
HAL Id: inria-00390866
https://hal.inria.fr/inria-00390866

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the stability of walking systems
Pierre-Brice Wieber

To cite this version:
Pierre-Brice Wieber. On the stability of walking systems. Proceedings of the International Workshop
on Humanoid and Human Friendly Robotics, 2002, Tsukuba, Japan. �inria-00390866�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50166393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00390866
https://hal.archives-ouvertes.fr
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Abstract

We reconsider here the stability criteria usually proposed
for the analysis of walking systems, exhibiting their limits
and their ambiguity. We propose then some new criteria
based on a thorough analysis of the dynamics of walking
systems and precise definitions concerning their stability.
Numerical methods are presented then to deal with these
new criteria.

1 Introduction

A mechanical system is walking if it has multiple contacts
with the ground which are regularly broken and recovered
in order to obtain a displacement of the whole structure.
There lies an ability to come across obstacles with great
versatility, but there also lies an intrinsic instability.Apart
from the need for very high-technology, it is this instabil-
ity that has been and is still the main bridle to the devel-
oppment of walking systems. This has been the object of
many diverse analyses [3, 5, 6, 9], but without obtaining
so far a complete understanding of the question.

Here, after presenting the usual stability criteria in sec-
tion 2, sections 3 and 4 precise the movements that walk-
ing systems can realize; section 5 proposes new defini-
tions concerning their stability properties, while section 6
presents some numerical methods to deal with them.

2 Usual stability criteria

2.1 The basic laws of mechanics

The basic laws of mechanics state that the dynamic
wrench of an object is strictly equal to the total wrench
of the exterior forces acting on it. Therefore, for a spe-
cific movement to be realized, appropriate exterior forces
will have to be applied. As long as generic walking sys-
tems are considered (no thrusters, for example), exterior
forces are solely gravity and contact forces, and gravity
being unalterable, appropriate contact forces will be the
only way for the system to effectively realize any specific
movement.

Figure 1: A walking system is generally supposed to be
statically balanced if and only if its center of mass projects
vertically inside the convex hull of its contact points (left).
There are situations where it does but the system is not
balanced (center), and situations where it doesn’t but the
system is balanced (right).

Note that when walking systems are made up of rigid
bodies, their dynamic wrench can be written as:




∑

mkẍk

∑
xk× mkẍk + RkIk ω̇k − Rk

(
(Ik ωk)× ωk

)



 (1)

wherexk is the position of the center of mass of thekth

solid, Rk the rotation matrix associated to it,ωk its rota-
tion speed,mk its mass andIk its inertia matrix [11].

2.2 The projection of the center of mass

For such a system to remain static, i.e. with a dynamic
wrench equal to 0, the total wrench of gravity and contact
forces must therefore be equal to 0. If all the contact points
are on the same horizontal plane, the horizontal and verti-
cal components of the forces and momenta can be decou-
pled. Considering then the vertical translation momentum
and the horizontal rotation momentum, we must have:





−

∑
mkg n +

∑
fk n = 0

−
∑

xk × mkg n +
∑

pk × fk n = 0

with n a vertical unit vector,pk the position of thekth

contact point andfk the vertical component of the associ-
ated contact force. Withm =

∑
mk the total mass of the



system andxG =
∑

mk xk/m its center of mass, a direct
rewriting states that we must have:

xG × n =

∑
fk pk × n

∑
fk

what, considering that contact forces can only point
upwards (fk ≥ 0), can be interpreted as (figure 1, left):

A walking system can remain static if and only if its cen-
ter of mass projects vertically inside the convex hull of
the contact points.

But if the contacts are made on tilted surfaces (figure 1,
center) or not on the same horizontal plane, horizontal and
vertical components cannot be decoupled, disallowing the
whole analysis. Consider for example the case of a student
swaying back on his chair: he can maintain his center of
mass far behind the contacts of his chair with the ground
and still keep his balance thanks to friction of his hands
on his desk in front of him (figure 1, right).

The “projection of the center of mass” criterion cannot
therefore discriminate correctly cases where the system
can remain static from cases where it can’t.

2.3 The Zero Moment Point

Now, for the system to realize a specified movement, the
total wrench of gravity and contact forces must be equal
to the dynamic wrench (1). Redoing the same analysis
as in section 2.2, if all the contact points are on the same
horizontal plane, we must have:





−

∑
mkg n +

∑
fk n = (T.n)n

−
∑

xk × mkg n +
∑

pk × fk n = n × R × n

with T and R the translation and rotation parts of (1),
n×R×n being the horizontal component ofR. The same
direct rewriting states here that we must have:

mg xG × n + n× R × n

mg + T.n
=

∑
fk pk × n

∑
fk

what can be interpreted similarly:

A walking system can realize a specified movement if
and only if the related point defined by:

mg xG + n× R

mg + T.n

projects vertically inside the convex hull of the contact
points.

