
HAL Id: inria-00390593
https://hal.inria.fr/inria-00390593

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimized Linear Model Predictive Control Solver
for Online Walking Motion Generation

Dimitar Dimitrov, Pierre-Brice Wieber, Olivier Stasse, Joachim Ferreau,
Holger Diedam

To cite this version:
Dimitar Dimitrov, Pierre-Brice Wieber, Olivier Stasse, Joachim Ferreau, Holger Diedam. An Opti-
mized Linear Model Predictive Control Solver for Online Walking Motion Generation. ICRA 2009 -
IEEE International Conference on Robotics & Automation, May 2009, Kobe, Japan. pp.1171-1176,
�10.1109/ROBOT.2009.5152380�. �inria-00390593�

https://hal.inria.fr/inria-00390593
https://hal.archives-ouvertes.fr

An Optimized Linear Model Predictive Control Solver

for Online Walking Motion Generation

Dimitar Dimitrov, Pierre-Brice Wieber, Olivier Stasse, Hans Joachim Ferreau, Holger Diedam

Abstract— This article addresses the fast solution of a
Quadratic Program underlying a Linear Model Predictive
Control scheme that generates walking motions. We introduce
an algorithm which is tailored to the particular requirements of
this problem, and therefore able to solve it efficiently. Different
aspects of the algorithm are examined, its computational
complexity is presented, and a numerical comparison with an
existing state of the art solver is made. The approach presented
here, extends to other general problems in a straightforward
way.

I. INTRODUCTION

The difficulty in generating stable walking motions is

mostly due to the fact that moving one’s Center of Mass

(CoM) entirely relies on the unilateral contact forces between

the feet and the ground [1]. In the presence of disturbances,

this restriction severely limits the capacity of the system

to follow predefined motions. It is necessary therefore to

generate walking motions which are always adapted online

to the current state of the system.

This issue is addressed in [2] through a Zero Moment

Point (ZMP) Preview Control scheme that generates dynam-

ically stable motions for a humanoid robot by approximating

its nonlinear dynamics with the linear dynamics of a point

mass. The walking motion generation problem is formulated

then as a typical infinite horizon Linear Quadratic Regulator

(LQR). This approach explicitly accounts for the system state

and leads to fast computations.

One disadvantage of this scheme is that it does not

explicitly account for the constraints on the ZMP, which must

always lie in the support polygon: in case of disturbances,

the system’s response can overshoot the boundaries of this

polygon. This limitation is addressed in [3], where instead of

solving an infinite horizon LQR, the utilization of a receding

horizon LQR with constraints is proposed, in other words,

a Linear Model Predictive Control scheme (LMPC). In [4]

the authors develop the idea further by using an augmented

state vector that addresses the problem of feet repositioning

in the presence of strong disturbances.

The guarantee given by this LMPC scheme of keeping the

system’s response within a given set of constraints comes at

a price of increased computation demands. At each control

Dimitar Dimitrov is with Örebro University - Sweden,
mitko@roboresearch.net

Pierre-Brice Wieber is with INRIA Grenoble - France,
pierre-brice.wieber@inria.fr

Olivier Stasse is with JRL - Japan, olivier.stasse@aist.go.jp
Hans Joachim Ferreau is with KU Leuven - Belgium,

joachim.ferreau@esat.kuleuven.be

Holger Diedam is with Heidelberg University - Germany,
hdiedam@ix.urz.uni-heidelberg.de

step, the application of this LMPC scheme amounts to

forming and solving a Quadratic Program (QP) [5].

A more efficient formulation of this LMPC scheme was

proposed in [6]. The authors proposed the utilization of

a variable sampling time scheme, in combination with a

method for developing a reliable guess for the active con-

straints at the solution by introducing the notion of “sliding

constraints”. It is shown that such a guess can drastically

reduce the computational burden for each iteration.

In practice, the solution of the underlying QP is left to

state of the art QP solvers [7]. Even though such solvers

implement very efficient algorithms, in most cases they do

not make use of the properties of each particular problem,

which could sometimes speed up computations a lot.

In this article, we introduce an optimized algorithm for

the fast solution of a particular QP in the context of LMPC

for online walking motion generation. It can be classified as

a primal active set method with range space linear algebra.

