
HAL Id: inria-00390435
https://hal.inria.fr/inria-00390435

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Direct Multiple Shooting Algorithms for Optimal
Robot Control

Moritz Diehl, Hans Georg Bock, Holger Diedam, Pierre-Brice Wieber

To cite this version:
Moritz Diehl, Hans Georg Bock, Holger Diedam, Pierre-Brice Wieber. Fast Direct Multiple Shooting
Algorithms for Optimal Robot Control. Fast Motions in Biomechanics and Robotics, 2005, Heidelberg,
Germany. �inria-00390435�

https://hal.inria.fr/inria-00390435
https://hal.archives-ouvertes.fr

Fast Direct Multiple Shooting Algorithms for

Optimal Robot Control

Moritz Diehl1, Hans Georg Bock1, Holger Diedam1, and Pierre-Brice
Wieber2

1 Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im
Neuenheimer Feld 368, D-69120 Heidelberg, Germany
m.diehl@iwr.uni-heidelberg.de

2 INRIA Rhône-Alpes, Projet BIPOP, 38334 St Ismier Cedex, France

Summary. In this overview paper, we first survey numerical approaches to solve
nonlinear optimal control problems, and second, we present our most recent algorith-
mic developments for real-time optimization in nonlinear model predictive control.

In the survey part, we discuss three direct optimal control approaches in detail:
(i) single shooting, (ii) collocation, and (iii) multiple shooting, and we specify why we
believe the direct multiple shooting method to be the method of choice for nonlinear
optimal control problems in robotics. We couple it with an efficient robot model
generator and show the performance of the algorithm at the example of a five link
robot arm. In the real-time optimization part, we outline the idea of nonlinear model
predictive control and the real-time challenge it poses to numerical optimization. As
one solution approach, we discuss the real-time iteration scheme.

1 Introduction

In this paper, we treat the numerical solution of optimal control problems. We
consider the following simplified optimal control problem in ordinary differential
equations (ODE).

minimize
x(·), u(·), T

Z T

0

L(x(t), u(t)) dt + E (x(T)) (1)

subject to

x(0) − x0 = 0, (fixed initial value)
ẋ(t)−f(x(t), u(t))= 0, t ∈ [0, T], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0, T], (path constraints)
r (x(T)) = 0 (terminal constraints).

The problem is visualized in Fig. 1. We may or may not leave the horizon length
T free for optimization. As an example we may think of a robot that shall move

2 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

s terminal
constraint r(x(T)) = 0

6 path constraints h(x, u) ≥ 0

initial value
x0 s

states x(t)

controls u(t)
-p

0 t
p

T

Fig. 1. Simplified Optimal Control Problem

in minimal time from its current state to some desired terminal position, and must
respect limits on torques and joint angles. We point out that the above formulation
is by far not the most general, but that we try to avoid unneccessary notational
overhead by omitting e.g. differential algebraic equations (DAE), multi-phase mo-
tions, or coupled multipoint constraints, which are, however, all treatable by the
direct optimal control methods to be presented in this paper.

1.1 Approaches to Optimal Control

Generally speaking, there are three basic approaches to address optimal control
problems, (a) dynamic programming, (b) indirect, and (c) direct approaches, cf. the
top row of Fig. 2.

(a) Dynamic Programming [5, 6] uses the principle of optimality of subarcs to com-
pute recursively a feedback control for all times t and all x0. In the continuous
time case, as here, this leads to the Hamilton-Jacobi-Bellman (HJB) equation,
a partial differential equation (PDE) in state space. Methods to numerically
compute solution approximations exist, e.g. [34] but the approach severely suf-
fers from Bellman’s “curse of dimensionality” and is restricted to small state
dimensions.

(b) Indirect Methods use the necessary conditions of optimality of the infinite prob-
lem to derive a boundary value problem (BVP) in ordinary differential equa-
tions (ODE), as e.g. described in [13]. This BVP must numerically be solved,
and the approach is often sketched as “first optimize, then discretize”. The class
of indirect methods encompasses also the well known calculus of variations and
the Euler-Lagrange differential equations, and the Pontryagin Maximum Prin-
ciple [40]. The numerical solution of the BVP is mostly performed by shooting
techniques or by collocation. The two major drawbacks are that the underly-
ing differential equations are often difficult to solve due to strong nonlinearity
and instability, and that changes in the control structure, i.e. the sequence of
arcs where different constraints are active, are difficult to handle: they usually
require a completely new problem setup. Moreover, on so called singular arcs,
higher index DAE arise which necessitate specialized solution techniques.

Fast Optimal Robot Control 3

(c) Direct methods transform the original infinite optimal control problem into a
finite dimensional nonlinear programming problem (NLP). This NLP is then
solved by variants of state-of-the-art numerical optimization methods, and the
approach is therefore often sketched as “first discretize, then optimize”. One of
the most important advantages of direct compared to indirect methods is that
they can easily treat inequality constraints, like the inequality path constraints
in the formulation above. This is because structural changes in the active con-
straints during the optimization procedure are treated by well developed NLP
methods that can deal with inequality constraints and active set changes. All
direct methods are based on a finite dimensional parameterization of the control
trajectory, but differ in the way the state trajectory is handled, cf. the bottom
row of Fig. 2.

For solution of constrained optimal control problems in real world applications,
direct methods are nowadays by far the most widespread and successfully used
techniques, and we will focus on them in the first part of this paper.

1.2 Nonlinear Model Predictive Control

The optimization based feedback control technique “Nonlinear Model Predictive
Control (NMPC)” has attracted much attention in recent years [1, 36], in partic-
ular in the proceess industries. Its idea is, simply speaking, to use an open-loop
optimal control formulation to generate a feedback control for a closed-loop system.
The current system state is continuously observed, and NMPC solves repeatedly
an optimal control problem of the form (1), each time with the most current state
observation as initial value x0. Assuming that the optimal control trajectory can be
computed in negligible time, we can apply the first bit of our optimal plan to the
real world system, for some short duration δ. Then, the state is observed again, a
new optimization problem is solved, the control again applied to the real system,
and so on. In this way, feedback is generated that can reject unforeseen disturbances
and errors due to model-plant-mismatch.

Among the advantages of NMPC when compared to other feedback control tech-
niques are the flexibility provided in formulating the control objective, the capability
to directly handle equality and inequality constraints, and the possibility to treat
unforeseen disturbances fast. Most important, NMPC allows to make use of reliable
nonlinear process models ẋ = f(x, u) so that the control performance can profit
from this important knowledge, which is particularly important for transient, or pe-
riodic processes. It is this last point that makes it particularly appealing for use in
robotics.

One essential problem, however, is the high on-line computational load that is
often associated with NMPC, since at each sampling instant a nonlinear optimal
control problem of the form (1) must be solved. The algorithm must predict and
optimize again and again, in a high frequency, while the real process advances in
time. Therefore, the question of fast real-time optimization has been intensively
investigated [4, 28, 51, 44, 9]. We refer to Binder et al. [10] for an overview of existing
methods. One reason why most applications of NMPC have so far been in the
process industries [42] is that there, time scales are typically in the range of minutes
so that the real-time requirements are less severe than in mechanics. However, we
believe that it is only a matter of time until NMPC becomes an important feedback

4 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

Optimal Control
�����������

PPPPPPPPPPP

Dynamic Programming
(Hamilton-Jacobi-
Bellman Equation):

Tabulation in
State Space

Indirect Methods
(Pontryagin Maximum

Principle):
Solve Boundary Value

Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

(((((((((((((((((((((

�����������

�
�

��

Single Shooting:
Only discretized controls

in NLP
(sequential)

Collocation:
Discretized controls and

states in NLP
(simultaneous)

Multiple Shooting:
Controls and node start

values in NLP
(simultaneous)

Fig. 2. Overview of numerical methods for optimal control

technique in robotics, too. The second scope of this paper is therefore to present
some of our latest ideas regarding the fast real-time optimization for NMPC, which
are based on direct optimal control methods.

