
HAL Id: inria-00390492
https://hal.inria.fr/inria-00390492

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Implementation of Model Predictive Control for
On-line Walking Pattern Generation

Dimitar Dimitrov, Pierre-Brice Wieber, Joachim Ferreau, Moritz Diehl

To cite this version:
Dimitar Dimitrov, Pierre-Brice Wieber, Joachim Ferreau, Moritz Diehl. On the Implementation of
Model Predictive Control for On-line Walking Pattern Generation. ICRA 2008 - IEEE International
Conference on Robotics & Automation, May 2008, Pasadena, CA, United States. pp.2685-2690,
�10.1109/ROBOT.2008.4543617�. �inria-00390492�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50166729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00390492
https://hal.archives-ouvertes.fr

On the Implementation of Model Predictive Control
for On-line Walking Pattern Generation

Dimitar Dimitrov*
mitko@roboresearch.net

Pierre-Brice Wieber*
Pierre-Brice.Wieber@inrialpes.fr

*INRIA Rhône-Alpes
38331 St Ismier Cedex, France

Hans Joachim Ferreau**
joachim.ferreau@esat.kuleuven.be

Moritz Diehl**
moritz.diehl@esat.kuleuven.be

**Department of Electrical Engineering,
K.U. Leuven, Belgium

Abstract— This article addresses the real-time implemen-
tation issues of a model predictive control based walking
pattern generation for a humanoid robot. We approximate the
multibody dynamic model with a linear discrete time system,
and at each step solve a quadratic program in order to keep
the output within a predefined set of constraints. The focus is
on creating an efficient framework for forming and solving the
underlying optimization problem. For that purpose we develop:
a) a reliable guess for the active constraints at optimality; b) a
fast way of generating an initial feasible point with respect to
the set of constraints for each preview interval; c) a variable
discretization sampling time. A simple implementation of a
standard primal active set algorithm which exploits a “hot
start” is used to demonstrate the advantages of the first point,
while the latter one is verified using an existing dual solver.

I. INTRODUCTION

Walking pattern generation for humanoid robots is a
challenging field of research. A variety of methods based on
knowledge of the full dynamic characteristics of the system
are introduced [1], [2], [3]. Such methods strongly rely on
the model accuracy, and usually assume that the precomputed
trajectories of the state variables, can be executed in a
straightforward way in an error-free environment. In the
absence of disturbances, and for short trajectories, such
approach proves to be successful, however, it is by no means
robust, and its application is limited. In practice, feedback
errors are always present as a result of the contact model
between the feet and the ground (which in most cases cannot
be precisely modeled), hence leading to the necessity of a
scheme for on-line walking pattern generation. Such scheme
should be able to generate motions that perform tracking of
a predefined desired state in a fast and efficient way, while
considering the limitations of the system and a feedback for
the current dynamical state.

In [4] the authors address this issue by developing a Zero
Moment Point (ZMP) preview control scheme, that gener-
ates dynamically stable motions for a humanoid robot, by
approximating it with a linear inverted pendulum (LIP) [5].
With such notation, they formulate the walking pattern gen-
eration problem as a typical infinite horizon Linear Quadratic
Regulator (LQR). This approach is advantageous, because it
explicitly accounts for the system state, hence considering
a tracking error, and leads to fast computation. In the case

when the Center of Mass (CoM) of the system is constrained
to stay on a plane, with constant height, tuning the gains of
the controller amounts to solving a Riccati equation (which
can be performed off-line [6]).

The disadvantages of the ZMP preview control scheme
outlined above are: a) it does not explicitly account for the
constraints of the ZMP; b) in case of disturbances the system
response can overshoot the boundaries of the admissible
region.

The above two disadvantages are mentioned in [7], and for
the case when no constraints are imposed for the ZMP an
analytical solution is presented. Furthermore, it is proposed
that instead of solving an infinite horizon LQR, a receding
horizon LQR with constraints can be used. Which is a
different way to say linear model predictive control (LMPC).