We motivate our choice by analyzing the requirements of our

problem. Different aspects of the algorithm are examined,

and its computational complexity is presented. We compare

then the run-time of our algorithm with a state of the art

solver.

The article is organized as follows: in Section II we briefly

outline the LMPC scheme presented in [3]. In Section III

we discuss alternative methods for the solution of a QP, and

analyze how do their properties reflect on our problem. In

Section IV we present our algorithm and discuss its features,

state its complexity and compare it with the algorithm in [8].

Finally, in Section V we present a numerical comparison with

QL [7].

II. AN LMPC SCHEME GENERATING WALKING MOTIONS

The Model Predictive Control (MPC) scheme introduced

in [2], [3] for generating walking motions works primarily

with the motion of the CoM of the walking robot. In order to

obtain an LMPC scheme, it is assumed that the robot walks

on a constant horizontal plane, and that the motion of its

CoM is also constrained to a horizontal plane at a distance

h above the ground, so that its position in space can be

defined using only two variables (x, y).
Only trajectories of the CoM with piecewise constant

jerks
...
x and

...
y over time intervals of constant length T are

considered. That way, focusing on the state of the system at

the instants tk = kT ,

x̂k =

x(tk)
ẋ(tk)
ẍ(tk)

 , ŷk =

y(tk)
ẏ(tk)
ÿ(tk)

 , (1)

the integration of the constant jerks over the time intervals

of length T gives rise to a simple recursive relationship:

x̂k+1 = A x̂k + B
...
x(tk), (2)

ŷk+1 = A ŷk + B
...
y (tk), (3)

with a constant matrix A and vector B.

Then, the position (zx, zy) of the ZMP on the ground

corresponding to the motion of the CoM of the robot is

approximated by considering only a point mass fixed at the

position of the CoM instead of the whole articulated robot:

zx
k =

(

1 0 −h/g
)

x̂k, (4)

zy
k =

(

1 0 −h/g
)

ŷk, (5)

with h the constant height of the CoM above the ground and

g the norm of the gravity force.

Using the dynamics (2) recursively, we can derive a

relationship between the jerk of the CoM and the position

of the ZMP over time intervals of length NT :

Zx
k+1 = Pzs x̂k + Pzu

...
Xk, (6)

Zy
k+1 = Pzs ŷk + Pzu

...
Y k, (7)

with constant matrices Pzs ∈ R
N×3 and Pzu ∈ R

N×N , with

Zx
k+1 =

zx
k+1
...

zx
k+N

,

...
Xk =

...
xk

...
...
xk+N−1

, (8)

and similar definitions for Zy
k+1 and

...
Y k.

In order for a motion of the CoM to be feasible, we need

to ensure that the corresponding position of the ZMP always

stays within the convex hull of the contact points of the

feet of the robot on the ground [1]. This constraint can be

expressed at the instants tk for a whole time interval of length

NT as:

bl
k+1 ≤ Dk+1

(

Zx
k+1

Zy
k+1

)

≤ bu
k+1, (9)

with a Dk+1 ∈ R
m×2N a matrix varying with time but

extremely sparse and well structured, with only 2m non zero

values on 2 diagonals.

The LMPC scheme involves then a quadratic cost which

is minimized in order to generate a “stable” motion [3], [6],

leading to a canonical Quadratic Program (QP)

min
u

1

2
uT Qu + pT

k u (10)

with

u =

(...
Xk...
Y k

)

, (11)

Q =

(

Q′ 0
0 Q′

)

(12)

where Q′ is a positive definite constant matrix, and

pT
k =

(

x̂T
k ŷT

k

)

(

Psu 0
0 Psu

)

(13)

where Psu is also a constant matrix (see [4] for more details).

With the help of the relationships (6) and (7), the con-

straints (9) on the position of the ZMP can also be repre-

sented as constraints on the jerk u of the CoM:

b′lk+1 ≤ Dk+1

(

Pzu 0
0 Pzu

)

u ≤ b′uk+1. (14)

Since the matrix Q is positive definite and the set of linear

constraints (14) forms a (polyhedral) convex set, there exists

a unique global minimizer u∗ [9].

