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Abstract

Over the last few years, taking advantage of the linear growth of diameter kinetics,

tumor diameter-based rather than tumor volume-based models have been devel-

oped for the phenomenological modeling of tumor growth. In this study, we propose

a new tumor diameter growth function composed of two linear parts and one ex-

ponential term to characterize early, late and steady-state treatment effects. Model

parameters consist of growth rates, growth delays and time constants and are mean-

ingful for biologists. Biological experiments provide in vivo longitudinal data. The

latter are analyzed using a mixed effects model based on the new diameter growth

function, to take into account inter-mouse variability and treatment factors. The rel-

evance of the tumor growth mixed model is firstly assessed by analyzing the effects

of three therapeutic strategies for cancer treatment (radiotherapy, concomitant ra-

diochemotherapy and photodynamic therapy) administered on mice. Then, effects of

the radiochemotherapy treatment duration are estimated within the mixed model.

The results highlight the model suitability for analyzing therapeutic efficiency, com-

paring treatment responses and optimizing, when used in combination with optimal

experiment design, anti-cancer treatment modalities.

Key words: empirical model-building, tumor growth, mixed models, cancer
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1 Introduction

In systems theory1,2, phenomenological or black-box models are holistic rep-

resentations of complex systems in nature, society, and science. This study

presents a new contribution of this modeling approach in oncology. Efficient

developments of new therapeutic strategies for cancer treatment require a re-

liable, robust and reproducible evaluation of therapeutic effects. In in vivo

growth inhibition studies, the most commonly used characteristics of tumor

growth are tumor growth delay (TGD) and tumor volume T/C value3. TGD

and T/C are both based on a local event, either the time instant associated

with the quadrupling of the tumor volume or the relative tumor volume at a

given time point after treatment respectively. Accordingly, these two charac-

teristics only give quantitative information about the tumor growth at an event

point but provide no information about the global behavior of the tumor after

this event. To remedy this problem, a solution consists in building parametric

models of tumor growth4–6. Those models have to be simple enough so that

they can be analyzed with available mathematical techniques, and accurate

enough to describe the important aspects of the relevant dynamical behavior.

By ’relevance’ we mean taking into consideration of three main issues raised

by tumor growth modeling.

• Choice of the response variable. The choice of the response variable to be

modeled is not obvious. In most usual tumor growth models, e.g. population

dynamics models, compartmental models or cell-cycle models, the explained

variable is the number of cancer cells in the tumor population7–14. However,

the tumor size is not easily measurable in in vivo contexts. For this reason,

in vivo tumor growth models are often based on the tumor volume that

is supposed to be proportional to the number of cancer cells7,15. However,
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Drasdo et al. showed in16–18 that tumor growth kinetics follows a power-law

growth for large times and suggested to use the tumor diameter as response

variable because of its linear growth kinetics. The in vivo tumor diameter

growth model proposed in this study is built on this assumption.

• Description of the inter-individual variability. The experiment design pro-

vides longitudinal data with few observation times but with repeated mea-

surements among subjects. Indeed in vitro as well as in vivo experiments

are always repeated to assess the reproducibility degree of the experimental

responses. In classic regression approaches, the model parameters are sup-

posed to be identical for all subjects. However, in experimental biology, the

inter-individual variability makes this assumption inappropriate. Another

approach consists in describing each model parameter as a sum of fixed and

random effects. The so-called mixed effects models (or mixed models) allow

taking into account this lack of response reproducibility. They have proved

their efficiency, particularly in biomedical applications19–21.

• Identification of influent treatment modalities. A large majority of tumor

growth models does not take into account input causes like treatment fac-

tors. As a consequence, those noncausal models are not suited to the model-

based control of anticancer treatments. Such relation of cause and effect can

be estimated in mixed models by introducing covariate effects in the expres-

sion of model parameters19.

In this study, we propose to adopt the mixed model methodology to describe

the tumor diameter growth. This suggested approach is carried out in four

successive steps:

(1) Data collection. Experimental data are time series of tumor diameters,

measured once every two days after a tumor implantation on nude mice,

using an electronic caliper. Three different therapeutic strategies for can-
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cer treatment (radiotherapy, concomitant radiochemotherapy and pho-

todynamic therapy) are administered to three mouse groups. In the ra-

diochemotherapy mouse group, three treatment durations are compared.