1.3 Paper Outline

The paper is organized as follows. In the next section we will describe three popular
direct optimal control methods, single shooting, collocation, and multiple shooting.
We will argue why we believe the last method to be the method of choice for non-
linear optimal control problems in robotics, and in Section 3 we will present its
coupling to an efficient robot model generator and show its application to the time
optimal point to point maneuver of a five link robot arm. In Section 4 we will dis-
cuss nonlinear model predictive control (NMPC) and show how the challenge of fast
online optimization can be addressed by the so called real-time iteration scheme,
in order to make NMPC of fast robot motions possible. Finally, in Section 5, we
conclude the paper with a short summary and an outlook.

Fast Optimal Robot Control 5

2 Direct Optimal Control Methods

Direct methods reformulate the infinite optimal control problem (1) into a finite
dimensional nonlinear programming problem (NLP) of the form

min
w

a(w) subject to b(w) = 0, c(w) ≥ 0, (2)

with a finite dimensional vector w representing the optimization degrees of freedom,
and with differentiable functions a (scalar), b, and c (both vector valued). As said
above, all direct methods start by a parameterization of the control trajectory, but
they differ in the way how the state trajectory is handled. Generally, they can be
divided into sequential and simultaneous approaches.

In sequential approaches, the state trajectory x(t) is regarded as an implicit
function of the controls u(t) (and of the initial value x0), e.g. by a forward simulation
with the help of an ODE solver in direct single shooting [45, 31]. Thus, simulation
and optimization iterations proceed sequentially, one after the other, and the NLP
has only the discretized control as optimization degrees of freedom.

In contrast to this, simultaneous approaches keep a parameterization of the
state trajectory as optimization variables within the NLP, and add suitable equality
constraints representing the ODE model. Thus, simulation and optimization proceed
simultaneously, and only at the solution of the NLP do the states actually represent
a valid ODE solution corresponding to the control trajectory. The two most popular
variants of the simultaneous approach are direct collocation [8] and direct multiple
shooting [12].

We will present in detail the mentioned three direct approaches. As all direct
methods make use of advanced NLP solvers, we also very briefly sketch one of the
most widespread NLP solution methods, Sequential Quadratic Programming (SQP),
which is also at the core of the real-time iteration scheme to be presented in the
second part.

A tutorial example

For illustration of the different behaviour of sequential and simultaenous approaches,
we will use the following tutorial example with only one state and one control di-
mension. The ODE ẋ = f(x, u) is slightly unstable and nonlinear.

minimize
x(·), u(·)

Z 3

0

x(t)2 + u(t)2 dt

subject to

x(0) = x0, (initial value)
ẋ =(1 + x)x + u, t ∈ [0, 3], (ODE model)

2

6

6

4

1 − x(t)
1 + x(t)
1 − u(t)
1 + u(t)

3

7

7

5

≥

2

6

6

4

0
0
0
0

3

7

7

5

, t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint).

We remark that due to the bounds |u| ≤ 1, we have uncontrollable growth for any
x ≥ 0.618 because then (1 + x)x ≥ 1. We set the inital value to x0 = 0.05. For the

6 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

Fig. 3. Solution of the tutorial example.

control discretization we will choose N = 30 control intervals of equal length. The
solution of this problem is shown in Figure 3.

2.1 Sequential Quadratic Programming (SQP)

To solve any NLP of the form (2), we will work within an iterative Sequential
Quadratic Programming (SQP), or Newton-type framework. We omit all details here,
and refer to excellent numerical optimization textbooks instead, e.g. [39]. We need
to introduce, however, the Lagrangian function

L(w, λ, µ) = a(w) − λ
T
b(w) − µ

T
c(w),

with so called Lagrange multipliers λ and µ, that plays a preeminent role in opti-
mization. The necessary conditions for a point w∗ to be a local optimum of the NLP
(2) are that there exist multipliers λ∗ and µ∗, such that

∇wL(w∗

, λ
∗

, µ
∗) = 0, (3)

b(w∗) = 0, (4)

c(w∗) ≥ 0, µ
∗ ≥ 0, c(w∗)T

µ
∗ = 0. (5)

In order to approximately find such a triple (w∗, λ∗, µ∗) we proceed iteratively.
Starting with an initial guess (w0, λ0, µ0), a standard full step SQP iteration for the
NLP is

wk+1 = wk + ∆wk, (6)

λk+1 = λ
QP
k , µk+1 = µ

QP
k , (7)

where (∆wk, λ
QP
k , µ

QP
k) is the solution of a quadratic program (QP). In the classical

Newton-type or SQP approaches, this QP has the form

min
∆w ∈ R

nw

1

2
∆w

T
Ak ∆w + ∇wa(wk)T

∆w

subject to

b(wk) + ∇wb(wk)T
∆w = 0

c(wk) + ∇wc(wk)T
∆w ≥ 0

(8)

Fast Optimal Robot Control 7

terminal
constraint

r

6

x0r

states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p

0 t
p

T

Fig. 4. Illustration of single shooting.

where Ak is an approximation of the Hessian of the Lagrangian,

Ak ≈ ∇2
wL(wk, λk, µk),

and ∇wb(wk)T and ∇wc(wk)T are the constraint Jacobians. Depending on the quality
of the Hessian approximation we may expect linear, super-linear or even quadratic
convergence. Practical SQP methods differ e.g. in the type of globalisation strat-
egy, in the type of QP solver used, or in the way the Hessian is approximated
– e.g. by BFGS updates or by a Gauss-Newton Hessian. This last approach is
favourable for least squares problems, as e.g in tracking or estimation problems.
When the objective is given as a(w) = ‖r(w)‖2

2, the Gauss-Newton Hessian is given
by Ak = 2∇wr(wk)∇wr(wk)T . It is a good approximation of the exact Hessian
∇2

wL(wk, λk, µk) if the residual ‖r(w)‖2
2 is small or if the problem is only mildly

nonlinear.

2.2 Direct Single Shooting

The single shooting approach starts by discretizing the controls. We might for ex-
ample choose grid points on the unit interval, 0 = τ0 < τ1 < . . . < τN = 1,, and then
rescale these gridpoints to the possibly variable time horizon of the optimal control
problem, [0, T], by defining ti = Tτi for i = 0, 1, . . . , N . On this grid we discretize the
controls u(t), for example piecewise constant, u(t) = qi for t ∈ [ti, ti+1], so that u(t)
only depends on the the finitely many control parameters q = (q0, q1, . . . , qN−1, T)
and can be denoted by u(t; q). If the problem has a fixed horizon length T , the
last component of q disappears as it is no optimization variable. Using a numerical
simulation routine for solving the initial value problem

x(0) = x0, ẋ(t) = f(x(t), u(t; q)), t ∈ [0, T],

we can now regard the states x(t) on [0, T] as dependent variables, cf. Fig. 4. We
denote them by x(t; q). The question which simulation routine should be chosen is
crucial to the success of any shooting method and depends on the type of ODE
model. It is essential to use an ODE solver that also delivers sensitivities, as they
are needed within the optimization. We also discretize the path constraints to avoid

8 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

a semi-infinite problem, for example by requiring h(x(t), u(t)) ≥ 0 only at the grid
points ti, but we point out that also a finer grid could be chosen without any
problem. Thus, we obtain the following finite dimensional nonlinear programming
problem (NLP):

minimize
q

Z T

0

L(x(t; q), u(t; q)) dt + E (x(T ; q)) (9)

subject to

h(x(ti; q), u(ti; q)) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (x(T ; q)) = 0. (terminal constraints)

This problem is solved by a finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP), as described above.