The number of variables in the minimization problem (10)

is equal to n = 2N and the number of constraints (14) is of

the same order, m ≈ 2N . Typical uses of this LMPC scheme

consider N = 75 and T = 20ms , for computations made on

a time interval NT = 1.5 s, approximately the time required

to make 2 walking steps [6]. This leads to a QP which is

typically considered as small or medium sized.

Another important measure to take into account about

this QP is the number ma of active constraints at the

minimum u∗, the number of inequalities in (14) which hold

as equalities. We have observed that at steady state, this

number is usually very low, ma ≤ m/10, and even in the

case of strong disturbances, we can observe that it remains

low, with usually ma ≤ m/2 [6].

III. GENERAL DESIGN CHOICES FOR A QP SOLVER

A. Interior point or active set method

The choice of an algorithm that can solve efficiently a

QP with the above characteristics is not unique. Fast and

reliable solvers based on interior point or active set methods

are generally available and there has been a great deal of

research related to the application of both approaches in the

context of MPC [5], [10], [11], [12].

Finding the solution of a QP in the case when the set of

active constraints at u∗ is known, amounts to solving a linear

system of equations that has a unique solution [9]. Active

set methods are iterative processes that exploit the above

property and try to guess at each iteration which are the

active constraints at the minimum u∗. They usually consider

active constraints one at a time, inducing a computation time

directly related to the number of active constraints. On the

contrary, the computation time of interior point methods

is relatively constant, regardless of the number of active

constraints. However, this constant computation time can be

large enough to compare unfavorably with active set methods

in cases such as the one here, a small QP with relatively few

active constraints.

The question of “warm-starting” the solvers is the final

important feature to consider. Indeed, what we have to

solve is not a unique QP but a series of QPs at each time

tk which appear to be sequentially related. It is possible

then to use information about the solution computed at

time tk to accelerate the computation of the solution at

time tk+1 [6]. Active set methods typically gain more from

“warm-starting” [5]. All these reasons lead to the conclusion

that an active set method should be preferable in our case.

B. Primal or dual strategy

There exist mainly two classes of active set methods,

primal and dual strategies. Primal strategies ensure that

all the constraints (14) are satisfied at every iteration. An

important implication for us of this feature is that if there

is a limit on computation time, for example because of the

sampling period of the control law, the iterative process can

be interrupted and still produce at any moment a feasible

motion, satisfying all the constraints on the ZMP.

Obviously, this comes at the cost of producing a sub-

optimal solution. A theoretical analysis [13] of our LMPC

scheme shows however, that the choice of a specific quadratic

cost is of secondary importance as long as some broad

properties are satisfied. This indicates that, some small

amount of sub-optimality should be acceptable. Some care

must be taken though because stability of the resulting

walking motion directly derives from this minimization, so

sub-optimality should remain a “second choice”, when we

really don’t have time for a better solution.

Combined with a “warm-start” of the solver when solving

a series of sequentially related QPs, as discussed in the

previous subsection, this interruption of the iterative process

gives rise to some sort of “lazy” or delayed optimizing

scheme, improving optimality from QP to QP similarly to

what is described in [14].

One limitation of primal strategies is that, they require an

initial value for the variables u which already satisfy all the

constraints. For a general QP, computing such an initial value

can take as much time as solving the QP afterwards, which

is a strong deterrent. This is why, dual methods are usually

preferred: they satisfy all the constraints (14) only at the last

iteration, but they don’t require such an initial value.

In our case however, an initial value for u satisfying all the

constraints (14) can be computed easily and efficiently. First

of all, a position of the ZMP satisfying the constraints (9)

can be obtained easily, considering for example the point

(Zx
m, Zy

m) in the middle of the convex hull of the contact

points. Then, observing that the matrix Pzu that appears in

the relationships (6) and (7) is invertible, it is straightforward

to invert these relationships and obtain a feasible initial value

u0 =

(

P−1
zu

0
0 P−1

zu

)(

Zx
m − Pzs x̂k

Zy
m − Pzs ŷk

)

. (15)

Alternatives strategies exist, such as the primal-dual one

introduced in [14], however the decisive property that a

primal method can be interrupted at all time and still produce

a feasible solution will direct our choice here.