In this article, we develop a general framework for the
application of a LMPC scheme to on-line walking pattern
generation. We build up on the results in [4], [7] and discuss
issues related to computation efficiency. It is well-known
that in the presence of linear constraints on the input and
output, a LMPC problem can be set up as a quadratic
program (QP) [9]. Hence, the main focus will be on ways to
efficiently identify the solution of a QP, exploiting some of
the particular characteristics of a humanoid walking process.
In general there are several approaches for obtaining this
solution. Two of them are “interior point” methods and
“active set” methods. A comparison between them in the
context of MPC is made in [10], [11]. We adopt the latter
(based on the size of our problem, which will be discussed
in Section III-A) and develop a reliable guess for the active
constraints at optimality, and a feasible starting point. Both
of them can be used to facilitate the optimization solver. In
addition we discuss a scheme based on a variable sampling
time which can greatly decrease the size of the problem,
while keeping a constant preview horizon.

The article is organized as follows: in Section II we briefly
outline the LMPC scheme presented in [7] and add a small
modification to it. In Section III we focus on developing
a guess for the active constraints at the optimal solution
and feasible initial point, that will be used as a “hot start”
for the QP solver. In Section III-E a variable sampling time
scheme is discussed, and its advantages demonstrated using

a dual QP solver [8]. Finally, in Section IV we use an
implementation of a standard primal active set algorithm in
order to illustrate the benefits of using a “hot start”.

II. LMPC SCHEME FOR WALKING PATTERN GENERATION

The following assumptions are made:

a1) The footsteps are predefined in advance, and
cannot change;

a2) each foot is placed on a flat horizontal surface;
a3) the CoM of the system is constrained to move

on a horizontal plane;
a4) the time duration of single- and double-support

phases are predetermined.

The ZMP preview control scheme proposed in [4] approx-
imates the dynamics of a humanoid robot with that of a 3D
linear inverted pendulum (3D-LIP). Such approximation, and
with assumption a3, result in a decoupled set of equations
governing the motion of the ZMP.

zx = x − h

g
ẍ, zy = y − h

g
ÿ, (1)

where, z = [zx, zy]T are the coordinates of the ZMP on the
flat floor, x, y and h are the coordinates of the CoM (note
that the altitude h is assumed constant), g is acceleration due
to gravity, and a dot over a variable denotes a time derivative.

The trajectories of both the CoM and the ZMP are dis-
cretized then as piecewise cubic polynomials, with constant
jerks

...
x ,

...
y and

...
z over time intervals of lengths Tk (k =

1, 2, . . . , N). Choosing a constant discretization sampling
time Tk simplifies the analysis below, nevertheless, for the
moment we are going to keep the discussion general, as this
proves to play a major role in the on-line application of our
controller. Due to the decoupled structure of (1), some of the
notations will be made only regarding the forward motion x,
keeping in mind that the lateral motion y is identical.

Focusing on the state of the system at times tk =
∑k

i=1 Ti

with the notations:

x̂k =


 x(tk)

ẋ(tk)
ẍ(tk)


,

...
xk =

...
x(tk), zx

k = zx(tk), (2)

the trivial integration of the constant jerk
...
xk over time

intervals of lengths Tk leads to the recursive relationship

x̂k+1 = Akx̂k + Bk
...
xk (3)

while equation (1) leads to

zx
k = Cx̂k (4)

where,

Ak =


 1 Tk T 2

k /2
0 1 Tk

0 0 1


 ; Bk =


 T 3

k /6
T 2

k /2
Tk




C =
[

1 0 −h/g
]

Equations (3) and (4) can be used to determine the
dynamic behavior of the 3D-LIP system during a given

interval of time, for a sequence of control inputs {...
xk}. This

is a reasonable approximation for the complicated dynamics
of a humanoid robot, and provides a computationally efficient
way to estimate whether the ZMP of the real system is in the
convex hull of the predefined reference footsteps. Hereafter,
this is assumed to be the criteria which guarantees that the
system will not tip over and fall. It can be expressed as
follows:

Ekzk + ek ≥ 0 (5)

where, the matrix Ek ∈ Rpk×2, and vector ek ∈ Rpk

describe the geometry of the convex hull (with pk edges)
formed by the feet during the kth sampling period.

