[tn, tn+1]. However,

the real object motion during this time interval is replaced by an arbitrarily fixed motion

which, although it preserves the object’s positions at timestn andtn+1, does not guarantee

that the pointI remains on the planeP during the time interval. Depending on the initial

and final positions of the box, which impose the in-between motion used for the collision

detection, this pointI might indeed violate the non-penetration constraintimmediately af-

ter tn, leading to the detection of a collision at timetn. In order to avoid that the simulator

remains blocked at timetn or, generally, that it detects these collisions artificially created

by the use of an arbitrary in-between motion too often, we introduce a security distance

11

Figure 2: a: the arbitrary in-between motion used for the collision detection does not
satisfy the non-penetration constraint during the time interval[tn, tn+1]. b: contacting
objects are maintained slightly distant from each other.

12

εs between contacting objects, as shown in Figure 2.b. As a result, we consider that each

contact point which has been determined by the continuous collision detection module

is characterized by two pointsIi andIj which are the closest points on the polyhedral

primitives. These closest points are easily updated whenever the geometrical constraints

are modified, as long as a contact is considered to be active.

In order to maintain the security distance between contacting objects over time, the

constraints imposed to accelerations or velocities are modified slightly. For example,

when the local distance between the two objects (i.e. the one separating the two pointsIi

andIj which characterize the contact point) is smaller than the security distanceεs, the

non-penetration constraint (6) becomes:

ai(Ii)− aj(Ij)).n + 2.(vi(Ii)− vj(Ij)).
dn

dt
> K + k(εs − d) (8)

wherek is a coupling constant, andd is the distance between the pointsIi andIj.

Two other values,εb and εr, are used in combination with the security distanceεs.

The first one,εb, larger thanεs, is the value beyond which the simulator declares that

the contact between the two objects is broken (thus removing the need to updateIi and

Ij). The second,εr, smaller thanεs, is an alert value below which the simulator stops the

simulation time and enters arepositioning cycle, because it did not manage to maintain the

objects at a sufficient distance from each other during the simulation. This repositioning

cycle, similar to the one introduced by Baraff in [4], is performed between two successive

frames by computing the smallest objects’ displacements which satisfy therepositioning

constraints. The repositioning constraints are similar to collision response constraints (7)

which become:

(vi(Ii)− vj(Ij)).n > εs − d. (9)

Once these velocities are computed, they are used to move objects (while detecting colli-

13

sions). As long as there exists a contact for which the local distance is below the reposi-

tioning distanceεr, a new repositioning step is done. We have observed that repositioning

cycles are generally very short, nearly imperceptible by the user, and do not hinder the

progression of the interactive simulation.

Let us note that the repositioning problem is very similar to the collision response

problem, since it consists in computing the smallest possible velocities, in the velocity-

space, among those which satisfy the repositioning constraints.

In our implementation, objects are scaled so that the total width of the environment

is 50 units, and the coupling parameters areεr = 0.0044, εs = 0.01, andεb = 0.023.

As a consequence, the security distance and the repositioning effects are not perceived

by the user. Let us note that, for environments including mobile objects of very disparate

sizes, it is possible to adapt these coupling values to the manipulated object during the

interaction, in order to avoid that the size of the object manipulated be of the same order

than the security distance. For the databases we tested, however, this was not necessary.

Let us note finally that repositioning objects does not correspond to a physical phe-

nomenon, and can add energy in the system. In order to avoid this, it may be useful to

slightly decrease the objects’ velocities after a repositioning step. Note however that this

problem does not occur in a first-order (quasi-static) simulation, since objects’ velocities

are zeroed at each frame.

More generally, the repositioning problem is similar to a constraint stabilization prob-

lem, for which a classic solution is the one proposed by Baumgarte [5]. In this case,

however, constraints are unilateral ones. Moreover, the more difficult problem of unilat-

eral constraint stabilization is greatly facilitated by the continuous collision detection.

14

5 Results

The algorithms reported here have been integrated to form a portable C++ library,

CONTACT Toolkit, which has been successfully tested on Windows and Unix environ-

ments. The resulting simulator is able to perform interactive simulations on polyhedral

objects which contain up to a few hundreds of thousands of triangles on a 2GHz pentium

PC with 256 Megabytes of memory and a NVIDIA GeForce4 MX graphics card.