(2) Choice of the model structure. We develop a model with two linear trends

and one exponential part.

(3) Parameter estimation. The parameter estimation of the mixed model is

performed with a Stochastic Approximation Expectation-Maximization

(SAEM) algorithm developed by Kuhn and Lavielle in22.

(4) Analysis of treatment effects. Treatment group covariates are introduced

in the mixed model and selected using statistical tests. Significant differ-

ences are emphasized between, on the one hand, therapeutic strategies

and, on the other hand, treatment durations in radiochemotherapy.

This paper is organized as follows. In Section 2, a new empirical kinetic model

of tumor growth is proposed. Experimental setup of data collection and statis-

tical methods are then presented in Section 3. Modeling results are analyzed

in Section 4. The case of non-treated tumor growth is firstly examined. In a

second subsection three loco-regional therapies for cancer treatment are com-

pared. Finally the estimation results for the concomitant radiochemotherapy

group to assess effects of the treatment duration are presented. The conclu-

sions and perspectives of this work are drawn in Section 5.

2 Tumor growth modeling

This Section first defines the response variable (tumor diameter). Next, we

suggest a new model structure of tumor diameter growth. To identify this

model from longitudinal data (see Figure 2(a)), a statistical mixed effects

representation is then defined. The notations used in this study are listed in
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Table 1.

2.1 Response variable

In growth inhibition studies, the usual response variable is the tumor volume,

v(t). This quantity is defined at day t as

v(t) =
δ1(t)δ2(t)

2

2
, (1)

where δ1(t) and δ2(t) are the long and short axis dimensions, respectively, of

the ellipse formed by the tumor. δ1(t) and δ2(t) are measured every two days

in two orthogonal directions using an electronic caliper. The mean tumor

diameter could first be computed as y(t) = (δ1(t) + δ2(t))/2. Unfortunately,

δ1(t) and δ2(t), contrary to v(t), are seldom given by experimenters. That

led us to define the response variable as the diameter of a fictitious spherical

tumor of volume v,

y(t) = 3

√
6v(t)

π
. (2)

2.2 Tumor growth model structure

Treated and non-treated tumor growth responses are described by a Linear-

Exponential-Linear (LEL) model structure in which x(t) denotes the explained

diameter of the tumor at time t,

x(t) = x0

[
1 + at
︸ ︷︷ ︸
natural

growth

+
(
x1(t) + x2(t) + x3(t)

)
u

︸ ︷︷ ︸
treatment response

]
(3)
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Table 1
Main notations

Symb. Description Unit

t time day

x(t) model output (explained diameter of the tumor) mm

y(t) measured response variable (tumor mean diameter) mm

tf time of the last observation, before sacrifice of the mouse

c treatment covariate

d number of model parameters

r number of repeated experiments (nb of mice / group)

i index of the subject (mouse) with i ∈ {1, · · · , r}

n number of observations

ni number of observations for the ith mouse

j jth observation with j ∈ {1, · · · , n}

Θ vector of the model parameters in R
d

βθ,c effect of the covariate c on the model parameter θ

Ω covariance matrix of random effects

p number of covariates

σ variance of the within-group output error

a natural diameter growth rate of the tumor day−1

b decrease rate of tumor diameter in treatment phase I day−1

k1 = b − a resulting diameter growth rate in phase I day−1

k2 slope of diameter decrease at time τ in treatment phase II

k3 decrease rate of tumor diameter in treatment phase III day−1

τ time delay of phases II and III day

T time constant of phase II day

x0 initial value of the tumor diameter mm

PDT photodynamic therapy

RCT concomitant radiochemotherapy

RT radiotherapy
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with:

x1(t) = −b t (4)

x2(t) = −k2 T (1 − e−(t−τ)/T ) H(t− τ) (5)

x3(t) = −k3 (t − τ) H(t− τ), (6)

where t ∈ [0; tf ]. t = 0 denotes the treatment beginning day and tf is either

sacrifice day (day at which the tumor reaches a size limit of about 15mm

diameter) or cure day (day at which the tumor is no longer perceptible, x(t) ≤

ε for t ≥ tf , ε corresponding to the minimum measurable diameter by the

caliper). u denotes the treatment variable: u = 0 for non-treated tumors and

u = 1 for treated tumors. H(t) is the Heaviside step function and x0 = x(0) is

the unknown initial value of the tumor diameter. Given (3), the tumor growth

rate ρ(t) is defined by

ρ(t) =
x(t) − x0

x0
= a t + (x1(t) + x2(t) + x3(t)) u, (7)

and can be split up into four parts:

• the natural growth phase (at) where the parameter a denotes the mean

growth rate of the tumor diameter over one day;

• the early treatment effect (x1(t)). A positive value of b denotes a mean

decrease rate of the tumor diameter over one day. a and b were gathered

into a global rate coefficient k1 = b − a to avoid identifiability problems for

treated tumors;

• the late treatment effect (x2(t)) starting at time τ , where T is a time constant

and k2 = ∂x2/∂t|t=τ corresponds to the slope of the tumor size decrease at

time τ . Those two parameters, T and τ , take into account the duration and

magnitude of the late effect;

8



• the steady-state effect (x3(t)). The latter corresponds to the post-treatment

effect, where k3 denotes a mean decrease rate of the tumor diameter over

one day. At steady-state, the global growth rate is given by a− b−k3. Note

that τ both takes place in phases II and III.

As illustrated in Figure 1, kinetic effects associated with x1, x2, x3 are su-

perimposed to natural growth response to give the resultant treated growth

kinetics. From now on, Θ will denote the vector of parameters, i.e. Θ = (x0, a)

for non-treated growth kinetics and

Θ = (x0, k1, k2, T, τ, k3) (8)

for treated growth kinetics. These parameters have biological significance (ini-

tial size, diameter growth rates, time constant and time delay). Any positive

enhancement of one parameter among k1, k2, k3, T and τ suggests a local ther-

apeutic improvement during the corresponding phase of growth. Conversely,

any decrease of one of the latter parameters leads to locally degrading the

therapeutic response.

2.3 Mixed effects model

Let yij ∈ R denote the noisy measurement of tumor diameter for subject

i = 1, . . . , r at time tij with j = 1, . . . , ni and ni the number of observations

(time points) of subject i. In our case, the mixed model of the tumor growth

is given by:

yij = x(tij ,Θi) + ǫij , ∀i = 1, . . . , r, ∀j = 1, . . . , ni, (9)
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where x(tij ,Θi) is given by equation (3) and denotes the explained diameter of

subject i at time tij depending on the individual parameter vector Θi of length

d. The within-group output error ǫij is described either by a homoscedastic

error model of the type

ǫij = σ eij , eij ∼i.i.d. N (0, 1), ∀i = 1, . . . , r, ∀j = 1, . . . , ni, (10)

or a heteroscedastic error model

ǫij = σ x(tij ,Θi) eij, eij ∼i.i.d. N (0, 1), ∀i = 1, . . . , r, ∀j = 1, . . . , ni, (11)

where σ is the unknown standard error.

To take into account the inter-individual variability, the individual parameter

vectors (Θi) are assumed to be mainly Gaussian random vectors decomposed

into fixed and random effects:

Θi = λ+ ciβ + ηi, ηi ∼ N (0, Ω), ∀i = 1, . . . , r, (12)

where λ is an unknown vector of length d, called reference population pa-

rameter. β is an unknown vector of length p of covariate parameters and ci

is a covariate matrix of size d × p given by the user. Examples of covariates

used herein are presented in Section 3.3. Fixed effects are gathered in (λ, β).

ηi denotes a Gaussian vector of random effects, with covariance matrix Ω.

(eij) and (ηi) are assumed to be mutually independent. If the l-th parameter

component θil of Θi is known to be positive, e.g. x0, τ, T in equation (3), a

log parametrization is used such that log(θil) is a Gaussian variable. Model
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hyper-parameters to be estimated from experimental data are gathered in

ψ = (λ, β, Ω, σ). (13)

To simplify the presentation of the results given in Section 4, a positive value

of any fixed effect in β will denote a local improvement of the therapeutic

response due to the covariate ci and conversely a negative value will be syn-

onymous of therapeutic degradation. Thereafter, the notation βθ,c will be used

to denote the effect of the covariate c on the model parameter θ.

