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Abstract

This paper deals with optimizing the task cycle time of industrial robots integrated in complex robot cells. Trajectory optimizers
are usually based on models and can’t properly deal with uncertainties due to interactions between the robot and its environment.
We propose here a trajectory optimizer with hardware in the loop which can take into account constraints such as maximum
authorized temperature and maximum authorized torque. Our approach is based on unconstrained optimization algorithms without
derivatives and penalty methods. Experiments on real industrial applications showed good robustness properties of this algorithm
even with a high number of parameters and with changes of the robot task.
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Optimization of Industrial Applications with
Hardware in the Loop

I. INTRODUCTION

To reduce production costs, industrial robots must work as
fast as possible. But when the speed of a robot is increased,
problems such as actuator saturation or overheating may arise
what can eventually damage the robot. Due to the complexity
of robots and manufacturing systems, only highly qualified
operators can reach a high level of efficiency. A better exploita-
tion of the performances of robots integrated in manufacturing
systems can only be achieved then by using computer aided
optimization methods. Works on robot trajectory optimization
usually focus on off-line procedures [1] [2] [3] [4] [5] which
find the optimal geometric path or the optimal velocity profile
along a specified geometric path. Off-line procedures need a
perfect knowledge of both the robot task and the manufactur-
ing system (robot cell) what can be out of reach when the robot
cell is formed of several machine tools, conveyors, pallets and
scheduled by a programmable logic controller. We propose
therefore here a procedure to optimize robot trajectories along
a specified geometric path by modifying on-line the parameters
defining this trajectory (these parameters can be for example
maximum acceleration and maximum velocity on parts of the
geometric path). This amounts to minimizing a criterion such
as cycle time, subject to limitations of the robot such as
maximum authorized temperature and maximum authorized
torque, what can be translated into inequality constraints:

min
p∈Rn

L(p)

ci(p) ≤ 0, 1 ≤ i ≤ m
(1)

with p the parameters of the trajectory, n the number of pa-
rameters, L(p) the criterion to minimize, ci(p) the constraints
representing the robot limitations, and m the number of these
constraints.

We want to develop a procedure which minimizes the
effort of modelling from the operator. We propose therefore a
solution with ”hardware in the loop”:
(i) initialize the set of parameters

(ii) execute the trajectory on the real robot integrated in its
manufacturing environment

(iii) record data from the robot’s sensors
(iv) find a better set of parameters which improves a given

criterion without exceeding robot limitations
(v) go to (ii) until an optimal set of parameters is found.
A similar scheme can be found in iterative learning control
methods. Actually, in typical learning control applications,
the machine under control repeatedly attempts to execute a
prescribed task while an adaptation algorithm successively
improves the control system’s performance from one trial to
the next by updating the control input based on the error
signals from previous trials [6]. The method of iterative

learning control can be applied to problems with criteria and
constraints that must be verified along the whole trajectory
such as the problem of regulating the tracking error to zero.
But it can’t be easily applied to problems with global criteria
and constraints, such as cycle time or energetic criteria and
constraints, when the calculation is done through an integration
over the whole trajectory. We must develop therefore a new
optimization method.

Since the criterion and the constraints are evaluated with
respect to data measured on the robot, this procedure optimizes
the real manufacturing application and not a model of this
application, what implies a minimal effort of modelling from
the operator. The difficulty in this scheme is the optimization
step (iv). Since we use measured data, the gradients of the
criterion and the constraints don’t exist or can’t be obtained
easily and efficiently, we must use therefore optimization
methods without derivatives. This paper presents in a first
section how to minimize a function without constraints and
without derivatives, a second part discusses how to take
into account constraints when the derivatives aren’t available,
finally the last section shows practical results on real robot
applications.

II. UNCONSTRAINED OPTIMIZATION WITHOUT
DERIVATIVES

Since we focus on optimization methods without deriva-
tives, direct search methods as discussed in [7] and [8] are
to be looked for. The Nelder-Mead simplex method is one of
the most frequently used algorithm in optimization without
derivatives, but it doesn’t converge in some cases and suffer
from inefficiency when the dimension of the problem is too
large. Other methods such as simulated annealing or genetic
algorithms suffer from similar limitations [7].