The behaviour of single shooting (with full step SQP and Gauss-Newton Hessian)
applied to the tutorial example is illustrated in Fig. 5. The initialization – at the
zero control trajectory, u(t) = 0 – and the first iteration are shown. Note that the
state path and terminal constraints are not yet satisfied in the first iteration, due
to their strong nonlinearity. The solution (up to an accuracy of 10−5) is obtained
after seven iterations. The strong points of single shooting are (i) that it can use
fully adaptive, error controlled state-of-the-art ODE or DAE solvers, (ii) that it
has only few optimization degrees of freedom even for large ODE or DAE systems,
and (iii) that only initial guesses for the control degrees of freedom are needed.
The weak points are (i) that we cannot use knowledge of the state trajectory x in
the initialization (e.g. in tracking problems), (ii) that the ODE solution x(t; q) can
depend very nonlinearly on q, as in the example, and (iii) that unstable systems are
difficult to treat.

However, due to its simplicity, the single shooting approach is very often used
in engineering applications e.g. in the commercial package gOPT [41].

2.3 Collocation

We only very briefly sketch here the idea of the second direct approach, collocation.
We start by discretizing both, the controls and the states on a fine grid. Typically,
the controls are chosen to be piecewise constant, with values qi on each interval
[ti, ti+1]. The value of the states at the grid points will be denoted by si ≈ x(ti). In
order to avoid notational overhead, we will in the remainder of this section assume
that the length of the time horizon, T , is constant, but point out that the general-
ization to variable horizon problems by the above mentioned time transformation is
straightforward. In collocation, the infinite ODE

ẋ(t) − f(x(t), u(t)) = 0, t ∈ [0, T]

is replaced by finitely many equality constraints

ci(qi, si, s
′

i, si+1) = 0, i = 0, . . . , N − 1,

where the additional variables s′i might represent the state trajectory on intermediate
“collocation points” within the interval [ti, ti+1]. By a suitable choice of the location

Fast Optimal Robot Control 9

Fig. 5. Single shooting applied to the tutorial example: Initialization and first iter-
ation.

of these points a high approximation order can be achieved, and typically they
are chosen to be the zeros of orthogonal polynomials. But we sketch here only a
simplified tutorial case, where no intermediate variables s′i are present, to give a
flavour of the idea of collocation. Here, the additional equalities are given by

ci(qi, si, si+1) :=
si+1 − si

ti+1 − ti

− f
“

si + si+1

2
, qi

”

.

Then, we will also approximate the integrals on the collocation intervals, e.g. by

li(qi, si, si+1) := L
“

si + si+1

2
, qi

”

(ti+1 − ti) ≈

Z ti+1

ti

L(x(t), u(t))dt

After discretization we obtain a large scale, but sparse NLP:

minimize
s, q

N−1
X

i=0

li(qi, si, si+1) + E (sN)

subject to

10 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

s0 − x0 = 0, (fixed initial value)
ci(qi, si, si+1) = 0, i = 0, . . . , N − 1, (discretized ODE model)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (sN) = 0. (terminal constraints)

This problem is then solved e.g. by a reduced SQP method for sparse problems [8,
48], or by an interior-point method [7]. Efficient NLP methods typically do not keep
the iterates feasible, so the discretized ODE model equations are only satisfied at
the NLP solution, i.e., simulation and optimization proceed simultaneously. The
advantages of collocation methods are (i) that a very sparse NLP is obtained (ii)
that we can use knowledge of the state trajectory x in the initialization (iii) that
it shows fast local convergence (iv) that it can treat unstable systems well, and (v)
that it can easily cope with state and terminal constraints. Its major disadvantage
is that adaptive discretization error control needs regridding and thus changes the
NLP dimensions. Therefore, applications of collocation do often not address the
question of proper discretization error control. Nevertheless, it is successfully used
for many practical optimal control problems [3, 50, 47, 14, 54].

2.4 Direct Multiple Shooting

The direct multiple shooting method (that is due to Bock and Plitt [12]) tries to
combine the advantages of a simultaneous method like collocation with the major
advantage of single shooting, namely the possibility to use adaptive, error controlled
ODE solvers. In direct multiple shooting, we proceed as follows. First, we again
discretize the controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti, ti+1],

where the intervals can be as large as in single shooting. But second, we solve the
ODE on each interval [ti, ti+1] independently, starting with an artificial initial value
si:

ẋi(t) = f(xi(t), qi), t ∈ [ti, ti+1],
xi(ti) = si.

By numerical solution of these initial value problems, we obtain trajectory pieces
xi(t; si, qi), where the extra arguments after the semicolon are introduced to denote
the dependence on the interval’s initial values and controls. Simultaneously with the
decoupled ODE solution, we also numerically compute the integrals

li(si, qi) :=

Z ti+1

ti

L(xi(ti; si, qi), qi)dt.

In order to constrain the artificial degrees of freedom si to physically meaningful
values, we impose continuity conditions si+1 = xi(ti+1; si, qi). Thus, we arrive at
the following NLP formulation that is completely equivalent to the single shooting
NLP, but contains the extra variables si, and has a block sparse structure.

minimize
s, q

N−1
X

i=0

li(si, qi) + E (sN) (10)

subject to

Fast Optimal Robot Control 11

q q q q q

6
s0 s1

si
si+1

xi(ti+1; si, qi) 6= si+1

@@R
q q q q q

6

qix0dq

-p

t0

q0
p

t1
p p

ti

p

ti+1

p p

tN−1

q sN−1

p

tN

q sN

Fig. 6. Illustration of multiple shooting.

s0 − x0 = 0, (initial value)
si+1 − xi(ti+1; si, qi) = 0, i = 0, . . . , N − 1, (continuity)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (sN) = 0. (terminal constraints)

If we summarize all variables as w := (s0, q0, s1, q1, . . . , sN) we obtain an NLP in
the form (2). The block sparse Jacobian ∇b(wk)T contains the linearized dynamic
model equations, and the Hessian ∇2

wL(wk, λk, µk) is block diagonal, which can both
be exploited in the tailored SQP solution procedure [12]. Because direct multiple
shooting only delivers a valid (numerical) ODE solution when also the optimization
iterations terminate, it is usually considered a simultaneous method, as collocation.
But sometimes it is also called a hybrid method, as it combines features from both,
a pure sequential, and a pure simultaneous method. Its advantages are mostly the
same as for collocation, namely that knowledge of the state trajectory can be used
in the initialization, and that it robustly handles unstable systems and path state
and terminal constraints.