As noted in [4], (A,B) in equation (3) is controllable,
hence the tracking problem of a reference output can be
implemented as an infinite horizon LQR, without explicitly
considering the ZMP constraints in (5). Hence, minimizing
the jerks

...
xk,

...
y k, while maintaining the ZMP as close as

possible to the reference one. This approach is suitable for
high frequency on-line walking pattern generation, and it
guarantees convergence towards the reference state. Never-
theless, it is susceptible to perturbations or even feedback
errors (depending on the design of the controller [9]). The
reason follows from the fact that after a disturbance, the sys-
tem response can overshoot the boundaries of the admissible
region, hence equation (5) can be easily violated.

For dealing with this problem, the authors of [7] proposed
to solve a receding horizon LQR, explicitly considering
the linear constraints in (5). It is well known that this
amounts to solving a quadratic programming problem at each
iteration [9]. The idea behind LMPC, can be summarized as
follows: (i) at time tk and for the current state, determine an
optimal control input by solving a QP problem over a fixed
future interval, considering the current and future constraints;
(ii) apply only the first step of the optimal control; (iii)
measure (estimate) the state reached at (tk+1) and repeat
step (i).

In order to form a QP problem, equation (3) is iterated N
times and combined with N versions of (4), relating at once
N values of the jerk of the CoM to N values of z.

zx
k+1 = CAkx̂k + CBk

...
xk

zx
k+2 = CAk+1Akx̂k + CAk+1Bk

...
xk + CBk+1

...
xk+1

. . . (6)

With the notation:

Zx =




zx
k+1
...

zx
k+N


 ; Ux =




...
xk

...
...
xk+N−1


 ,

the above relations can be expressed in a more compact way:

Zx = P s x̂k + P u Ux (7)

For convenience the equation for the lateral motion will be
written as well, with corresponding meaning of the symbols:

Zy = P s ŷk + P u Uy (8)

Equations (7) and (8) determine the position of the ZMP
for a period in the future with length T p =

∑N
k=1 Tk. This

period is referred to as preview window. Following from
assumptions a1 and a4, an augmented constraint matrix E
and vector e can be defined for the entire preview window,
leading to an augmented constraint equation:

EZ + e ≥ 0 (9)

Z =
[

Zx

Zy

]
; U =

[
Ux

Uy

]

If (7) and (8) are substituted into (9) this leads to a linear
constraint for the control variable U , which if satisfied will
result in a “stable” motion:

ĒU + ē ≥ 0 (10)

For the formulation of a quadratic program we set the
following objective function:

min
U

1
2
(U2 + αṠ

2
+ β(S − Sref)2) (11)

S = [xk+1, . . . , xk+N , yk+1, . . . , yk+N]T

where, α and β are positive scalar gains, and Sref contains
reference values for the position of the CoM during the
current preview window. The latter two terms in (11) act
like a spring and damper to the profile of the CoM, and can
be used to influence its behavior within the constraints. This
can be beneficial in cases of disturbances, and at the start
and end of the trajectory. A standard choice for Sref is in
the center of the foot/feet. Equation (11), can be rewritten in
the following standard form:

min
U

1
2
UT HU + UT g (12)

with H ∈ RN×N and g ∈ RN×1 being the Hessian matrix
and gradient vector of the objective function. Equations
(12) and (10) define a standard QP problem with inequality
constraints. With the current problem, the Hessian matrix
H is strictly positive definite, and since a set of linear
constraints form a (polyhedral) convex set, there exists a
unique global minimizer U∗ [12].

III. SOLVING THE OPTIMAL PROBLEM ON-LINE

A. Size of the QP (constant sampling)

The size of the QP defined by (12) and subject to the
constraints (10) depends on N , which is related to the length
T p of the preview window and the choice of the sequence of
sampling times {Tk}. In the case of HRP2 humanoid robot,
for stability of the control scheme, we need at least T p =
0.7 s [7]. However, for robustness and to reduce tracking
errors T p = 1.5 s is commonly used. For the moment let
us assume constant sampling intervals Tk = 20 ms with
k = 1, 2, . . . , 75. This leads to a QP with 75 x 2 = 150 state
variables.