A real improvement in direct search methods has been
obtained when Powell described a method for solving non-
linear unconstrained minimization problems based on the use
of conjugate directions [9]. The main idea of this proposal is
that the minimum of a positive definite quadratic form can
be found by performing at most n successive linear searches
along mutually conjugate directions. Then he proposed (in-
dependently of [10]) to use the available objective values for
building a quadratic model. This model is assumed to be valid
in a neighborhood of the current iterate, which is described
as a trust region, whose radius is iteratively adjusted. The
model is then minimized within this trust region, hopefully
yielding a point with a low function value. The difficulty in this
kind of algorithms is that the set of interpolation points must
have certain geometric properties. Powell proposed therefore
an algorithm where the set of interpolation points is updated
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in a way that preserves its geometric properties in the sense
that the differences between points of this set are guaranted
to remain sufficiently linearly independent.

We can find now two efficient algorithms for optimization
without derivatives: Derivative Free Optimization (DFO) [8]
from Conn, Scheinberg and Toint and NEWUOA from Powell
[11]. They are both based on the identification of a quadratic
model of a function Φ : R

n → R at each iteration of a
numerical algorithm. For the kth iteration the model is:

mk(xk + s) = Φ(xk)+ < gk, s > +
1

2
< s, Hks > (2)

with < x, y > the standard euclidian scalar product, gk a real
vector and Hk a symmetric matrix. gk and Hk are estimated
by interpolating a set Y of points:

∀ y ∈ Y, mk(y) = Φ(y). (3)

Note that the number of elements of Y must be:

p =
1

2
(n + 2)(n + 1)

in order to estimate all the parameters of the model. The
interpolation set Y is updated at each iteration in order to
preserve its geometric properties. The number of elements
of Y is an important point of difference between DFO and
NEWUOA, since NEWUOA actually needs a limited number
p of elements in Y :

(n + 2) ≤ p ≤
1

2
(n + 1)(n + 2).

The important point here is that the evaluation of the original
function Φ can be a costly process, especially in our case
where a whole application cycle is required each time: the
NEWUOA algorithm allows then to reduce strongly the total
number of such evaluations with respect to the DFO algorithm,
reducing therefore strongly the total cost of the optimization.
The number of elements of Y is decreased since NEWUOA
identifies the quadratic model by using the equations of
interpolation (3) and by minimizing the Frobenius norm of
the difference between Hk and Hk−1 [12]. When the quadratic
model is identified, NEWUOA finds its minimum within the
trust region, the cost function is then evaluated at this point,
if the decrease of the cost function is worse than the decrease
predicted by the model, the radius of the trust region is scaled
down, the radius is not changed otherwise. The minimization
algorithm by successive quadratic approximations can be sum-
marized by:

(i) Initialize the set Y , the radius of the
trust region and the first iterate

(ii) build the quadratic model
(iii) Minimize this model within the trust region
(iv) Update the set of interpolation Y

(v) Update the radius of the trust region
(vi) Update the current iterate and go to step (ii)

The algorithm finishes when the radius of the trust region
attains a lower bound fixed by the user. NEWUOA appears to
be one of the best algorithms available today for minimizing a
cost function without derivatives. But NEWUOA doesn’t deal

with constraints, and our problem is subject to constraints.
We need therefore to focus now on how to take into account
inequality constraints when the derivatives are not available.

III. PENALTY METHODS IN NON-LINEAR PROGRAMMING

Historically, the earliest developments in non-linear pro-
gramming were sequential minimization methods with the use
of penalty and barrier functions, what represents a global
approach to non-linear programming as opposed to local
methods based on the linearization of the constraints. Since
we don’t have access to the gradients of our criterion and
constraints, we must use such sequential methods which can
be separated in two classes: penalty methods and exact penalty
methods.