The performance of direct multiple shooting – and of any other simultaneous
method – is for the tutorial example illustrated in Figure 7. The figure shows first the
initialization by a forward simulation, using zero controls. This is one particularly
intuitive, but by far not the best possibility for initialization of a simultaneous
method: it is important to note that the state trajectory is by no means constrained
to match the controls, but can be chosen point for point if desired. In this example,
the forward simulation is at least reset to the nearest bound whenever the state
bounds are violated at the end of an interval, in order to avoid simulating the
system in areas where we know it will never be at the optimal solution. This leads
to the discontinuous state trajectory shown in the top row of Figure 7. The result
of the first iteration is shown in the bottom row, and it can be seen that it is
already much closer to the solution than single shooting, cf. Fig. 5. The solution,
cf. Fig. 3, is obtained after two more iterations. It is interesting to note that the
terminal constraint is already satisfied in the first iteration, due to its linearity. The
nonlinear effects of the continuity conditions are distributed over the whole horizon,
which is seen in the discontinuities. This is in contrast to single shooting, where
the nonlinearity of the system is accumulated until the end of the horizon, and the
terminal constraint becomes much more nonlinear than necessary. Any simultaneous

12 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

Fig. 7. Multiple shooting applied to the tutorial example: Initialization and first
iteration.

method, e.g. collocation, would show the same favourable performance as direct
multiple shooting here.

As said above, in contrast to collocation, direct multiple shooting can combine
adaptivity with fixed NLP dimensions, by the use of adaptive ODE/DAE solvers.
Within each SQP iteration, the ODE solution is often the most costly part, that is
easy to parallelize. Compared to collocation the NLP is of smaller dimension but less
sparse. This loss of sparsity, together with the cost of the underlying ODE solution
leads to theoretically higher costs per SQP iteration than in collocation. On the
other hand, the possibility to use efficient state-of-the-art ODE/DAE solvers and
their inbuilt adaptivity makes direct multiple shooting a strong competitor to direct
collocation in terms of CPU time per iteration. From a practical point of view it
offers the advantage that the user does not have to decide on the grid of the ODE
discretization, but only on the control grid. Direct multiple shooting was used to
solve practical offline optimal control problems e.g. in [24, 33], and it is also used
for the calculations in this paper. It is also widely used in online optimization and
NMPC applications e.g. in [44, 43, 52, 53, 18, 25].

Fast Optimal Robot Control 13

3 Time Optimal Control of a Five Link Robot Arm

We consider the time optimal point to point motion of a robot arm with five degrees
of freedom. Figure 8 shows the robot and its possible movements. To provide a
better visualization the last link and the manipulator in the images are shorter and
simplified compared to the assumed model parameters.

Fig. 8. Robot appearance with simplified last link and manipulator.

The robot is modelled as a kinematic chain of rigid bodies, i.e.,the robot is as-
sumed to just consist of joints and links between them. The robot has a rotational
base joint with two degrees of freedom, followed by two links with rotary joints, and
finally one rotational joint at the “hand” of the arm. Each of the five joints con-
tains a motor to apply a torque ui(t). The geometric description of the robot uses
the notation of Denavit and Hartenberg [16]. To provide the data for the dynamic
calculation each link is associated with an inertia tensor, the mass and the position
of the center of mass. This approach leads to a set of five generalized coordinates
(q1(t), . . . , q5(t)) each representing a rotation in the corresponding joint. We have
chosen parameters that correspond to a small toy robot arm, and which are listed
in Table 1 using the conventional Denavit-Hartenberg notation. The correspond-
ing equations of motion can then be generated automatically by a script from the
HuMAnS Toolbox [29].

3.1 Fast computations of the dynamics of robots

The dynamics of a robot is most usually presented in its Lagrangian form

M(q(t)) q̈(t) + N(q(t), q̇(t)) = u(t),

which gives a compact description of all the nonlinear phenomena and can be manip-
ulated easily in various ways. Since the mass matrix M(q(t)) is Symmetric Definite

14 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

Table 1. Dynamic data of the example robot, and Denavit-Hartenberg parameters.

Joint i mass mi c.o.m. ri inertia tensor Ii αi ai θi di

1 0.1 (0, 0, 0)T diag(23, 23, 20) · 10−6 0 0 q1(t) 0
2 0.02 (0.06, 0, 0)T diag(7, 118, 113) · 10−6 −π

2
0 −π

2
+q2(t) 0

3 0.1 (0.06, 0, 0)T diag(20, 616, 602) · 10−6 0 0.12 π

2
+q3(t) 0

4 0.03 (0,−0.04, 0)T diag(−51,−7,−46) · 10−6 0 0.12 π

2
+q4(t) 0

5 0.06 (0, 0, 0.1)T diag(650, 640, 26) · 10−6 π

2
0 q5(t) 0

Positive, it is invertible and the acceleration of the system can be related with the
controls u(t) either in the way

u(t) = M(q(t)) q̈(t) + N(q(t), q̇(t)) (11)

or in the way
q̈(t) = M(q(t))−1`

u(t) − N(q(t), q̇(t))
´

, (12)

corresponding respectively to the inverse and direct dynamics of the system. Very
helpful from the point of view of analytical manipulations [56], this way of describ-
ing the dynamics of a robot is far from being efficient from the point of view of
numerical computations, neither in the form (11) nor (12). Especially the presence
of a matrix-vector multiplication of O(N 2) complexity in both (11) and (12), and of
a matrix inversion of O(N3) complexity in (12) can be avoided: recursive algorithms
for computing both (11) and (12) with only an O(N) complexity are well known
today.

The first algorithm that has been investigated historically for the fast computa-
tion of the dynamics of robots is the Recursive Newton-Euler Algorithm that allows
computing directly the controls related to given accelerations exactly as in (11).
Extensions have been devised also for cases when not all of the acceleration vector
q̈ is known, in the case of underactuated systems such as robots executing aerial
maneuvers [49]. This recursive algorithm is the fastest way to compute the complete
dynamics of a robotic system and should be preferred therefore as long as one is
not strictly bound to using the direct dynamics (12). This is the case for collocation
methods but unfortunately not for shooting methods.

The Recursive Newton-Euler Algorithm has been adapted then in the form of
the Composite Rigid Body Algorithm in order to compute quickly the mass matrix
that needs to be inverted in the direct dynamics (12), but we still have to face
then a matrix inversion which can be highly inefficient for “large” systems. The
computation of this mass matrix and its inversion can be necessary though for
systems with unilateral contacts, when some internal forces are defined through
implicit laws [55].

The Articulated Body Algorithm has been designed then to propose a recur-
sive method of O(N) complexity for computing directly the accelerations related to
given torques as in (12) but without resorting to a matrix inversion. Even though
generating a slightly higher overhead, this algorithm has been proved to be more
efficient than the Composite Rigid Body Algorithm for robots with as few as 6 de-
grees of freedom [26]. Moreover, avoiding the matrix inversion allows producing a
less noisy numerical result, what can greatly enhance the efficiency of any adaptive

Fast Optimal Robot Control 15

ODE solver to which it is connected [2]. For these reasons, this recursive algorithm
should be preferred as soon as one needs to compute the direct dynamics (12), what
is the case for shooting methods.

Now, one important detail when designing fast methods to compute numerically
the dynamics of a robot is to generate offline the computer code corresponding to
the previous algorithms. Doing so, not only is it possible to get rid of constants
such as 0 and 1 with all their consequences on subsequent computations, but it is
also possible to get rid of whole series of computations which may appear to be
completely unnecessary, depending on the specific structure of the robot. Such an
offline optimization leads to computations which can be as much as twice faster than
the strict execution of the same original algorithms.

The HuMAnS toolbox [29], used to compute the dynamics of the robot for the
numerical experiment in the next section, proposes only the Composite Rigid Body
Algorithm, so far, so even faster computations should be expected when using an
Articulated Body Algorithm. Still, this toolbox produces faster computations than
other generally available robotics toolboxes thanks to its offline optimization of the
generated computer code (a feature also present in the SYMORO software [30]).