Let’s consider then the horizontal rotation momentum
of gravity and “dynamic” forces around the projection of

ZMP/CoP

Figure 2: Tipping over an edge of contact points is not an
unusual situation in stable walking (here walking forward
and tipping around the toes of the foot in the back).

this point on the ground:

−

[
mg x̂G+n×R

mg + T.n

]
×(−mg n−T)−xG×mg n−n×R×n

x̂G being the vertical projection ofxG, having therefore
only horizontal components, we can replace hereT by
(T.n)n thanks to orthogonality properties, so that this
momentum can be trivially shown to be equal to zero. The
projection on the ground of the point considered here is
therefore nothing else but what is usually known as the
Zero Moment Point[5, 8, 9]. Considering as an equal def-
inition of this point

∑
fk pk/

∑
fk, we could have shown

just as easily that the horizontal rotation momentum of
contact forces is also equal to zero around this projected
point, what could lead to call it also theCenter of Pres-
sure[5, 8].

But for the same reason as in section 2.2, this analy-
sis is disallowed when the contacts are not coplanar: the
“ZMP/CoP” criterion cannot discriminate correctly cases
where the system is dynamically balanced from cases
where it’s not in situations even as simple as climbing up-
stairs.

2.4 Stability Margins

Walking systems being particularly suited to locomotion
on irregular grounds, restricting their analysis to the only
case of a flat level ground can be a severe shortcoming.
Still, these two criteria have been widely used to check
the static or dynamic balance of walking systems.

And besides checking their balance, it has even been
usual to consider that walking systems are dynamically
(resp. statically) stable if their ZMP/CoP (resp. the pro-
jection of their CoM) lies strictly inside the convex hull
of the contact points, unstable if it lies on the edge of the
convex hull. This led to measure in many different ways
the distance from these points to the edge of this convex
hull, deducing a Static Stability Margin, an Energy Stabil-
ity Margin, a Dynamic Stability Margin, a Tumble Stabil-
ity Margin and other equivalent propositions (see [3] for a
complete description of these and others).



But all of these stability margins agree to conclude that
tipping over an edge of contact points is an unstablesit-
uation for a walking system, even though this happens to
be not an unusual situation in stablewalking (figure 2),
what raises a problematic mismatch about the use of the
word “stable”! We will propose then in section 5 a couple
of definitions that will allow to develop a less ambiguous
analysis of the stability of walking systems.

3 The dynamics of walking

When walking systems are systems of articulated rigid
bodies, their complete dynamics can be written as a clas-
sical set of Euler-Lagrange equations [11]:

M(q) q̈ + N(q, q̇) q̇ + G(q) = T (q)u + C(q)T λ (2)

whereT (q)u are the actuation forces andC(q)T λ the
contact forces.

But as soon as locomotion systems are considered, the
configuration vectorq has to account for two different in-
formations [2, 7, 11]: the shape of the system, that can
be described by the joint positionsq1, and its position and
orientation in the space, that can be described by the posi-
tion and orientationq2 of a frame attached to some part of
the system. The vectorq manifesting a structure:

q =

[
q1

q2

]

we can split the dynamics (2) to exhibit the same structure:
[

M1(q)

M2(q)

]
q̈ +

[
N1(q, q̇)

N2(q, q̇)

]
q̇ +

[
G1(q)

G2(q)

]
= . . .

. . .

[
T1(q)

0

]
u +

[
C1(q)

T

C2(q)
T

]
λ

where the actuation forces don’t appear in the lower
part [2, 7, 11]:

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
T λ (3)

A walking system can realize a movementq(t) if and
only if equation (2) is satisfied with appropriate actuation
and contact forcesu(t) andλ(t). Now, whatever the pos-
sibilities of the actuation forces, the lower part (3) has to
be satisfied with the only action of contact forces, and the
physics of contact is such that these forces have limita-
tions: in the general case (no gluing, for example), con-
tacting solids can push one another but they can’t pull one
another (what is referred to as theunilaterality of con-
tacts), and friction between them is limited [2, 4, 6, 11].