A. Penalty methods

Historically, Courant developped a method in order to take
into account equality constraints which can be adapted easily
to inequality constraints by the use of the max function [13].
The point is to consider the penalized function:

Φ(p, σ) = L(p) + σ

m∑

i=1

[max(ci(p), 0)]2. (4)

This function can be used in an iterative scheme:
(i) Choose a fixed sequence {σ(k)}, for example
{1, 10, 102, 103, ...},

(ii) For each σk, find a local minimizer p(σk) to
min

p
Φ(p, σk),

(iii) Terminate when max(ci(p), 0) is sufficiently small.
Proofs of convergence of such a method are available

in [13]. There exist other penalty functions such as barrier
functions which are usually used in interior point methods.
Since these barrier functions, usually inverse or logarithm
functions, are not defined when the constraints are active, we
won’t use this kind of penalty functions.

One experience in the next section will be devoted to
compare an exponential penalty function:

Φ(p, σ) = L(p) +
∑

i

σie
ci(p) (5)

to a second class of penalty methods: the exact penalty
functions.

B. Exact penalty functions and the augmented Lagrangian
method

If the function to minimize L(p) is k-Lipschitz, then the
penalization:

Φ(p, σ) = L(p) + σ
∑

i

‖max(ci(p), 0)‖1 (6)

is exact if σ > k, that is to say the minimum of this function
is the same as the optimum of problem (1), as proved in [14]
or [13].

An advantage is the exactness of the solution to the original
problem for a finite σ, with no need to iterate on the value of



3

σ. But this penalty function (6) is not differentiable at the op-
timum, and since minimization algorithms without derivatives
are not designed for such non differentiabilities, that can lead
to severe troubles: we should look for another solution.

Lagrangian methods [15] can also be seen as exact penalty
methods when the function to minimize and the constraints
are convex. In our case, we don’t know whether the functions
L(p) and ci(p) are convex or not, but they are most probably
not. The augmented Lagrangian method deals with this kind
of problem, with a Lagrangian actually augmented with a
quadratic form of the constraints, tending to create a convex
basin around the optimum of problem (1) [14]. When Powell
discovered this method [16], he exposed this technique in a
more intuitive way. Actually, to get the minimum of problem
(1) with the Courant penalty method, σ must tend to infinity.
To avoid this problem, we could add a shift parameter θi for
each constraint :

Φ(p, θ, σ) = f(p) +
1

2

∑

i

σi(max(ci(p)− θi, 0))2. (7)

More details are available in [13].
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Fig. 1. Courant penalty method [13]

−1.0 −0.6 −0.2 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0
−1.0

1.2

3.4

5.6

7.8

10.0

σ = 1
θ = 1

σ = 10
θ = 1/10

p∗ = 1

f = p

Fig. 2. Augmented Lagrangian method [13]

Figures 1 and 2 underline the differences between inexact
and exact penalty functions for a simple problem: min

p∈R

p

subject to p − 1 = 0. We can observe in figure 1 that the
bigger σ is, the closer the minimum of the penalty function
is to the solution of the original problem, but it never reaches
it exactly, on the opposite to figure 2 which shows that the
augmented Lagrangian has exactly the same minimum as the
original problem, and for finite values of both θ and σ.

By using the augmented Lagrangian method, a constrained
minimization problem is translated into a sequence of uncon-
strained problems (with λi = θiσi):

(i) λ← λ(1), σ ← σ(1), k ← 0, ‖∇Ψ(0)‖∞ ←∞
(ii) Find the minimizer p(λ, σ) of Φ(p, λ, σ)

and denote c = c(p(λ, σ))