3 Materials and Methods

3.1 Statistical methods

3.1.1 Parameter estimation

The parameter estimation of non-linear mixed models is complex: the likeli-

hood has no explicit form because of the nonlinearity of the regression function

in the individual parameters. The Expectation-Maximization (EM) algorithm

is a generalization of the maximum likelihood estimation to the non-observed

or incomplete data case23,24. For non-linear mixed models, the non-observed

(or hidden) data are the individual parameter vector Θ = (Θ1, . . . ,Θr), the

complete data are the (y,Θ). Starting with an initial value ψ̂0 of the model

hyperparameters defined in (13), the EM algorithm seeks to find the maximum

likelihood estimate by iteratively applying the following two steps:

(1) Expectation step (E-step): calculation of the expected value of the

log likelihood function, with respect to the conditional distribution of Θ

given y under the current estimate of the parameters ψ̂m at the m-th
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iteration

Q(ψ|ψ̂m) = E(Lc(y,Θ;ψ)|y; ψ̂m) (14)

where Lc(y,Θ;ψ) is the log-likelihood of the complete data.

(2) Maximization step (M-step): update of ψ̂m by ψ̂m+1 by maximizing

this quantity

ψ̂m+1 = arg maxQ(ψ|ψ̂m) (15)

For cases in which the E-step has no analytic form, Delyon et al. introduced

in25 a stochastic version of the EM algorithm that estimates the integral

Q(ψ|ψ̂m) by a stochastic approximation procedure via the simulation of the

individual parameters Θ under the posterior distribution p(Θ|y;ψ). For non-

linear mixed models, the simulation step is not direct. Kuhn and Lavielle

proposed to use a Monte Carlo Markov Chain to simulate Θ22. They proved

the convergence of the algorithm under general hypothesis. This algorithm is

implemented in the Monolix software (http://www.monolix.org/).

3.1.2 Hypothesis testing and model selection

The estimation of the mixed model parameters is based on two main steps.

(1) The covariance matrix Ω (full or diagonal) and the output error model

ǫij (homoscedastic or heteroscedastic) are selected in a first step. This

double selection is carried out by implementing a full 22 factorial design

composed of 2 two-level factors and four combinations: (full-homo;full-

hete;diag-homo;diag-hete). Two classic information criteria: AIC (Akaike’s

Information Criterion) and BIC (Bayesian Information Criterion)26,27
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are used as selection statistics. The selected covariance matrix and er-

ror model are the ones that minimize AIC and BIC. The latter criteria

require the computation of the model log-likelihood. This log-likelihood,

which has no analytical form, is estimated using a Monte-Carlo Impor-

tance Sampling algorithm.

(2) In a second step, a Likelihood Ratio Test (LRT) is used to select covariates

β. If the LRT is not significant with a significance level of 5%, the effect

of the covariate is removed.

3.2 Experimental setup of data

Female nude mice were used for tumor implantation. Female athymic Foxn1

nude mice (nu/nu) were obtained from Harlan (Gannat, France), and used at

an age of 7-9 weeks and a weight of 20-25 g. Animal procedures were performed

according to institutional and national guidelines. The tumor, a model of

human malignant glioma (U87 cancer cell line), was maintained in vivo by

sequential passages in nude mice. For the experiments, source tumors were

excised, cleaned from necrotic tissue, cut into small chunks, and transplanted

subcutaneously in the hind leg of each mouse. Three loco-regional therapies

for cancer treatment were carried out: RT (radiotherapy), RCT (concomitant

radiochemotherapy) and PDT (photodynamic therapy).

A group of 54 mice did not receive any treatment and was considered as the

control group.

Radiotherapy was applied during 6 weeks to a group of 7 mice with a total dose

of 40Gy per mouse for ionizing radiation. Concomitant radiochemotherapy was

delivered during 1, 2, 4 or 6 weeks to groups of 7 mice. RCT was based on the

combination of topotecan (daily intraperitoneal injection, 5 days/week) and
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ionizing radiation (5 days/week). Total doses were 3mg/kg for topotecan and

40Gy for ionizing radiation. RT and RCT treatments started when tumors

reached a mean diameter of 8 ± 1 mm.

For the PDT group, tumors were treated when they reached a size of 5±1mm

mean diameter. A new targeted photosensitizing agent, a chlorin conjugated to

heptapeptide targeting neuropilin-1, was used28. The in vivo treatment condi-

tion was: drug-light interval: 4 hrs, agent dose: 2.80 mg/kg, fluence: 120 J/cm2

and fluence rate: 85 mW/cm2. The PDT group was composed of 8 mice.