Seperating the tangential and normal components of the
contact forces,ft andfn (figure 3), unilaterality appears
as a simple bound:

fn ≥ 0

fn

ft

f

‖ft‖ ≤ µ0 fn Â

[
ft

fn

]
≥ 0

Figure 3: The contact forces can be seperated in tangential
and normal components,ft andfn (left). Coulomb’s law
of friction state then that these forces are limited to a rev-
olution cone (center), of which we will consider a linear
(convex polyhedral) approximation (right).

and according to Coulomb’s law, the limit of friction ap-
pears as a revolution cone:

‖ ft ‖ ≤ µ0 fn

These limits apply at each contact point, but with forces
defined as in (2), this can be expressed as a single vector
inequality:

A(λ) ≥ 0

Considering this restriction of contact forces together with
the lower part of the dynamics (3), a necessary condition
for a walking system to realize a movementq(t) is that
there exist contact forcesλ(t) such that:

{
M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)

T λ

A(λ) ≥ 0
(4)

And if the actuation forces are adequate enough to cope
with the upper part of the dynamics, this condition is nec-
essary and sufficient.

4 About realizable movements

4.1 A generalization of previous criteria

It can be shown [7, 11] that the lower part of the dynam-
ics (3) is nothing else but the concatenation of the New-
ton and Euler equations of the whole system: except for
a residual pre-multiplication by the jacobian of a rotation
matrix, M2(q) q̈ + N2(q, q̇) q̇ is strictly equal to the dy-
namic wrench (1), andC2(q)

T λ − G2(q) is strictly equal
to the total wrench of contact and gravity forces.

Condition (4), forged around equation (3) to discrim-
inate realizable movements from unrealizable ones, is
therefore of the same nature as the criteria presented in
sections 2.2 and 2.3: it simply relates the dynamic and
gravity wrenches to the set of wrenches that can be ob-
tained from contact forces. But contrary to these crite-
ria, whole wrenches are considered here without having to
rely on any decoupling between orthogonal components.



Making no particular assumption, condition (4) appears as
a complete generalization of these criteria.

Note that this analysis could have been developped in
the same setting as in section 2 since the same concepts
are at work, but the Euler-Lagrange setting is preferred
here since it allows a seamless integration of condition (4)
at the heart of the design of control laws [2, 4, 10, 11].

4.2 The computation issue

But this completely general criterion may be complex to
deal with since it needs to answer the question: does there
exist aλ such that (4) is satisfied?

Numerical methods stemming from optimization the-
ory are able to answer to this kind of question, but at a
computational expense that can be hindering: it would
be of the utmost interest (and it will proove to be most
valuable in section 6) to turn this condition into a more
straightforward criterion, a point-in-set test, for example
(as in sections 2.2 and 2.3), or a set of inequalities.

Condition (4) already presents such a struc-
ture, checking whether the wrenchM2(q) q̈ +
N2(q, q̇) q̇ + G2(q) is inside the set of wrenches
W = {C2(q)

T λ, for λ s.t.A(λ) ≥ 0}. What we need
then is a more straightforward description of this set, but
it is the projection by the linear operatorC2(q)

T of the
set ofλs such thatA(λ)≥ 0, and this latter is a cartesian
product of revolution cones (see section 3), what’s not
easy to handle.

4.3 A polyhedral approximation

If we consider a convex polyhedral approximation of the
revolution cones (figure 3), their cartesian product is also
a convex polyhedral cone, the projection of which through
a linear operator is still a convex polyhedral cone. Algo-
rithms dealing with convex polyhedrons, able to compute
their projections, are familiar and efficient, so we can eas-
ily compute this way a convex polyhedral approximation
Ŵ of W , the precision of which directly reflects the pre-
cision of the primary approximation of revolution cones.

Now, convex polyhedrons can be simply represented by
linear inequalities:

w ∈ Ŵ ⇐⇒ B2(q)w ≥ 0

where we have stressed the dependence of the linear
inequalities onq sinceW , and thereforêW results from
the linear operatorC2(q)

T . We can propose then a set of
inequalities approximating condition (4) with a precision
that can be controlled easily:

A walking system can realize a movementq(t) if and
only if:

B2(q)
[
M2(q) q̈ + N2(q, q̇) q̇ + G2(q)

]
≥ 0

Figure 4: An erected posture with both feet on the ground
can be maintained as long as perturbations are not too
strong (top) otherwise available contact forces might be
too limited to counter them (middle), forcing the system
to make a step to avoid to fall (bottom).

5 The stability of walking systems

5.1 Avoiding to fall

Considering the example of a biped system whose objec-
tive is to maintain an erected posture with both feet on
the ground (figure 4), we can observe that the available
contact forces may be too limited to achieve this objective
when strong perturbations occur, in which case the only
way to avoid to fall may be through a momentary change
of objective, making a step for example, what will allow
to fulfill the initial objective later.

The point is that walking systems, relying strongly on
available contact forces, can only realize movements that
comply with condition (4), what may seriously interfere
with the execution of any prescribed objective.