(iii) If ‖[−max(ci,
λi

σi
)]i=1..m‖∞ > 1

4‖∇Ψ(k)‖∞ then :
∀i, if |ci| >

1
4‖c

(k)‖∞ then σi ← 10σi

go to step (ii)
(iv) k ← k + 1, λ(k) ← λ, σ(k) ← σ, c

(k) ← c

(v) ∀i = 1..m, λi ← λ
(k)
i −max(σic

(k)
i , λk

i ) and
‖∇Ψ(k)‖∞ ← ‖[−max(ci,

λi

σi
)]i=1..m‖∞

The step (ii) is the non trivial step of the algorithm and can
be solved by using a derivative free algorithm like NEWUOA.
This algorithm has several advantages :

• derivatives of the cost function and the constraints never
appear in this scheme,

• this is an exact penalty method
• the usual ill conditionning of penalty methods when

σ →∞ doesn’t appear here since the σi and θi are finite
numbers.

Since we don’t use derivatives, the convergence of step (ii) of
the algorithm can take a long time, and the convergence of
the whole algorithm can really be much longer than inexact
penalty methods. Moreover, this algorithm doesn’t guarantee
that the constraints won’t be violated during the iterations (this
is not an interior point algorihtm). These are the two major
disavantages of our approach. We will be able to quantify
the impact of these disavantages on our on-line trajectory
optimizer during the experiments with industrial applications
in the last section.

IV. EXPERIMENTS ON INDUSTRIAL ROBOT APPLICATIONS

The main purpose of our work is to optimize the duration
of industrial applications without exceeding a maximum au-
thorized temperature and maximum authorized torques of each
actuator of a Stäubli Rx90 with a CS8 controller. That is why
L(.) of the problem (1) is the duration of the application, and
the ci(.) represent then the temperature and torque limitations
of a Stäubli Rx90 (Torques are computed from motor currents
and the temperature from motor currents and velocities, using a
thermal model). Let us summarize the structure of our on-line
trajectory optimizer in figure 3 before testing it on industrial
applications.

Evaluation of
Objective Function
Constraints

Update of 
the model
of the penalty 
function

within the trust
Minimization

region

Parameters
Trajectory

Position
Velocity

Torque
Acceleration

Records

Optimization algorithm

Robot

executing
the trajectory

continuously

Fig. 3. Algorithm overview

The previous sections dealt with the application of non-
linear optimization theory without derivatives to the on-line



4

optimization of robot trajectories. We are going to describe
now typical industrial applications on which we will test this
method in order to test its convergence properties and its
robustness with respect to a high number of parameters and
changes in the robot task.

A. Description of typical industrial applications

First, we will describe two typical industrial applications
on which we are going to use our algorithm to minimize
the duration of the application cycle (the cycle time) subject
to maximum torque and temperature constraints. These two
applications are:

• a pick and place application illustrated in figure 4
• a load and unload of a machine tool and palettization

application illustrated in figure 5
The differences between the two applications are:

• the first one has a limited number of trajectory parame-
ters, 12, whereas the second one has a high number of
trajectory parameters, 54,

• the active constraints aren’t the same in the two applica-
tions. In the first application, the temperature constraints
are actually active, and only the torque constraints are
active in the second industrial application.
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Fig. 4. Real geometric trajectory of the robot tool during the pick and place
application
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Fig. 5. Real geometric trajectory of the robot tool during the load/unload
application

These experiments are designed to test the following points:
• comparison between an inexact penalty function, the

exponential penalty function (5), and an exact penalty
function, the augmented Lagrangian (7),

• influence of the number of trajectory parameters on the
speed of convergence,

• robustness to task changes.

B. Results

The first experiment concerns the optimization of the pick
and place application without load and deals with the com-
parison of an exponential penalty function and the augmented
Lagrangian method. The weighting coefficients of the penalty
functions has been initialized as in table I.