The complete biological and medical protocols are defined in29,30. For each

subject, the observation period started at the beginning of treatment (t = 0).

Measurements were then carried out until the tumors reached a size of 15mm

in diameter, the legal barrier at which time the mice were sacrificed by cervical

dislocation.

3.3 Comparative studies in oncology

Three cases were examined in this study:

• Treated and not-treated (control) tumors. Results of non-treated tumor

growth identification are presented in Section 4.1.

• Three therapeutic strategies for cancer treatment (RT, RCT, PDT). Treat-

ments RCT and PDT were encoded by binary covariates taking value 1 when

the therapy was applied and 0 otherwise, RT being the reference treatment.

Results are presented in Section 4.2.

• Four different treatment durations for the concomitant radiochemotherapy:

1, 2, 4, 6 weeks for constant total doses of drug and radiation. This treatment

duration was described by a categorical covariate discretized into four levels:
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{1, 2, 4, 6}. Results are presented in Section 4.3.

4 Results

The results of the non-treated tumor growth are presented first. Then the com-

parison of the three treatments is detailed. Finally, the effect of the treatment

duration in concomitant radiochemotherapy is identified.

4.1 Non-treated tumor growth identification

The model selection procedure, presented in Section 3.1.2 and based on the

minimization of AIC and BIC, applied to the natural growth responses of

U87-tumors (u = 0) has led to opting for the homoscedastic error model and

a diagonal covariance matrix Ω (AIC = 1413, BIC = 1423).

Estimates of the model parameters are given in Table 2. In Figure 2, the em-

pirical distributions of the equation residuals (e) and their quantile-quantile

plot confirm the Gaussian assumption stated in (10). A comparison of pre-

dicted responses with observations for a few subjects of the U87 control group

is displayed in Figure 3(a). The linear trend of the diameter growth is mani-

fest. In other terms, the linearity assumption about the natural tumor growth

is corroborated by the present results.

4.2 Treated tumor growth identification and comparison of the three loco-

regional therapies

In vivo data of three loco-regional therapies - radiotherapy (RT), concomi-

tant radiochemotherapy (RCT) and photodynamic therapy (PDT)- were an-
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alyzed. In the model selection procedure, AIC and BIC criteria were minimal

for homoscedastic error model (ǫij) and a diagonal covariance matrix Ω with

Ω = diag(ωx0
, ωT , ωk1

, ωτ , ωk2
, ωk3

). Then the three treatment effects were com-

pared with each other. The selection of the influent covariates, among RCT

and PDT, on (x0, k1, k2, T, τ, k3) was then applied using the method detailed in

Section 3.1.2. The final model (AIC = 939) included five significant covariate

effects: four effects due to PDT (βx0,PDT , βk1,PDT , βk2,PDT , βk3,PDT ) on param-

eters x0, k1, k2, k3 respectively and one effect induced by RCT, βτ,RCT , on the

time delay τ . Parameter values are presented in Table 3. βx0,PDT = −2.73 mm,

is particular and should not be compared with the other fixed effects. Indeed,

it represents the significant variations of the tumor initial size x0 between

groups of mice, which are about 3mm in this study case (see Experimental

setup of data in Section 3.2).

The results emphasize that the three therapies lead to reducing the growth rate

of tumors during the first phase in comparison with natural growth responses

(k1 < a where the natural growth rate a is given in Table 2). The positive value

of βk1,PDT reveals an improved therapeutic efficiency (growth rate reduction) of

PDT compared to RT and RCT during this phase. Conversely, RCT produces

better therapeutical effects than PDT during the second phase as illustrated

in Figure 3(c). Indeed, RT and RCT cause a transient decrease of the tumor

diameter (k2 > 0) during the second phase while PDT leads to an opposite

effect (βk2,PDT < 0), i.e. a momentary increase of tumor size over the same

period of time. The RCT treatment also reveals a positive effect βτ,RCT on the

time delay τ , meaning that RCT significantly defers tumor growth compared

to RT and PDT. At steady-state of growth (late effect), the positive effect of

PDT on the decrease rate k3 of the tumor diameter indicates that PDT better

limits the growth rate than RT and RCT during that period of time. These
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different previous effects can be observed in the experimental and predicted

growth responses for a few mice treated by the three therapies, see Figure 3.