The number of inequality constraints mi (that appear in
(10)) for the preview window T p depends on the geometry of

Fig. 1. Constraints for a generic preview window. Solid lines and dashed
lines represent single- and double-support constraints, respectively. The
ZMP profile is denoted by circles and triangles corresponding to cases
without and with perturbation, respectively. The remaining symbols are
defined in Sections III-C and III-D.

the feet, and the time duration of the single- (T s) and double-
support (T d) phases. A typical case is depicted in Fig. 1
(T s = 0.7 s, T d = 0.1 s), where the circles represent what
the profile of the ZMP would be if all the controls U∗ are
applied1 in the case without perturbation. Let us denote with
cj
k the jth constraint of equation (5), with j = 1, 2, . . . , pk.

Then mi =
∑N

k=1 pk. For the preview window in Fig. 1,
mi = 67 x 4+8 x 6 = 316, where each single-support phase
is defined by four constraints and each double-support, by
six. Furthermore, it can be observed that in the case without
perturbation the number of active constraints (constraints that
hold as equalities) is ma = 5 (indicated by arrows). In the
case with perturbation (depicted with triangles) ma = 12.

B. Choice of optimization algorithm

The choice of an optimization algorithm that can effi-
ciently solve a sequence of quadratic programs as the one
outlined in the previous subsection, is not unique. Fast
and reliable solvers based on interior point and active set
strategies, are available. There has been a great deal of
research related to the application of both approaches in the
context of MPC [10], [11], [13], [14]. In general, the choice
depends mostly on: (i) the number of active constraints and
state variables; (ii) whether a “hot start” is available; (iii)
whether there is a cheap way to determine an initial feasible
point. Points (i) and (ii) are essential for choosing between
interior point and active set QP solvers. The reason is that,
on problems where the number of active constraints remains
small, active set solvers can identify them quickly with little
computational effort. While in the case of interior point
methods, one pays a “fixed price” regardless of the number of
active constraint. Furthermore, active set methods typically
gain more from “hot starting” (for reasons that are not yet
fully understood [10]). That is why they are best suited for
our problem.

Point (iii) influences the choice between alternative active
set strategies. A primal solver for instance, requires starting

1Note that, only the first control input is used by the MPC scheme.

Fig. 2. Sliding active constraints.

with a feasible point (satisfying equation (10)). This could
be considered as a drawback, since determining such a point
can be costly. For the current application, however, a feasible
starting point can be calculated in a straightforward and very
efficient way (to be derived in Section III-D), hence rendering
the utilization of both primal and dual solvers possible.

C. Guess for the active constraints

Finding the solution of a QP problem as the one defined in
(12) and (10) in the case when the set of active constraints at
optimality (Ac(U∗)) is known, is equivalent to solving (12)
with equality constraints:

ĒiU + ēi = 0, i ∈ Ac(U∗) (13)

which amounts to solving a linear system of equations that
has a unique solution [12].

In general, prior knowledge of Ac(U∗) is not available,
and its identification is the main challenge facing active
set schemes. The algorithm takes an iterative approach, and
generates a sequence of feasible iterates. At each of them
a certain subset of the constraints (10) is assumed to be
active (referred to as the working set W), and an equality
constrained QP is solved (for a detailed description of an
active set strategy see [12], p. 462).

The smaller the number of active constraints that need
to be identified, the faster the algorithm will converge to
the optimal solution U∗. A standard “cold” (i.e., no prior
information) start, assumes an empty initial working set
(W 0). If, however, all (or a subset of the) active constraints
at U∗ are known in advance, they can be included directly
in W 0 (if their gradients are linearly independent), leading
to faster algorithm convergence.

It is possible to form a reliable guess for Ac(U∗) as a
result of assumption a4, and due to the distinct characteris-

tics of the current problem. The following three observations
play an important role:

o1) If cj
k is an active constraint for preview window

i then (with few exceptions) cj
k−1 is an active

constraint for preview window i + 1;
o2) with no perturbations, the active constraints

appear during the change of the support foot;
o3) when a new set of single-support constraints

becomes visible in the preview window, at least
two new constraints become active.