Figure 3: Interactive positioning of a car door (11,000 triangles) on a car skeleton
(130,000 triangles). Continuous collision detection algorithms and constraint-based dy-
namics algorithms allow to place the car door precisely and interactively, without any
interpenetration ever. 3d modelsc©Renault.

Here we present two applications of our system to actual industrial databases provided

by Renault. We note that for many virtual prototyping tasks it is preferable to perform

first-order (quasi-static) simulations, where the objects have no acceleration, as the ab-

sence of inertia generally facilitates the manipulation of the objects. This is done by

zeroing the objects velocities at each time step and using collision response constraints

only [22].

The first application involves positioning a car door (11,000 triangles) into the corre-

sponding car skeleton (130,000 triangles). Figure 3 shows a typical positioning sequence.

Our tests demonstrate that a user can easily position the door with a few mouse motions.

15

The interaction is greatly facilitated by the constraint-based algorithms. The continuous

collision algorithms allow the user to precisely position the door, as contacts are detected

with the exact objects’ geometry, without ever letting them interpenetrate.

The second application consists in removing a window motor from a car door (about

20,000 triangles in the scene). Figure 4 shows a typical interaction sequence. The contact

points occurring during the interaction are materialized by small yellow spheres. Again,

this application demonstrates the quality of the interaction provided by continuous colli-

sion detection algorithms and constraint-based dynamics algorithms. The window motor

is very easily removed from the car door with a few mouse motions.

We note that in both cases, the interactive simulator allows toguaranteecomplete

interpenetration-free paths, and that both tasks are performed with a simple mouse on a

high-end PC.

Figure 4:Determining the existence of a path to remove the window motor from the car
door. The continuous collision detection algorithms allow to guarantee the existence of
an interpenetration-free path to remove the motor while interactively and intuitively ma-
nipulating the motor thanks to efficient constraint-based dynamics algorithms. 3d models
c©Renault.

Our tests also show that a user does not notice the fact that an arbitrary in-between

motion is employed to replace the actual objects’ motions between successive frames.

16

6 Conclusion and future work

This paper has presented an overview of our recent work on continuous collision de-

tection and constraint handling methods for polyhedral rigid bodies. We have discussed

various shortcomings of discrete collision detection methods, especially in the context

of virtual prototyping, and have described a continuous collision detection method based

upon arbitrary in-between motions. We have shown how this method can be coupled

to constraint-based dynamics algorithms. Our tests show that the simulator based upon

the algorithms reported in this paper can be used for interactive dynamics simulations of

complex polyhedral rigid bodies. Moreover, we have presented the applicability of our

algorithms to actual industrial cases provided by Renault, which seem to demonstrate that

continuous collision detection algorithms combined to efficient constraint-based dynam-

ics algorithms can be a powerful tool for virtual prototyping tasks.

Future work include in-depth tests of our simulator. The library CONTACT Toolkit

is currently being tested at Renault, PSA Peugeot Citroën and Airbus-EADS. This should

help to evaluate more precisely the validity and the scalability of the algorithms reported

in this paper.

Also, some manufacturing tasksrequire a haptic feedback (training applications for

example). We would like to study the benefits of continuous collision detection algorithms

in this context.

References

[1] M. Anitescu and F. A. Potra. Formulating Dynamic Multi-Rigid-Body Contact Prob-

lems with Friction as Solvable Linear Complementarity Problems. Nonlinear Dy-

nam. 14 (1997), no. 3, 231–247.

17

[2] M. Anitescu, F. A. Potra and D. E. Stewart. Time-stepping for Three-dimensional

Rigid Body Dynamics. Computational Modeling of Contact and Friction. Comput.

Methods Appl. Mech. Engrg. 177 (1999), no. 3-4, 183–197.

[3] D. Baraff. Fast Contact Force Computation for Nonpenetrating Rigid Bodies. In

SIGGRAPH 94 Conference Proceedings, Annual Conference Series, pp 23-34.

ACM SIGGRAPH, Addison Wesley, 1994.

[4] D. Baraff. Interactive Simulation of Solid Rigid Bodies. IEEE Computer Graphics

and Applications, 15(3), pp 63-75, May 1995.

[5] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical sys-

tems. Comp. Meth. in Appl. Mech. and Eng., 1:1-16, 1972.