Table 4 displays the correlation matrix of the parameter estimates, whose the

content confirms the independence assumption between the model parameters.

These results emphasize the practical interest of such a model-based approach

to characterize, analyze and compare anti-cancer therapeutic responses by

using model parameters as therapeutic outcome indicators.

4.3 Evaluation of the treatment-duration effect for the concomitant radioche-

motherapy

The last question was to estimate the effect of the treatment duration on

growth of tumors treated by concomitant radiochemotherapy. The model se-

lection strategy was applied as described in Section 3.1.2, a homoscedastic

error model and a diagonal covariance matrix were selected. The final model

only includes covariates on parameters k2 and τ : βk2,2, βτ,4, βτ,6. The second

indices 2, 4, 6 of the covariate effects denote values of the treatment duration.

Parameter values are presented in Table 5 and Table 6 displays the correlation

matrix of the parameter estimates. As previously, the estimated correlation

coefficients confirm the independence assumption between the model param-

eters. The positive value of k2 confirms the transient decrease of the tumor

diameter in the second phase. The 2-week treatment duration increases the

positive effect, βk2,2, on this transient decrease while there is no significant

effect for the 4- and 6-week treatment durations. The treatment duration has

also a significant effect on τ , estimated by βτ,4 and βτ,6. The longer the treat-

ment, the more the tumor growth is delayed. Therefore, those two indicators

allow the biologist to select the suited treatment modalities in order to opti-
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mize the therapeutic response. In this case, adding the total dose of radiation

D to the factors of the experimental design could bring new insight into the

therapeutic effects of the treatment.

5 Conclusion

This paper proposes a new mixed effects model for diameter growth of treated

and non-treated tumors. Compared to classic tumor volume models, its main

advantage is the simplicity of its kinetic structure. Model parameters, com-

posed of growth rates, growth delays or time constants are meaningful. They

characterize the early, late and steady-state effects of anti-cancer treatments.

In vivo results confirmed the relevance of the suggested model to describe the

tumor growth responses to three loco-regional anti-cancer treatments. The

main advantage of the mixed effects models is to introduce treatment factors

into the model, e.g. the treatment duration, in order to estimate their influence

on tumor growth while taking into account the inter-individual variability of

in vivo growth responses. The presented results highlight the potential role of

the parameter estimates as therapeutic outcome indicators. The application

of the Linear-Exponential-Linear model structure to other cancer cell lines is

currently in progress. A simplified version of this model, reduced to the steady-

state phase of growth, was recently used to optimize treatment modalities of

PDT31. Indeed, the main application of such a model is the optimization of

anti-cancer treatment modalities by its combined use with optimal experiment

designs, e.g. as proposed by Retout et al. in32 for mixed models optimal design.

In this perspective, all potential factors of treatment have to be considered in

the experimental design.
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Table 2
Parameter estimates and their standard errors (s.e.) for the non-treated tumor
growth modeling. ωa and ωx0

are diagonal elements of the covariance matrix Ω
defined in (12)

param. estimate (s.e.)

x0 [mm] 5.95 ( 0.22)

a [day−1] 0.0604 (0.0025)

ωa 0.0166 (0.01)

ωx0
0.264 (0.01)

σ 0.558 (0.018)
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Figure 2. Longitudinal data set and residual analysis for the U87 control group
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Table 3
Parameter estimates, standard errors (s.e.) and p-values of the Wald test of the
LEL-model parameters for three loco-regional therapies: RT, RCT and PDT (radio-
therapy, concomitant radiochemotherapy and photodynamic therapy). Estimates of
(x0, k1, k2, T, τ, k3) are values of λ (see Eq. 12) determined by the SAEM algorithm.
Only significant covariate effects are presented.

parameter estimate (s.e.) parameter estimate (s.e.) p-value

x0 [mm] 7.9 (0.12) βx0,PDT -2.73 (0.2) < 10−10

k1 [day−1] -0.0394 (0.005) βk1,PDT 0.0451 (0.0096) 2.7e − 6

k2 [day−1] 0.0387 (0.015) βk2,PDT -0.0633 (0.025) 0.011

T [day] 8.54 (2.7)