Observation o1 implies that the active constraints are “slid-
ing” with a step pk. This behavior is depicted in Fig. 2.
The x-axis represents 300 preview iterations for a typical
set of footprints, and the y-axis denotes the indexes of
the resultant active constraints. It can be observed that the
evolution pattern of the active constraints is very consistent,
hence, predictable.

At iteration 132 the system is perturbed, and an increased
number of active constraints can be observed until iteration
142. However, even in this case (except for the iteration
when the perturbation occurred) the “sliding” behavior is
preserved. The interpretation of the increased number of
active constraints is depicted with triangles in Fig. 1, where
the ZMP (resulting from the application of all controls in
U∗) reaches the boundary of the admissible set.

As numerical example for the utilization of the “sliding”
behavior, we will consider the case with no perturbations
in Fig. 1, where the set of active constraints for the current
preview window is: A132

c = [100, 126, 266, 295, 296]. The
guess for the active set of the next iteration can be formed
as: G = [96, 122, 262, 291, 292], which coincides with the
real set (A133

c).
From a practical point of view, for a “reasonable” set of

predefined foot placements, and in a case with no perturba-
tions, it seems natural to distinguish between two type of
foot constraints: regular and irregular. The first type (L4,
R2 and L8 in Fig. 1) are easy to handle. In the case of
observation o3, the last two regular constraints in the preview
window will be always active. Once activated, observation
o1 is valid until the regular constraint is dropped from the
preview window. The behavior of irregular constraints on the
other hand (L1, R3, R1 and L7 in Fig. 1) is more difficult to
predict. It depends on the choice of α and β in (11), hence,
an efficient guessing scheme needs to be “tuned” for any
new set of gains.

Guessing the additional active constraints Adist
c for the

first QP after a disturbance cannot be achieved based on
the above observations. Adist

c depends on the direction and
magnitude of the disturbance, which in general should be
assumed unknown. In such a case, we can set a maximum
time for solving a QP, and try to identify the solution within
the time limits. If the number of constraints in Adist

c is large,
identifying them and finding U∗ within a given time might
not be possible. In such case, we can “stop” at a suboptimal
solution with an estimated set of active constraints Adist

c−est.
During the next QP, the standard guess G in combination

with Adist
c−est can be included in W 0, and so forth, until

optimality is reached [15].

D. Feasible initial point

Once a reliable guess for the active constraints has been
formed, generating a corresponding feasible initial point U0

is straightforward. From equations (7) and (8), U0 can
be expressed as a function of the current state and a still
unknown vector of feasible zero moment points for the next
preview window Zf :

U0 = P̄
−1
u P̄ s

[
x̂k

ŷk

]
+ P̄

−1
u Zf (14)

where,

P̄ u =
[

P u 0
0 P u

]
; P̄ s =

[
P s 0
0 P s

]

The matrix P̄ u ∈ R2N×2N is of full rank, and its
inverse can be precomputed off-line together with the product
P̄

−1
u P̄ s, as will be discussed in the next subsection.
First, let us consider the case with zero active constraints.

Forming a feasible Zf with respect to the known constraints
for the next preview window, amounts to choosing a point
(for instance) in the middle of each constraint. This guaran-
tees that equation (14) will lead to a feasible U0.

In case of a nonempty guess G, its elements should
be a subset of the active constraints at U0. Forming such
U0 can be easily achieved by choosing each entry in Zf

that correspond to an active constraint in G on the same
constraint. Example are depicted with stars in Fig. 1.

E. Variable sampling time

With the constant sequence of sampling times {Tk}
adopted in Section III-A, the Hessian matrix H of the QP is
constant for the entire motion of the system. This is advanta-
geous from the viewpoint of computational efficiency, since
H can be formed and pre-factorized off-line. Furthermore,
for each preview window, computational savings can be
gained when forming the gradient g and constraints in (10),
since some of the multiplications appearing inside contain
the constant matrices P s and P u, hence can be precomputed
off-line as well.