3.2 Optimization Problem Formulation

In order to solve the problem to minimize a point to point motion of the robot arm,
we consider the following example maneuver: the robot shall pick up an object at
the ground and put it as fast as possible into a shelf, requiring a base rotation of
ninety degrees. We formulate an optimal control problem of the form (1), with the
following definitions:

x(t) = (q1(t), . . . , q5(t), q̇1(t), . . . , q̇5(t))
T

u(t) = (u1(t), . . . , u5(t))
T

L(x(t), u(t)) = 1

E(x(T)) = 0

f(x(t), u(t)) =

„

(q̇1(t), . . . , q̇5(t))
T

M(x(t))−1 · (u(t) − N(x(t)))

«

x0 = (−0.78, 0.78, 0, 0.78, 0, 0, 0, 0, 0, 0)T

r(x(T)) = x(T) − (0.78, 0,−0.78, 0.78, 0, 0, 0, 0, 0, 0)T

h(x(t), u(t)) =

0

B

B

B

B

B

B

@

xmax − x

x − xmin

umax − u

u − umin

(1, 0, 0, 1) · T 0
5 (x(t)) · (0, 0, l, 1)T − 0.05

(0, 0, 1, 1) · T 0
5 (x(t)) · (0, 0, l, 1)T + 0.15

1

C

C

C

C

C

C

A

The controls u(t) are the torques acting in the joints. The cost functional
R T

0
L(x, u)dt+

E(x(T)) is the overall maneuver time, T . Within the dynamic model ẋ = f(x, u),
the matrix M(x(t)) is the mass matrix which is calculated in each evaluation of
f(x(t), u(t)) and inverted using a cholesky algorithm. The vector N(x(t)) describes
the combined centrifugal, Coriolis and gravitational force. The initial and terminal

16 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

Fig. 9. Initalization of the optimization problem by linear interpolation.

constraints x(0) = x0 and r(x(T)) = 0 describe the desired point to point ma-
neuver. As the states and controls have lower and upper bounds, and as the robot
hand shall avoid hitting the the ground as well as its own base, we add the path
constraints h(x, u) ≥ 0. Here, the matrix T 0

5 (x(t) describes the transformation that
leads from the local end effector position (0, 0, l, 1)T in the last frame to the absolute
coordinates in the base frame.

Fast Optimal Robot Control 17

Fig. 10. Solution of the optimization problem, obtained after 130 SQP iterations
and 20 CPU seconds

3.3 Numerical Solution by Direct Multiple Shooting

We have coupled the automatic robot model generator HuMAnS [29] with an effi-
cient implementation of the direct multiple shooting method, the optimal control
package MUSCOD-II [32, 33]. This coupling allows us to use the highly optimized
C-code delivered by HuMAnS within the model equations ẋ = f(x, u) required by
MUSCOD-II in an automated fashion. In the following computations, we choose
an error controlled Runge-Kutta-Fehlberg integrator of order four/five. We use 30

18 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

Fig. 11. Visualization of the time optimal point to point motion from Figure 10.

multiple shooting nodes with piecewise constant controls. Within the SQP method,
a BFGS Hessian update and watchdog line search globalisation is used.

For initialization, the differential states on the multiple shooting nodes are in-
terpolated linearly between desired initial and terminal state, as shown in Figure 9.
The maneuver time for initialization was set to 0.3 seconds, and the controls to zero.
Starting with this infeasible initialization, the overall optimization with MUSCOD-
II took about 130 SQP iterations, altogether requiring about 20 CPU seconds on
a standard LINUX machine with a 3 GHz Pentium IV processor. The solution is
shown in Figure 10. The calculated time optimal robot movement of 0.15 seconds
duration is illustrated in Figure 11 with screenshots from an OpenGL visualization.

4 Nonlinear Model Predictive Control

As mentioned in the introduction, Nonlinear Model Predictive Control (NMPC) is a
feedback control technique based on the online solution of open-loop optimal control
problems of the form (1). The optimization is repeated again and again, at intervals
of length δ, each sampling time tk = kδ for the most currently observed system state
x̄(tk), which serves as initial value x0 := x̄(tk) in (1). We have introduced the bar to
distinguish the observed system states x̄(t) from the predicted states x(t) within the

Fast Optimal Robot Control 19

optimal control problem. Note that the time tk from now on is the physical time,
and no longer the time at a discretization point within the optimal control problem,
as in Section 2. We stress that for autonomous systems, as treated in this paper,
the NMPC optimization problems differ by the varying initial values only, and that
the time coordinate used within the optimal control problem (1) can be assumed to
always start with t = 0 even though this does not reflect the physical time. From
now on, we will denote the time coordinate within the optimal control problem with
τ in this section to avoid confusion.

To be specific, we denote the optimal solution of the optimal control problem
(1) by u∗(τ ; x̄(tk)), τ ∈ [0, T ∗(x̄(tk))], to express its parametric dependence on the
initial value x̄(tk). The feedback control implemented during the following sampling
interval, i.e. for t ∈ [tk, tk+1], is simply given by u∗

0(x̄(tk)) := u∗(0; x̄(tk)).3 Thus,
NMPC is a sampled data feedback control technique. It is closely related to opti-
mal feedback control which would apply the continuous, non-sampled feedback law
u∗

0(x̄(t)) for all t, which can be called the limit of NMPC for infinitely small sampling
times δ. Note that the optimal predicted maneuver time T ∗(xk) would typically be
shrinking for an optimal point to motion. In this case we speak of shrinking horizon
NMPC [10]. If a large disturbance occurs, the horizon might also be enlarged as
the future plan is changed. In the other case, when the horizon length is fixed to
T = Tp, where the constant Tp is the prediction horizon length, we speak of moving,
or receding horizon control (RHC) [37]. The moving horizon approach is applica-
ble to continuous processes and so widely employed that the term NMPC is often
used as synonymous to RHC. When a given trajectory shall be tracked, this is often
expressed by the choice of the cost function in form of an integrated least squares
deviation on a fixed prediction horizon. In fast robot motions, however, we believe
that a variable time horizon for point to point maneuvers will be a crucial ingre-
dient to successful NMPC implementations. A shrinking horizon NMPC approach
for robot point to point motions that avoids that T ∗(x) shrinks below a certain
positive threshold was presented by Zhao et al. [57]. For setpoint tracking problems,
extensive literature exists on the stability of the closed loop system. Given suitable
choices of the objective functional defined via L and E and a terminal constraint of
the form r(x(T)) = 0 or r(x(T)) ≥ 0, stability of the nominal NMPC dynamics can
be proven even for strongly nonlinear systems [37, 15, 38, 35].

One important precondition for successful NMPC applications, however, is the
availability of reliable and efficient numerical optimal control algorithms. Given an
efficient offline optimization algorithm – e.g. one of the three SQP based direct
methods described in Section 2 – we might be tempted to restart it again and again
for each new problem and to solve each problem until a prespecified convergence
criterion is satisfied. If we are lucky, the computation time is negligible; if we are
not, we have to enter the field of real-time optimization.

3 Sometimes, instead of the optimal initial control value u∗(0; x̄(tk)), the whole first
control interval of length δ, i.e., u∗(τ ; x̄(tk)), τ ∈ [0, δ], is applied to the real
process. This is more appealing in theory, and stability proofs are based on such
an NMPC formulation. When a control discretization with interval lengths not
smaller than the sampling time is used, however, both formulations coincide.