τ [day] 10.3 (1.2) βτ,RCT 6.53 (2.1) 0.0021

k3 [day−1] -0.015 (0.0096) βk3,PDT 0.0642 (0.016) 5.2e-05

ωx0
0.317 (0.092) ωT 3.02 (4.2)

ωk1
0.0177 (0.0032) ωτ 4.2 (0.74)

ωk2
0.0449 (0.0094) ωk3

0.0297 (0.0056)

σ 0.484 (0.019)

Table 4
Correlation matrix of the estimates for three loco-regional therapies: RT, RCT and
PDT (radiotherapy, concomitant radiochemotherapy and photodynamic therapy).

x0 βx0,PDT k1 βk1,PDT k2 βk2,PDT T τ βτ,RCT k3 βk3,PDT

x0 1

βx0,PDT -0.58 1

k1 -0.22 0.14 1

βk1,PDT -0.31 0.12 -0.54 1

k2 -0.06 0.03 0.04 -0.01 1

βk2,PDT 0.03 0 -0.02 0.01 -0.6 1

T -0.01 0.01 0.01 -0.02 -0.08 0.13 1

τ 0.02 -0.05 -0.03 0.11 0.07 -0.13 -0.07 1

βτ,RCT 0.03 0 -0.02 -0.04 -0.01 0.05 -0.05 -0.56 1

k3 0.09 -0.05 -0.06 0.03 0.17 -0.08 0.31 0.03 -0.01 1

βk3,PDT -0.05 0.14 0.04 -0.17 -0.1 0.14 -0.27 -0.09 0.06 -0.63 1
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Table 5
Parameter estimates, standard errors (s.e.) and p-values of the Wald test of the
LEL-model parameters for three concomitant radiochemotherapy. Estimates of
(x0, k1, k2, T, τ, k3) are values of λ (see Eq. 12) determined by the SAEM algorithm.
Only significant covariate effects are presented. Indices 2, 4, 6 of the covariate effects
denote values of the treatment duration (see Section 3.3).

parameter estimate (s.e.) parameter estimate (s.e.) p-value

x0 [mm] 8.04 (0.13)

k1 [day−1] -0.0171 (0.0014)

k2 [day−1] 0.0438 (0.0044) βk2,2 0.0203 (0.0093) 0.029

T [day] 10.8 (2.1)

τ [day] 14.7 (0.64) βτ,4 3.92 (1) 0.00016

βτ,6 7.06 (1) 1.1e-11

k3 [day−1] 0.00762 (0.0032)

ωx0
0.6 (0.094) ωT 2.07 (3)

ωk1
0.0061 (0.0011) ωτ 1.6 (0.4)

ωk2
0.0169 (0.0032) ωk3

0.00987 (0.0019)

σ 0.449 (0.013)
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Table 6
Correlation matrix of the estimates for three modalities of concomitant ra-
diochemotherapy.

x0 k1 k2 βk2,2 T τ βτ,4 βτ,6 k3

x0 1

k1 -0.2 1

k2 -0.07 0.12 1

βk2,2 -0.01 0.02 -0.47 1

T 0 0.01 0.19 -0.11 1

τ 0.05 -0.15 -0.03 0.06 -0.28 1

βτ,4 0 0.03 0.06 -0.05 0.03 -0.58 1

βτ,6 -0.01 0.04 0.05 -0.05 0.04 -0.61 0.39 1

k3 0.05 -0.08 0.27 -0.11 0.83 -0.15 0.02 0.02 1
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Figure 3. Diameter growth kinetics of U87 tumors and predicted responses. Four
growth kinetics are shown for each study case. The first row (a) exhibits the lin-
ear growth of the tumor diameter for the control (non-treated) group. The second
row (b) displays the therapeutical responses of the radiotherapy where the early
and late effects of the treatment clearly appear. The responses of the concomitant
radiochemotherapy are presented in the third row (c). They express a larger late
effect, characterized by a deeper decrease of the tumor diameters, than for the ra-
diotherapy treatment. The last row (d) shows the photodynamic therapy responses.
They particularly point out an improved early effect of the treatment and more
precisely a significant reduction of the growth rate during the first phase. A total
cure is observed in the last figure. In all cases, the predicted responses provided
by the model are close to the observed growth kinetics, whatever the anticancer
treatment used.
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