Using constant sampling time for the entire preview win-
dow, however, can impose limitations. Two of them will be
discussed below:

1) Fast sampling: In many cases, due to the characteris-
tics of the system, smaller sampling times could be required
by the control module in order to obtain a desired behavior.
In the presence of perturbations is could be desirable to
estimate the state of the system and update the control
inputs with high frequency. If the required frequency of
computation is 5 ms for example, discretization of the
preview window with constant Tk = 5 ms, would result in
600 state variables (T p = 1.5 s), hence leading to a QP
problem not suitable for on-line implementation. Instead, we
can use constant Tk = 20 ms and additionally divide only the
first interval into four sub-intervals of length 5 ms. Hence,

• at time t = 0 ms we obtain the current state of the robot
S0, and solve the following QP:

min
U

1
2
UT HU + UT g(S0) (15a)

Ē(S0)U + ē(S0) ≥ 0 (15b)

• after applying U∗
0, we obtain the new state S1 at time

t = 5 ms and solve (with additional equality constraint):

min
U

1
2
UT HU + UT g(S̃0) (16a)

Ē(S̃0)U + ē(S̃0) ≥ 0 (16b)

U0 = U∗
0 (16c)

where, S̃0 = f(S1,−U∗
0,η) is the estimated state at

time t = 0 ms, starting from S1 and using −U∗
0, and

considering noise η (if η = 0, S̃0 = S0).
• next apply the optimal inputs U∗

0 and U∗
1 to reach the

new state 5 ms later, and so forth until t = 20 ms. Then
clear the additional equality constraints, and repeat the
above steps for the next time interval of 20 ms.

The above formulation solves essentially the same problem
four times, if η = 0. The reasoning comes from the fact
that if at any of the 5 ms sampling intervals there is a
perturbation, the system will be able to react promptly to it.
This is in contrast with the case when T1 = 20 ms is used,
where in the worst scenario, the system will react with a
20 ms delay. The auxiliary equality constraints in the above
formulation, prevent us from dropping the already passed
5 ms sampling intervals, hence keeping the Hessian matrix
and N constant.

2) Reduced number of states: Based on observation o2
in Section III-C, it is desirable to chose the sequence {Tk}
in such a way, that the times of support foot change are
not “skipped”. However, with “reasonably long” constant
sampling intervals this would be possible only if additional
restrictions are imposed on the time duration of the single-
and double-support phases.

Inspired by observation o2, we can overcome the above
limitation and reduce the state variables of the QP by
designing a variable sampling time sequence by following
the three criteria below:

c1) The variation of {Tk} is finite, and follows a
predefined circular pattern;

c2) the times of support foot change are not
skipped;

c3) T p, T s, T d and N are kept constant;
Criterion c1 limits the number of different sequences {Tk}

that can be used. This results in a finite number of Hessian
matrices, that can be formed and pre-factorized off-line. For
T p = 1.5 s (T s = 0.7 s, T d = 0.1 s) and a set of sam-
pling intervals {20, 40, 60} ms, a circular pattern for {Tk}
can be obtained using 40 sequences, with each sequence
containing 32 sampling times. Hence, resulting in 64 state
variables. Fig. 3 depicts a comparison of QP computation
time between the cases when constant and variable sampling
times are used. The simulation is implemented in C++ and

Fig. 3. QP computation time for the cases with constant (150 states, red
line) and variable sampling times (64 states, blue line).

performed on a PC with Intel Core 2 Duo Processor, 2GHz.
Optimization flag −O2 is used. The simulation conditions
are identical to the ones used to generate Fig. 2 in the case
without disturbance with gains α = 10, β = 2. The dual QP
solver QL [8] was utilized.

IV. EFFICIENCY OF THE “HOT START”

In order to demonstrate the computational savings as a
result of the discussion in Section III-C, we implemented
a standard primal active set algorithm and compared cases
with and without “hot start”. The comparison is made on the
number of active set changes necessary for the algorithm to
converge to the optimal solution. Fig. 4 depicts the results
of a simulation with conditions identical to the one in the
previous section.