20 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

The Online Dilemma

Assuming that the computational time for one SQP iteration is more or less con-
stant, we have to address the following dilemma: If we want to obtain a sufficiently
exact solution for a given initial value x̄(tk), we have to perform several SQP iter-
ations until a prespecified convergence criterion is satisfied. We can suppose that
for achieving this we have to perform n iterations, and that each iteration takes a
time ε. This means that we obtain the optimal feedback control u∗

0(x̄(tk)) only at
a time tk + nε, i.e., with a considerable delay. However at time tk + nε the system
state has already moved to some system state x̄(tk + nε) 6= x̄(tk), and u∗

0(x(tk)) is
not the exact NMPC feedback, u∗

0(x̄(tk + nδ)). In the best case the system state
has not changed much in the meantime and it is a good approximation of the exact
NMPC feedback. Also, one might think of predicting the most probable system state
x̄(tk + nε) and starting to work on this problem already at time tk. The question
of which controls have to be applied in the meantime is still unsolved: a possible
choice would be to use previously optimized controls in an open-loop manner. Note
that with this approach we can realize an NMPC recalculation rate with intervals of
length δ = nε, under the assumption that each problem needs at most n iterations
and that each SQP iteration requires at most a CPU time of ε. Note also that feed-
back to a disturbance comes with a delay δd of one full sampling time. Summarizing,
we would have δd = δ = nε.

4.1 Real-Time Iteration Scheme

We will now present a specific answer to the online dilemma, the real-time iteration
scheme [17, 20]. The approach is based on two observations.

• Due to the online dilemma, we will never be able to compute the exact NMPC
feedback control u∗

0(x̄(tk)) without delay. Therefore, it might be better to com-
pute only an approximation ũ0(x̄(tk)) of u∗

0(x̄(tk)), if this approximation can be
computed much faster.

• Second, we can divide the computation time of each cycle into a a short feed-
back phase (FP) and a possibly much longer preparation phase (PP). While the
feedback phase is only used to evaluate the approximation ũ0(x̄(tk)), the fol-
lowing preparation phase is used to prepare the next feedback, i.e., to compute
ũ0(x̄(tk+1)) as much as possible without knowledge of x̄(tk+1).

This division of the computation time within each sampling interval allows to achieve
delays δd that are smaller than the sampling interval δ, see Figure 12. The crucial
question is, of course, which approximation ũ0(x̄(tk)) should be used, and how it
can be made similar to the exact NMPC feedback u∗

0(x̄(tk)).
In its current realization, the real-time iteration scheme is based on the direct

multiple shooting method. The online optimization task is to solve a sequence of
nonlinear programming problems of the form (10), but with varying initial value
constraint s0 − x̄(tk) = 0. Similar to the NLP notation (2), in the online context we
have to solve, as fast as possible, an NLP

P (x̄(tk)) : min
w

a(w) subject to bx̄(tk)(w) = 0, c(w) ≥ 0, (13)

where the index takes account of the fact that the first equality constraint s0 −
x̄(tk) = 0 from bx̄(tk)(w) = 0 depends on the initial value x̄(tk), and where w =

Fast Optimal Robot Control 21

-

feedback

preparation

feedback

u
x̄(tk)

ũ(x̄(tk))

tk

tk + δd

preparation

feedback

u
x̄(tk+1)

ũ(x̄(tk+1))

tk+1 = tk + δ

preparation

u

x̄(tk+2)

ũ(x̄(tk+2))

tk+2

u

tk+3

Fig. 12. Division of the computation time in the real-time iteration scheme; real
system state and control trajectory, for sampling time δ and feedback delay δd � δ.

(s0, q0, s1, q1, . . . , sN). Ideally, we would like to have the solution w∗(x̄(tk)) of each
problem P (x̄(tk)) as quick as possible, and to take the NMPC feedback law to be the
first control within w∗(x̄(tk)), i.e., to set u∗

0(x̄(tk)) := q∗0 (x̄(tk)). The exact solution
manifold w∗(·) in dependence of the initial value x̄(tk) is sketched as the solid line in
Figure 13 – nondifferentiable points on this manifold are due to active set changes
in the NLP. The exact solution, however, is not computable in finite time.

Initial Value Embedding

The major idea underlying the real-time iteration scheme is to initialize each new
problem P (x̄(tk)) with the most current solution guess from the last problem, i.e.
with the solution of P (x̄(tk−1)). In a simultaneous method like direct multiple shoot-
ing, it is no problem that the initial value constraint s0 − x̄(tk) = 0 is violated. On
the contrary, because this constraint is linear, it can be shown that the first SQP
iteration after this “initial value embedding” is a first order predictor for the correct
new solution, even in the presence of active set changes [17]. This observation is
visualized in Figure 13, where the predictor delivered by the first SQP iteration is
depicted as dashed line.

In the real-time iteration scheme, we use the result of the first SQP iteration
directly for the approximation ũ0(x̄(tk)). This would already reduce the feedback
delay δd to the time of one SQP iteration, ε. Afterwards, we would need to solve the
old problem to convergence in order to prepare the next feedback. In Fig. 13 also
the second iterate and solution for problem P (x̄(tk)) are sketched. But two more
considerations make the algorithm even faster.

• First, the computations for the first iteration can be largely performed before the
initial value x̄(tk) is known. Therefore, we can reduce the delay time further, if
we perform all these computations before time tk, and at time tk we can quickly
compute the feedback response ũ0(x̄(tk)) to the current state. Thus, the feedback
delay δd becomes even smaller than the cost of one SQP iteration, δd � ε.

22 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

w 1st iteration

solution of P (x̄(tk−1))

of P (x̄(tk))
solution

2nd iteration

x̄(tk−1) x̄(tk)

Fig. 13. Exact solution manifold (solid line) and tangential predictor after initial
value embedding (dashed line), when initialized with the solution of P (x̄(tk−1)). The
first iteration delivers already a good predictor for the exact solution of P (x̄(tk)).

• Second, taking into account that we already use an approximate solution of
the optimal control problem we can ask if it is really necessary to iterate the
SQP until convergence requiring a time nε for n SQP iterations. Instead, we
will considerably reduce the preparation time by performing just one iteration
per sampling interval. This allows shorter sampling intervals that only have
the duration of one single SQP iteration, i.e., δ = ε. A positive side-effect is
that this shorter recalculation time most probably leads to smaller differences in
subsequent initial states x̄(tk) and x̄(tk+1), so that the initial value embedding
delivers better predictors.

These two ideas are the basis of the real-time iteration scheme. It allows to realize
feedback delays δd that are much shorter than a sampling time, and sampling times
δ that are only as long as a single SQP iteration, i.e. we have δd � δ = ε. Compared
with the conventional approach with δd = δ = nε, the focus is now shifted from a
sequence of optimization problems to a sequence of SQP iterates: we may regard
the SQP procedure iterating uninterrupted, with the only particularity that the
initial value x̄(tk) is modified during the iterations. The generation of the feedback
controls can then be regarded as a by-product of the SQP iterations. Due to the
initial value embedding property, it can be expected that the iterates remain close
to the exact solution manifold for each new problem. In Figure 14 four consecutive
real-time iterates are sketched, where the dashed lines show the respective tangential
predictors.