C. Null space or range space algebra

There exist mainly two ways of making computations with

the linear constraints (14), either considering the null space

of the matrix Dk+1Pzu , orthogonal to the constraints, or the

range space of this matrix, parallel to the constraints. The

first choice leads to working with matrices of size (n−ma)×
(n − ma), while the second choice leads to working with

matrices of size ma ×ma. The most efficient of those two

options from the point of view of computation time will

depend therefore on whether ma < n/2 or not. Considering

that this is always true in our case, the choice of a range space

linear algebra is obvious. One must take care however that,

range space algebras can behave poorly with ill-conditioned

matrices. Fortunately, this is not the case for our LMPC.

IV. AN OPTIMIZED QP SOLVER

A. Off-line change of variable

The first action of a range space active set method is

usually to make a Cholesky decomposition of the matrix

Q = LQLT
Q and make an internal change of variable

v = LT
Qu. (16)

That way, the Quadratic Problem (10) simplifies to a Least

Distance Problem (LDP) [15]

min
v

1

2
‖v + L−T

Q pk‖
2.

In our case, we need to solve online a sequence of QPs (10)-

(14) where the matrices Q′, Pzu and Psu are constants. We

can therefore make this change of variable completely off-

line and save a lot of online computation time by directly

solving online the LDP:

min
v

1

2
‖v + p′k‖

2 (17)

with

p′Tk =
(

x̂T
k ŷT

k

)

(

PsuL−T
Q 0

0 PsuL−T
Q

)

(18)

and constraints

b′lk+1 ≤ Dk+1

(

PzuL−T
Q 0

0 PzuL−T
Q

)

v ≤ b′uk+1. (19)

Considering the complexity counts presented in [8], real-

izing this change of variable off-line allows saving n2 flops

at each iteration of our algorithm. Note that, we measure

computational complexity in number of floating-point oper-

ations, flops. We define a flop as one multiplication/division

together with an addition. Hence, a dot product aT b of two

vectors a, b ∈ R
n requires n flops.

B. The iterative process

As mentioned earlier, active set methods are iterative

processes that try to guess at each iteration which are the

active constraints, the inequalities in (19) which hold as

equalities at the minimum v∗. Indeed, once we identify these

equalities, noted

Ev = b,

the minimum of our LDP is [9],

v∗ = −p′k + ET λ (20)

with Lagrange multipliers λ solution of

EET λ = b + Ep′k. (21)

In the case of a primal strategy, the iterations consist

in solving these equations with a guess of what the active

set should be, and if the corresponding solution happens to

violate one constraint, include it in our guess and try again.

Once the solution does not violate any other constraint, there

remains to check that all the constraints we have included in

our guess should really hold as equalities, what is done by

checking the sign of the Lagrange multipliers. A whole new

series of iterations begins then which alternate removing or

adding constraints to our guess. All necessary details can be

found in [15].

We have observed however that, not checking the sign of

the Lagrange multipliers and not considering removing con-

straints from our guess does not affect the result we obtain

from our LMPC scheme in a noticeable way. As we will see

in the next Section, our final guess for the active set when

doing so is in most cases correct or includes only one, and

in rare cases two unnecessarily activated constraints. This

leads to slightly sub-optimal solutions, which nevertheless

are feasible. Furthermore, we have observed that, this does

not affect the stability of our scheme: the difference in the

generated walking motions is negligible.

C. Efficient update methods

At each iteration, we need to solve the equations (20)

and (21) with a new guess of active set, but the only thing

that changes from one iteration to the next is that we add one

new constraint to our guess and therefore one new line to the

matrix E. Thanks to this structure, there exist efficient ways

to compute the solution of (20) and (21) at each iteration

by updating the solution obtained at the previous iteration

without requiring computing the whole solution from scratch.

Probably the most efficient way to do so in the general

case is the method described in [8]. There, a Gram-Schmidt

decomposition of the matrix E is updated at each iteration at

a cost of 2nma flops. This Gram-Schmidt decomposition is

used then in an clever way, allowing to update the solution

of (20) and (21) at a negligible cost. In this way, the only

computational cost of an iteration when solving an LDP is

the 2nma flops of the Gram-Schmidt update.