The case when a guess is supplied to the solver is
depicted with a blue line. With a perfect guess no active set
changes are made. As can be seen, for most of the preview
windows, the guessing scheme is able to identify all the
active constraints at optimality. In less than 5% of the cases,
a single wrong guess is made, which results in one active set
change. It was confirmed that the inacuracy of the guess was
due to irregular constraints (see Section III-C). When a guess
is not supplied, the number of active set changes coincide
with the number of active constraints at U∗ (red and black
line). Note however, that in general, for the identification of
na active constraints a primal algorithm might need more
than na active set changes [12].

V. CONCLUSION

In this paper, we presented the results from the analysis of
the application of linear model predictive control for walking
pattern generation for humanoid robots. The focus was on
creating an efficient framework for forming and solving the
underlying quadratic programming problem. For that purpose
we presented a way to make a reliable guess for the active
constraints at optimality, based on the observation that the
active constraints “slide” with the change of the preview
window. It was noted that the “sliding” behavior is retained
even after the system state is perturbed. Furthermore, we
demonstrated a fast way of generating an initial feasible

Fig. 4. Number of active set changes to convergence of the QP solver with
and without guess, and number of active constraints.

point with respect to the set of constraints for each preview
interval, which makes possible the utilization of any active
set solver. Finally, a discussion of the application of a
variable sampling time was made. It was shown that the
utilization of variable sampling time can greatly reduce the
size of the optimization problem, and can be useful when
update of the control inputs is required with high frequency.

REFERENCES

[1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takaneka, “The development
of Honda humanoid robot,” in Proc. of the IEEE Int. Conf. on Robot.
& Automat., pp. 1321-1326, 1998.

[2] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi and
K. Tanie, “Planning walking patterns for a biped robot,” IEEE Trans.
on Robotics and Automation, Vol.17, No.3, June, pp.280-289, 2001.

[3] J. Park, and H. Cho, “An on-line trajectory modifier for the base link
of biped robots to enhance locomotion stability,” in Proc. of the IEEE
Int. Conf. on Robot. & Automat., pp.3353-3358, 2000.

[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proc. of the IEEE Int. Conf. on
Robot. & Automat., pp.1620-1626, 2003.

[5] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and
H. Hirukawa, “A realtime pattern generator for biped walking,” in
Proc. of the IEEE Int. Conf. on Robot. & Automat., pp.31-37, 2002.

[6] K. Nishiwaki, and S. Kagami, “High frequency walking pattern
generation based on preview control of ZMP,” in Proc. of the IEEE
Int. Conf. on Robot. & Automat., pp.2667-2672, 2006.

[7] P.-B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in Proc. of IEEE-RAS
Int. Conf. on Humanoid Robots, pp.137-142, 2006.

[8] K. Schittkowski, “QL: A Fortran code for convex quadratic pro-
gramming - User’s guide,” Department of Mathematics, University
of Bayreuth, Report, Version 2.11, 2005.

[9] G. C. Goodwin, M. M. Seron, and J. A. De Doná, “Constrained control
and estimation,” Springer, 1st edition, September, 2004.

[10] S. Wright, “Applying new optimization algorithms to model predictive
control,” in Proc. of CPC-V, 1996.

[11] R. A. Bartlett, A. Wächter, and L. T. Biegler, “Active set vs. interior
point strategies for model predictive control,” in Proc. of the American
Control Conference, pp.4229-4233, June, 2000.

[12] J. Nocedal, and S. J. Wright, “Numerical optimization,” Springer
Series in Operations Research, 2nd edition, 2000.

[13] C. Rao, J. B. Rawlings, and S. Wright, “Application of interior point
methods to model predictive control,” J. Opt. Theo. Applics., pp. 723-
757, 1998.

[14] I. Das, “An active set quadratic programming algorithm for real-time
predictive control,” Optimization Methods and Software, Vol.21, No.5,
pp.833-849, 2006.

[15] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MPC,” Int. J. of Robust and
Nonlinear Control, (in press).