Applications

The real-time iteration scheme has successfully been used in both simulated and
experimental NMPC applications, among them the experimental NMPC of a high
purity distillation column [23] described by a 200 state DAE model with sampling
times δ of 20 seconds, or simulated NMPC of a combustion engine described by 5
ODE, with sampling times of 10 milliseconds [27]. Depending on the application,

Fast Optimal Robot Control 23

3rd iteration

2nd iteration

1st iteration

w

0th iteration

x̄(tk) x̄(tk+1) x̄(tk+2) x̄(tk+3)

Fig. 14. Sketch of the real-time iterations that stay close to the exact solution
manifold (solid line).

the feedback delay δd was between 0.5 and 5 percent of the sampling time. Within
the studies, the approximation errors of the real-time iteration scheme compared to
exact NMPC are often negligible. The scheme’s theoretical contraction properties
have been investigated in [21] for the variant described in this paper, and in [22,
19] for other variants. Recently, several novel variants of the real-time iteration
scheme have been proposed that can either work with inexact jacobians within
the SQP procedure [11], or that only evaluate the jacobians on a subspace [46].
These variants offer advantages for large scale systems where they promise to allow
sampling times that are one or two orders of magnitude smaller than in the standard
implementation. A numerical application of the standard real-time iteration scheme
to the time optimal point to point motion of a robot arm described by 8 ODE
was presented in [57], with CPU times still in the order of 100 milliseconds per
sampling time. We expect that the development of real-time iteration variants that
are specially tailored to robotics applications will make NMPC of fast robot motions
possible within the next five years.

5 Summary and Outlook

In this tutorial paper, we have tried to give a (personal) overview over the most
widely used methods for numerical optimal control, and to assess the possibility of
real-time optimization of fast robot motions. We discussed in detail direct optimal
control methods that are based on a problem discretization and on the subsequent
use of a nonlinear programming algorithm like sequential quadratic programming
(SQP). We compared three direct methods, (i) direct single shooting as a sequential
approach, together with (ii) direct collocation and (iii) direct multiple shooting as si-
multaneous approaches. At hand of a tutorial example we have illustrated the better
nonlinear convergence properties of the simultaneous over the sequential approaches
that can be observed in many other applications, too. The direct multiple shooting
method allows to use state-of-the-art ODE/DAE integrators with inbuilt adaptivity
and error control which often shows to be an advantage in practice. At the example

24 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

of the time optimal motion of a robot arm we have demonstrated the ability of
direct multiple shooting to cope even with strongly nonlinear two point boundary
value optimization problems. Using the coupling of an efficient tool for generation
of optimized robot model equations, HuMAnS, and a state-of-the-art implementa-
tion of the direct multiple shooting method, MUSCOD-II, computation times for a
five link robot are in the order of 200 milliseconds per SQP iteration. Finally, we
discussed the possibility to generate optimization based feedback by the technique
of nonlinear model predictive control (NMPC), and pointed out the necessity of
fast online optimization. We have presented the real-time iteration scheme – that is
based on direct multiple shooting and SQP – as a particularly promising approach
to achieve this aim. The scheme uses an initial value embedding for the transition
from one optimization problem to the next, and performs exactly one SQP-type it-
eration per optimization problem to allow short sampling times. Furthermore, each
iteration is divided into a preparation and a much shorter feedback phase, to allow
an even shorter feedback delay. Based on the ongoing development of the presented
approaches, we expect NMPC – that performs an online optimization of nonlinear
first principle robot models within a few milliseconds – to become a viable technique
for control of fast robot motions within the following five years.

References

1. F. Allgöwer, T.A. Badgwell, J.S. Qin, J.B. Rawlings, and S.J. Wright. Nonlinear
predictive control and moving horizon estimation – An introductory overview. In
P. M. Frank, editor, Advances in Control, Highlights of ECC’99, pages 391–449.
Springer, 1999.

2. U.M. Ascher, D.K. Pai, and B.P. Cloutier. Forward dynamics, elimination meth-
ods, and formulation stiffness in robot simulation. International Journal of
Robotics Research, 16(6):749–758, 1997.

3. V. Bär. Ein Kollokationsverfahren zur numerischen Lösung allgemeiner
Mehrpunktrandwertaufgaben mit Schalt– und Sprungbedingungen mit Anwen-
dungen in der optimalen Steuerung und der Parameteridentifizierung. Master’s
thesis, Universität Bonn, 1984.

4. R.A. Bartlett, A. Wächter, and L.T. Biegler. Active set vs. interior point strate-
gies for model predictive control. In Proc. Amer. Contr. Conf., pages 4229–4233,
Chicago, Il, 2000.

5. R.E. Bellman. Dynamic Programming. University Press, Princeton, 1957.
6. D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena

Scientific, Belmont, MA, 1995.
7. L. T. Biegler, A. M. Cervantes, , and A. Waechter. Advances in simultaneous

strategies for dynamic process optimization. Chemical Engineering Science,
4(57):575–593, 2002.

8. L.T. Biegler. Solution of dynamic optimization problems by successive quadratic
programming and orthogonal collocation. Computers and Chemical Engineer-
ing, 8:243–248, 1984.

9. L.T. Biegler. Efficient solution of dynamic optimization and NMPC prob-
lems. In F. Allgöwer and A. Zheng, editors, Nonlinear Predictive Control, vol-
ume 26 of Progress in Systems Theory, pages 219–244, Basel Boston Berlin,
2000. Birkhäuser.

Fast Optimal Robot Control 25

10. T. Binder, L. Blank, H.G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kro-
nseder, W. Marquardt, J.P. Schlöder, and O.v. Stryk. Introduction to model
based optimization of chemical processes on moving horizons. In M. Grötschel,
S.O. Krumke, and J. Rambau, editors, Online Optimization of Large Scale Sys-
tems: State of the Art, pages 295–340. Springer, 2001.

11. H.G. Bock, M. Diehl, E.A. Kostina, and J.P. Schlöder. Constrained optimal
feedback control of systems governed by large differential algebraic equations.
In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloe-
men Waanders, editors, Real-Time and Online PDE-Constrained Optimization.
SIAM, 2006. (in print).

12. H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of
optimal control problems. In Proceedings 9th IFAC World Congress Budapest,
pages 243–247. Pergamon Press, 1984.

13. A.E. Bryson and Y.-C. Ho. Applied Optimal Control. Wiley, New York, 1975.
14. A. Cervantes and L.T. Biegler. Large-scale DAE optimization using a simulta-

neous NLP formulation. AIChE Journal, 44(5):1038–1050, 1998.
15. H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive

control scheme with guaranteed stability. Automatica, 34(10):1205–1218, 1998.
16. J. Denavit and R.S. Hartenberg. A kinematic notation for lower-pair mech-

anisms based on matrices. ASME Journal of Applied Mechanics, 22:215–221,
1955.

17. M. Diehl. Real-Time Optimization for Large Scale Nonlinear Pro-
cesses. PhD thesis, Universität Heidelberg, 2001. http://www.ub.uni-
heidelberg.de/archiv/1659/.

18. M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes, vol-
ume 920 of Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs- und Regelungstech-
nik. VDI Verlag, Düsseldorf, 2002. Download also at: http://www.ub.uni-
heidelberg.de/archiv/1659/.

19. M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme for non-
linear optimization in optimal feedback control. SIAM Journal on Control and
Optimization, 43(5):1714–1736, 2005.

20. M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.
Real-time optimization and nonlinear model predictive control of processes gov-
erned by differential-algebraic equations. J. Proc. Contr., 12(4):577–585, 2002.

21. M. Diehl, R. Findeisen, and F. Allgöwer. A stabilizing real-time implementation
of nonlinear model predictive control. In L. Biegler, O. Ghattas, M. Heinken-
schloss, D. Keyes, and B. van Bloemen Waanders, editors, Real-Time and Online
PDE-Constrained Optimization. SIAM, 2004. (submitted).