[6] G. Bradshaw and C. O’Sullivan. Sphere-Tree Construction using Dynamic Medial

Axis Approximation. In Proceedings of ACM Symposium on Computer Animation

2002.

[7] J. F. Canny. collision detection for moving polyhedra. IEEE Trans. Patt. Anal. Mach.

Intell. 8,2 (March 1986), pp 200-209.

[8] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree: A Hierarchical Structure for

Rapid Interference Detection. In SIGGRAPH 96 Conference Proceedings, Annual

Conference Series. ACM SIGGRAPH, Addison Wesley, August 1996.

[9] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral and K. Zikan. Efficient colli-

sion Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE Transactions

on Visualization and Computer Graphics, March 1998, Volume 4, Number 1.

[10] P. M. Hubbard. Collision detection for interactive graphics applications. Ph.D. The-

sis, April 1995.

18

[11] P. Jiménez, F. Thomas and C. Torras. 3D collision detection: a survey. Computers

and Graphics, 25 (2), pp. 269-285, (April 2001), Pergamon Press / Elsevier Science.

[12] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous legged locomo-

tion. In Computer Graphics (Proc. SIGGRAPH), volume 24, pages 29-38. ACM,

August 1990.

[13] Ming Lin and Dinesh Manocha. Collision and Proximity Queries. Handbook of Dis-

crete and Computational Geometry: Collision detection, 2003 (to appear).

[14] P. Lötstedt. Numerical simulation of time-dependent contact friction problems in

rigid body mechanics. SIAM Journal of Scientific Statistical Computing, vol. 5, no.

2, pp. 370- 393, 1984.

[15] V. J. Milenkovic and H.Schmidl. Optimization Based Animation. SIGGRAPH 2001

[16] B. Mirtich and J. Canny. Impulse-based Simulation of Rigid Bodies. In Proceedings

of Symposium on Interactive 3D Graphics, 1995.

[17] R. E. Moore. Interval analysis and automatic error analysis in digital computation.

PhD Thesis, Stanford University, October 1962.

[18] M. Moore and J. Wilhelms. Collision Detection and Response for Computer Anima-

tion. In Computers Graphics (Proceedings of SIGGRAPH 88), Annual Conference

Series, pp 289-298. ACM SIGGRAPH, August 1988.

[19] S. Quinlan. Efficient distance computation between non-convex objects. In Proceed-

ings of International Conference on Robotics and Automation, pp 3324-3329, 1994.

[20] S. Redon, A. Kheddar, and S. Coquillart. An algebraic solution to the problem

of collision detection for rigid polyhedral objects. Proc. of IEEE Conference on

Robotics and Automation, 2000.

19

[21] S. Redon, A. Kheddar and S. Coquillart. CONTACT: arbitrary in-between motions

for continuous collision detection. In Proceedings of IEEE ROMAN’2001, Sep.

2001.

[22] S. Redon, A. Kheddar and S. Coquillart. Gauss’ least constraint principle and rigid

body simulations. In Proceedings of IEEE International Conference on Robotics and

Automation, May 2002.

[23] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection be-

tween rigid bodies. Proc. of Eurographics (Computer Graphics Forum), 2002.

[24] D. Ruspini and O. Khatib. Collision/Contact Models for the Dynamic Simulation of

Complex Environments. IEEE/RSJ International Conference on Intelligent Robots

and Systems:IROS’97.

[25] D. C. Ruspini, K. Kolarov and O. Khatib. The Haptic Display of Complex Graphical

Environments. Computer Graphics Proceedings, SIGGRAPH 97 pp 345-52

[26] J. Snyder. Interval analysis for Computer Graphics. Computer Graphics, 26(2),

pages 121-130, July 1992.

[27] D. E. Stewart and J. C. Trinkle. An Implicit Time-Stepping Scheme for Rigid Body

Dynamics with Inelastic collisions and Coulomb Friction. International Journal of

Numerical Methods in Engineering, 39:2673-2691, 1996.

[28] G. Van den Bergen. Efficient collision detection of complex deformable models us-

ing AABB trees. Journal of Graphics Tools, 2(4):1-14, 1997.

[29] D. R. Wilhelmsen. A Nearest Point Algorithm for Convex Polyhedral Cones and

Applications to Positive Linear Approximations. Mathematics of computation, 30,

pp 48-57, 1976.

20