In our specific case, we can propose a slightly better

option, based on a Cholesky decomposition of the matrix

EET = LELT
E . When we add a new row e to the matrix E,

we need the decomposition of the new matrix

(

E
e

)

(

ET eT
)

=

(

EET EeT

eET eeT

)

. (22)

We need first of all to update this matrix with the dot products

EeT and eeT . Since the rows of the matrix E and the vector

e are taken from the constraints (19), these dot products can

be obtained at a negligible cost from the dot products of rows

of the matrix PzuL−T
Q which is constant and computed off-

line, under the action of the varying but extremely sparse

and well structured matrix Dk+1. The matrix (22) can be

updated then at a negligible cost, and from there, classical

methods for updating its Cholesky decomposition typically

require only m2
a/2 flops.

With the help of this Cholesky decomposition, the equa-

tion (21) can be solved in three very efficient steps:

w1 = b + Ep′k, (23a)

LEw2 = w1, (23b)

LT
Eλ = w2. (23c)

Since the matrix E only gains one new row at each iteration,

updating the value of w1 requires only one dot product to

compute its last element. Since only the last element of w1

changes and only one new line is added to LE , only the last

element of w2 needs to be computed to update its value, at

the cost of a dot product. Only the third step requires more

serious computations: since the matrix LE is lower triangular

of size ma, solving this system requires m2
a/2 flops.

Once the equation (21) is solved and we have the Lagrange

multipliers λ, the computation of the optimum v∗ with

equation (20) only requires a nma matrix-vector product. In

total, we need nma +m2
a flops, which is slightly better than

the 2nma found in [8], what’s possible in our case thanks

to the pre-computation of the dot products in (22).

D. Maintaining feasible iterates

We still need to produce a feasible point at each iteration

since we can observe that the solution v∗ of equations (20)

and (21) satisfies all the constraints (19) only at the last

iteration. We also need to choose which constraint is included

in our guess at each iteration. These two questions are related

and form the last building block or our algorithm, which is

a very classical procedure [9].

The feasible solution v(i) at each iteration i will be a point

between the feasible solution of the previous iteration v(i−1)

and the solution v∗ of equations (20) and (21). This point will

correspond to the first constraint which is hit when moving

from v(i−1) to v∗. And it is this constraint which will be

added to our guess for the active set. In that way, if we

begin with a feasible point v(0) and an empty guess for the

active set, we obtain a series of points v(i) which always lie

exactly on the constraints included in the guess of active set.

And since we always include the first constraint which is hit,

we ensure that all the constraints (19) are always satisfied

by this series of points at all time. More precisely, with

v(i) = v(i−1) + αd, (24)

d = v∗ − v(i−1), (25)

considering separately each constraint j of (19),

b′lj ≤ ejv
(i) ≤ b′uj ,

the scalar α corresponding to the first constraint hit is

α = min
j

b′uj − ejv
(i−1)

ejd
when ejd > 0

b′lj − ejv
(i−1)

ejd
when ejd < 0

. (26)

If a step α = 1 can be realized without violating any

constraint, it means we have reached the last iteration of our

algorithm: the optimum computed with our guess of active

set satisfies all the constraints.

Obviously, from equation (24),

ejv
(i) = ejv

(i−1) + αejd,

so computing the value of ejd is enough to update at no cost

the value of ejv
(i) for the next iteration. Since these values

need only be computed for the m − ma constraints which

haven’t been included yet in our guess of active set, the cost

of computing the step α is n(m−ma) flops.

Algorithm 1: Primal Least Distance Problem solver

input : LDP, initial active set guess W (0) and corre-

sponding v(0)

output: v∗ and W ∗, approximate solution to the LDP

Complexity: nm + m2
a;

(0) Set k ← 0;

(1) Compute the direction d(k) from (20) and (25)

after following the procedure in (23);

(2) Compute the step α(k) with (26);

(3) Check the exit condition.

if α(k) > 1 then

set α(k) ← 1;

else

determine the index j /∈W (k) of the blocking

constraint corresponding to α(k);
end

(4) Make a step using (24).

if α(k) = 1 then

set v∗ ← v(k+1), W ∗ ←W (k) and stop!

else

set W (k+1) ← [W (k) j];
set k ← k + 1 and continue with step (1);

end

E. The warm start

Summing up the previous computations, each iteration

of our algorithm requires nm + m2
a flops. However, since

constraints are added one at a time in our iterative guess

of the active set, summing up all the iterations with ma

increasing by one each time leads finally to nmma + m3
a/3

flops, which is remarkably more. Fortunately, the active set of

the QP solved for our LMPC scheme at time tk will closely

resemble the one of the QP that needs to be solved at time

tk+1. There lies a possibility to warm-start our solver: start

with a first guess for the active set which is in fact the active

set identified for the solution of the previous QP.