Exponential Augmented Lagrangian
penalty function penalty function

σ1 = [50, ...,50]T σ(1) = [100, ...,100]
λ(1) = [0, ...,0]

TABLE I
PENALTY COEFFICIENTS INITIALIZATION

0 4 8 12 16 20 24 28 32
3

4

5

6

7

8

9

0 4 8 12 16 20 24 28 32
40

50

60

70

80

90

100

110

Cycle time (s)

Active constraint

Augmented Lagrangian

Exponential penalty function

(min)
Optimization
Duration of

limit
constraint

(min)
Optimization
Duration of

Fig. 6. Convergence of the algorithm for the pick and place application
without load

Figure 6 shows an identical evolution of the two experiments
in the beginning (in the boxed area), this is due to the
NEWUOA software which always uses the same parameter
variations to initialize the quadratic approximation of the cost
function. After this initialization, we can observe a decrease of
the cycle time while the constraints rise up to their limit, and
the algorithm converges to a solution. We can also see that the
augmented Lagrangian method converges to a solution where
the value of the constraint is closer to the limit than with
the exponential penalty function, demonstrating the difference
between exact and inexact penalty methods. We can observe
also that there is a difference of 5% in the value of the active
constraint between the two methods, but the two cycle times
are equivalent. This may lead to the conclusion that the active
constraint is actually more sentive to parameter variations than
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the cycle time. Note also that since we don’t use interior point
methods, the constraints can be temporarily violated during the
convergence process, as can be seen in figures 6 and 7: this is
an important characteristic of this method, not to be forgotten.

In a second experiment, the robot must execute a pick and
place application and carry a load of 6 Kg: without changing
anything in the algorithm, it converges to a solution (showed
in figure 7) different from the one of the first experience: the
algorithm automaticaly reduces the speed of the robot thanks
to the use of data directly recorded by sensors on the robot.
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Fig. 7. Convergence of the algorithm for the pick and place application with
a load of 6Kg

The last experiment consists in testing the capacity of the
algorithm to converge with a more complex task. To test
this property, we apply our algorithm on the load/unload
application (54 trajectory parameters compared to 12 for the
pick and place application). The optimization finishes after
5 hours, compared to 30 minutes for the pick and place
application.

These results can be summarized in two arrays. The first
one describes the gain in cycle time compared to the original
constructor settings:

Application Nominal After Gain
cycle time Optimization.

Pick & Place 6.52s 3.89s 40%
Pick & Place 6.52s 4.66s 28%

with load
Load/unload 8.12s 7.44s 8.4%

The second one shows the influence of the number of trajec-
tory parameters on the duration of the optimization:

Application Nunber of Optimization
trajectory parameters duration

Pick & Place 12 30 min
Pick & Place 12 30 min

with load
Load/unload 54 5 h

From an industrial point of view, 5 hours is not a long time for
the optimization of a trajectory which is going to be executed
repeatedly for months or years, and an application with 54
trajectory parameters corresponds to a really large application.

Our algorithm appears therefore to be well adapted to the
optimization of industrial applications.

V. CONCLUSION

The optimization of trajectories is a typical problem in
robotics research. But since robots are often integrated in
complex robot cells and must interact with them, derivatives
of the cost function and the constraints generally don’t exist or
can’t be calculated efficiently, reason why tools for optimiza-
tion without derivatives must be used. In a first section, we
described how we could solve an unconstrained optimization
problem without derivatives efficiently. Then we saw how to
take into account the constraints by translating the constrained
problem into a sequence of unconstrained problems by using
penalty methods. In the last part, we tested our algorithm
on two real industrial applications in order to minimize the
cycle time of the applications taking into account maximum
authorized temperature and maximum authorized torque on
each actuator. Our algorithm is robust to task changes and to
the number of trajectory parameters. On the other hand, it is
difficult to conclude on the best choice of the penalty function
what may strongly depend on the nature of the optimization
problem. The experiments presented here showed for example
that exponential penalty methods seem to be good enough in
that specific case.

Our optimizer has been used on industrial applications, and
it allowed to reach a high level of efficiency. More than an
optimizer of industrial applications, this algorithm can be seen
as a learning program. This approach could be applied then in
artificial intelligence, on autonomous mobile robots or simply
on difficult optimization problems where genetic algorithms
are usually used today. We hope this approach might prove to
be more efficient.
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