22. M. Diehl, R. Findeisen, F. Allgöwer, H.G. Bock, and J.P. Schlöder. Nominal
stability of the real-time iteration scheme for nonlinear model predictive control.
IEE Proc.-Control Theory Appl., 152(3):296–308, 2005.

23. M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H.G. Bock, E.D.
Gilles, and J.P. Schlöder. An efficient algorithm for nonlinear model predictive
control of large-scale systems. Part II: Application to a distillation column.
Automatisierungstechnik, 51(1):22–29, 2003.

24. M. Diehl, D.B. Leineweber, A.A.S. Schäfer, H.G. Bock, and J.P. Schlöder. Opti-
mization of multiple-fraction batch distillation with recycled waste cuts. AIChE
Journal, 48(12):2869–2874, 2002.

26 Moritz Diehl, Hans Georg Bock, Holger Diedam, and Pierre-Brice Wieber

25. M. Diehl, L. Magni, and G. De Nicolao. Online NMPC of unstable periodic
systems using approximate infinite horizon closed loop costing. Annual Reviews
in Control, 28:37–45, 2004.

26. R. Featherstone and D. Orin. Robot dynamics: Equations and algorithms. In
Proceedings of the IEEE International Conference on Robotics & Automation,
2000.

27. H. J. Ferreau, G. Lorini, and M. Diehl. Fast nonlinear model predictive control
of gasoline engines. In CCA Conference Munich, 2006. (submitted).

28. R. Findeisen, M. Diehl, I. Uslu, S. Schwarzkopf, F. Allgöwer, H.G. Bock, J.P.
Schlöder, and E.D. Gilles. Computation and performance assesment of nonlinear
model predictive control. In Proc. 42th IEEE Conf. Decision Contr., pages
4613–4618, Las Vegas, USA, 2002.

29. INRIA. Humans toolbox. http://www.inrialpes.fr/bipop/software/humans/,
Feb 2005.

30. W. Khalil and D. Creusot. Symoro+: A system for the symbolic modelling of
robots. Robotica, 15:153–161, 1997.

31. D. Kraft. On converting optimal control problems into nonlinear programming
problems. In K. Schittkowski, editor, Computational Mathematical Program-
ming, volume F15 of NATO ASI, pages 261–280. Springer, 1985.

32. D.B. Leineweber. Efficient reduced SQP methods for the optimization of chem-
ical processes described by large sparse DAE models, volume 613 of Fortschritt-
Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

33. D.B. Leineweber, A.A.S. Schäfer, H.G. Bock, and J.P. Schlöder. An efficient
multiple shooting based reduced SQP strategy for large-scale dynamic process
optimization. Part II: Software aspects and applications. Computers and Chem-
ical Engineering, 27:167–174, 2003.

34. P.L. Lions. Generalized Solutions of Hamilton-Jacobi Equations. Pittman, 1982.
35. L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini. A stabilizing model-

based predictive control for nonlinear systems. Automatica, 37(9):1351–1362,
2001.

36. D.Q. Mayne. Nonlinear model predictive control: Challenges and opportunities.
In F. Allgöwer and A. Zheng, editors, Nonlinear Predictive Control, volume 26 of
Progress in Systems Theory, pages 23–44, Basel Boston Berlin, 2000. Birkhäuser.

37. D.Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems.
IEEE Transactions on Automatic Control, 35(7):814–824, 1990.

38. G. de Nicolao, L. Magni, and R. Scattolini. Stability and robustness of nonlin-
ear receding horizon control. In F. Allgöwer and A. Zheng, editors, Nonlinear
Predictive Control, volume 26 of Progress in Systems Theory, pages 3–23, Basel
Boston Berlin, 2000. Birkhäuser.

39. J. Nocedal and S.J. Wright. Numerical Optimization. Springer, Heidelberg,
1999.

40. L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Miscenko. The
Mathematical Theory of Optimal Processes. Wiley, Chichester, 1962.

41. PSE. gPROMS Advanced User’s Manual. London, 2000.
42. S.J. Qin and T.A. Badgwell. Review of nonlinear model predictive control appli-

cations. In B. Kouvaritakis and M. Cannon, editors, Nonlinear model predictive
control: theory and application, pages 3–32, London, 2001. The Institute of Elec-
trical Engineers.

43. L.O. Santos. Multivariable Predictive Control of Nonlinear Chemical Processes.
PhD thesis, Universidade de Coimbra, 2000.

Fast Optimal Robot Control 27

44. L.O. Santos, P. Afonso, J. Castro, N. M.C. de Oliveira, and L.T. Biegler. On-
line implementation of nonlinear MPC: An experimental case study. In AD-
CHEM2000 - International Symposium on Advanced Control of Chemical Pro-
cesses, volume 2, pages 731–736, Pisa, 2000.

45. R.W.H. Sargent and G.R. Sullivan. The development of an efficient optimal
control package. In J. Stoer, editor, Proceedings of the 8th IFIP Conference on
Optimization Techniques (1977), Part 2, Heidelberg, 1978. Springer.

46. A. Schäfer, P. Kühl, M. Diehl, J.P. Schlöder, and H.G. Bock. Fast reduced
multiple shooting methods for nonlinear model predictive control. Chemical
Engineering and Processing, 2006. (submitted).

47. V.H. Schulz. Reduced SQP methods for large-scale optimal control problems in
DAE with application to path planning problems for satellite mounted robots.
PhD thesis, Universität Heidelberg, 1996.

48. V.H. Schulz. Solving discretized optimization problems by partially reduced
SQP methods. Computing and Visualization in Science, 1:83–96, 1998.

49. G.A. Sohl. Optimal Dynamic Motion Planning for Underactuated Robots. PhD
thesis, University of California, 2000.

50. O. von Stryk. Numerical solution of optimal control problems by direct colloca-
tion. In Optimal Control: Calculus of Variations, Optimal Control Theory and
Numerical Methods, volume 129. Bulirsch et al., 1993.

51. M.J. Tenny, S.J. Wright, and J.B. Rawlings. Nonlinear model predictive con-
trol via feasibility-perturbed sequential quadratic programming. Computational
Optimization and Applications, 28(1):87–121, April 2004.

52. S. Terwen, M. Back, and V. Krebs. Predictive powertrain control for heavy duty
trucks. In Proceedings of IFAC Symposium in Advances in Automotive Control,
pages 451–457, Salerno, Italy, 2004.

53. A. Toumi. Optimaler Betrieb und Regelung von Simulated Moving Bed
Prozessen. PhD thesis, Fachbereich Bio und Chemieingenieurwesen, Universität
Dortmund, 2004.

54. Oskar von Stryck. Optimal control of multibody systems in minimal coordinates.
Zeitschrift fur Angewandte Mathematik und Mechanik 78, Suppl 3, 1998.

55. P.-B. Wieber. Modélisation et Commande d’un Robot Marcheur Anthropomor-
phe. PhD thesis, Ecole des Mines de Paris, 2000.

56. P.B. Wieber. Some comments on the structure of the dynamics of articulated
motion. In Proceedings of the Ruperto Carola Symposium on Fast Motion in
Biomechanics and Robotics, 2005.

57. J. Zhao, M. Diehl, R. Longman, H.G. Bock, and J.P. Schlöder. Nonlinear model
predictive control of robots using real-time optimization. In Proceedings of the
AIAA/AAS Astrodynamics Conference, Providence, RI, August 2004.