When a nonempty initial active set is specified, the ini-

tial point v(0) needs to lie on the constraints in this set.

Fortunately, the last iteration computed for the previous

QP satisfies this condition, and can be used therefore for

warm starting our algorithm. The only necessary computation

required for realizing this warm start is the Cholesky decom-

position of the initial matrix E which is not empty anymore

(but which can be obtained or updated from the previous

QP) and the corresponding initial values of w1 and w2. This

requires at most m3
a/3 flops, a tremendous improvement over

the nmma + m3
a/3 flops that would have been necessary to

reach the same active set through the whole set of iterations.

An important detail now is that we decided in Section IV-B

to never check the sign of the Lagrange multipliers, which

indicate whether all the constraints included in our guess

for the active set should really be there. Passing on an

inadequate guess from one QP to the next, always including

new constraints each time and never removing any, could

lead to a serious degradation of the quality of our solutions,

and it is what we have observed. Correcting this problem is

easy though, we check the sign of the Lagrange multipliers

before warm starting and do not include the constraints which

fail this test in our first guess. This proved to work perfectly,

at no cost.

V. NUMERICAL RESULTS

Before implementing the algorithm described in this pub-

lication, the computation of our LMPC scheme relied on

QL [7], a state of the art QP solver implementing a dual

active set method with range space linear algebra. The fact

that it implements a dual strategy implies that it can not be

interrupted before reaching its last iteration since intermedi-

ary iterates are not feasible. Furthermore, no possibilities of

warm starting are offered to the user. However, since it relies

on a range space algebra, comparisons of computation time

with our algorithm without warm starting are meaningful.

We naturally expect to gain n2 flops at each iteration

thanks to the off-line change of variable. Furthermore, QL

does not implement double sided inequality constraints like

the ones we have in (19), so we need to double artificially

the number m of inequality constraints. Since computing the

step α requires nm flops at each iteration and m ≈ n in

our case, that’s a second n2 flops which we save with our

algorithm. The mean computation time when using QL is

7.86 ms on the CPU of our robot, 2.81 ms when using our

Primal Least Distance Problem (PLDP) solver. Detailed time

measurements can be found in Fig. 1.

Even more interesting is the comparison with our warm

start scheme combined with a limitation to two iterations for

solving each QP. As discussed in section III-B, this generates

short periods of sub-optimality of the solutions, but with no

noticeable effect on the walking motions obtained in the end:

this scheme works perfectly well, with a mean computation

time of only 0.74 ms and, most of all, a maximum time less

than 2 ms!

A better understanding of how these three options relate

can be obtained from Fig. 2, which shows the number of

constraints activated by QL for each QP, which is the exact

number of active constraints. This figure shows then the

difference between this exact number and the approximate

number found by PLDP, due to the fact that we decided

to never check the sign of the Lagrange multipliers. Most

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 2 4 6 8 10 12

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Time (s)

Computation time for QL, PLDP, with Warm Start (WS), with Limited Time (LT) on HRP-2

QL
PLDP

PLDP WS-LT

Fig. 1. Computation time required by a state of the art generic QP solver
(QL), our optimized solver (PLDP), and our optimized solver with warm
start and limitation of the computation time, over 10 seconds of experiments.

-10

-5

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

A
c
ti
v
a

te
d

 C
o

n
s
tr

a
in

ts

Time (s)

Number of activated constraints QL, PLDP, with Warm Start (WS), with Limited Time (LT)

QL
PLDP

PLDP WS-LT

Fig. 2. Number of active constraints detected by a state of the art solver
(QL), difference with the number of active constraints approximated by our
algorithm (PLDP), between 0 and 2, and difference with the approximation
by our algorithm with warm start and limitation of the computation time,
between -9 and 2.

often, the two algorithms match or PLDP activates only one

constraint in excess. The difference is therefore very small.

This difference naturally grows when implementing a

maximum of two iterations for solving each QP in our warm

starting scheme: when a whole group of constraints needs to

be activated at once, this algorithm can identify only two of

them each time a new QP is treated. The complete identifi-

cation of the active set is delayed therefore over subsequent

QPs: for this reason this algorithm appears sometimes to

miss identifying as many as 9 active constraints, while still

activating at other times one or two constraints in excess.

Note that, regardless of how far we are from the real active

set, the solution obtained in the end is always feasible.

VI. CONCLUSION

In this article we introduced an optimized algorithm for the

fast solution of a particular QP in the context of LMPC for

online walking motion generation. We discussed alternative

methods for the solution of QPs, and analyzed how do their

properties reflect on our particular problem. Our algorithm

was designed with the intension to use as much as possible

data structures which are pre-computed off-line. In such

a way, we are able to decrease the online computational

complexity. We made a C++ implementation of our algorithm

and presented both theoretical and numerical comparison

with state of the art QP solvers. The issue of “warm-starting”

in the presence of a real-time bound on the computation time

was tested numerically, and we presented quantifiable results.

ACKNOWLEDGMENTS

This research was supported by the French Agence Na-

tionale de la Recherche, grant reference ANR-08-JCJC-0075-

01. This research was also supported by Research Council

KUL: CoE EF/05/006 Optimization in Engineering Center

(OPTEC). The research of Pierre-Brice Wieber was sup-

ported by a Marie Curie International Outgoing Fellowship

within the 7th European Community Framework Programme.

Hans Joachim Ferreau holds a PhD fellowship of the Re-

search Foundation - Flanders (FWO).

REFERENCES

[1] P.-B. Wieber, “Holonomy and nonholonomy in the dynamics of
articulated motion,” in Proc. of the Ruperto Carola Symposium on

Fast Motion in Biomechanics and Robotics, 2005.
[2] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,

and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proc. of the IEEE Int. Conf. on

Robot. & Automat., pp.1620-1626, 2003.
[3] P.-B. Wieber, “Trajectory free linear model predictive control for stable

walking in the presence of strong perturbations,” in Proc. of IEEE-RAS

Int. Conf. on Humanoid Robots, pp.137-142, 2006.
[4] H. Diedam, D. Dimitrov, P.-B. Wieber, M. Katja, and M. Diehl,

“Online walking gait generation with adaptive foot positioning through
linear model predictive control,” in Proc. of the IEEE/RSJ IROS, 2008.

[5] S. Wright, “Applying new optimization algorithms to model predictive
control,” in Proc. of CPC-V, 1996.

[6] D. Dimitrov, J. Ferreau, P.-B. Wieber, and M. Diehl, “On the im-
plementation of model predictive control for on-line walking pattern
generation,” in Proc. of the IEEE Int. Conf. on Robot. & Automat.,

2008.
[7] K. Schittkowski, “QL: A Fortran code for convex quadratic pro-

gramming - User’s guide,” Department of Mathematics, University

of Bayreuth, Report, Version 2.11, 2005.
[8] P.E. Gill, N.I. Gould, W. Murray, M.A. Saunders, and M.H. Wright “A

weighted gram-schmidt method for convex quadratic programming,”
Mathematical Programming, Vol.30, No.2, pp.176-195, 1984

[9] J. Nocedal, and S. J. Wright, “Numerical optimization,” Springer

Series in Operations Research, 2nd edition, 2000.
[10] R. A. Bartlett, A. Wächter, and L. T. Biegler, “Active set vs. interior

point strategies for model predictive control,” in Proc. of the American

Control Conference, pp.4229-4233, June, 2000.
[11] C. Rao, J. B. Rawlings, and S. Wright, “Application of interior point

methods to model predictive control,” J. Opt. Theo. Applics., pp. 723-
757, 1998.

[12] I. Das, “An active set quadratic programming algorithm for real-time
predictive control,” Optimization Methods and Software, Vol.21, No.5,
pp.833-849, 2006.

[13] P.-B. Wieber, ”Viability and Predictive Control for Safe Locomotion”,
Proceedings IEEE/RSJ International Conference on Intelligent RObots
and Systems 2008.

[14] H.J. Ferreau, “An online active set strategy for fast solution of
parametric quadratic programs with applications to predictive engine
control,” University of Heidelberg, 2006.

[15] R. Fletcher, “Practical Methods of Optimization,” John Wiley & Sons,

1981.