Observing that falling induces a significant risk to
definitively disrupt any possibility to achieve any objec-
tive at all (in case of a major breakage, for example),
and that an objective that cannot be achieved at a given
moment can usually be postponed without particular
contraindications, we can conclude that in the general
case [10, 11]:

The major issue for walking systems is to avoid to fall,
and more precise objectives can be taken care of only
when this point is guaranteed.



fall

fallfall

fall

Viability kernel

Figure 5: The viability kernel gathers all the states from
which it is possible to avoid to fall, for example equilib-
rium points and cyclic movements. By definition, it is
always possible to stay inside it and avoid to fall, while
leaving it immediately implies an unavoidable fall.

5.2 Viability considerations

With F the set of positions where the system is considered
as having fallen (where a part of the system other than the
feet is in contact with the ground, for example), avoiding
to fall means avoiding to be in a positionq ∈ F , what nat-
urally induces the followingviability condition [1, 10, 11]:

A state(q, q̇) is viable if and only if the system is able
to realize a movementq(t) starting from this state that
never gets inside the setF .

This way, the state space can be split in two categories:
viable states from which it is possible to avoid to fall, and
non-viable states from which a fall is unavoidable. Con-
sidering the union of all viable states, what is called the
viability kernel, the mandatory requirement for walking
systems is therefore to stay inside it, what is always possi-
ble by definition, since leaving it immediately implies an
unavoidable fall (figure 5).

A Viability Margin can be defined then as the distance
between the state of the system and the closest non-viable
state (the stability margins of section 2 being obviously of
little help here).

But such a distance is most probably impossible to com-
pute: numerous viable states can be pointed out, equi-
librium points, cyclic movements or trajectories leading
to one of these, but the complexity of the dynamics of
walking systems is such that in the general case, it may
be numerically extremely expensive or even impossible to
check whether a given state is viable or not.

Adequately describing the requirements of walking sys-
tems, this notion of viability (sometimes called weak in-
variance, controlled invariance or conditional invariance)
appears unfortunately as mostly theoretical and out of
reach of numerical computations.

5.3 Invariance considerations

Still, the primary goal of a control law should be to make
the viability kernel completely invariant, meaning that as
long as the system is able to avoid to fall, it manages to
do so (see [10, 11] for more on what this implies on the
analysis and design of control laws).

In the more probable case of a control law that doesn’t
perfectly manage to do so, let’s focus on the set of states
from which a fall is effectively avoided: this subset of the
viability kernel is by definition an invariant set for the con-
trol law, the largest invariant set that doesn’t intersectF .

An Invariance Margin can be defined then as the dis-
tance between the state of the system and the boundary
of this largest invariant set. This margin can be more ju-
dicious than the Viability Margin defined earlier since it
refers to the stability that is effectively obtained. Unfortu-
nately, it may be just as impossible to compute.

5.4 Lyapunov stability considerations

A lower estimate of this Invariance Margin can be ob-
tained though, with a glimpse of Lyapunov stability the-
ory: suppose we have a functionV (q, q̇) that doesn’t in-
crease with time when the control law is active, and con-
sider the setsVα = {(q, q̇) s.t.V (q, q̇) < α}. The impor-
tant point is that if the control law is effective on a whole
setVα, then this set is invariant.

The setsVα that don’t intersectF and such that the con-
trol law is effective on the whole of them are therefore
invariant sets of states for which a fall is avoided. Consid-
eringVΩ, the largest of such sets, the distance between the
state of the system and the boundary ofVΩ provides an in-
teresting lower estimate of the Invariance Margin defined
earlier, and a formula as simple asΩ − V (q, q̇) presents a
particularly convenient way to measure it.

This measure can be referred to as a Stability Margin,
in the Lyapunov sense. Contrary to the stability margins
of section 2, this one strictly relates to one control law: it
can be used to measure the stability of a reference posture
or trajectory, but only once a control law has been chosen
to track this reference.

6 Computing a Lyapunov Stability
Margin

6.1 Time-invariant control laws

Computing the stability margin defined in section 5.4
amounts to checking whether a control law is effective
over a whole setVα: we will suppose here that no partic-
ular restriction interferes with the realization of a control
law, except for the irremovable condition (4). To cope ef-
ficiently with this condition, it will be preferable then to
consider any time-invariant feedbacku(q, q̇) in the form



of the resulting acceleration̈q = U(q, q̇) (what is not un-
natural for control laws such as feedback linearizations).

Considering that the non-intersection of the setsVα

with F is already taken care of, we will focus here on
checking whether the control lawU(q, q̇) satisfies condi-
tion (4) over a whole setVα, looking for the largest set for
which it is so:

VΩ = max Vα

s.t. (q, q̇) ∈ Vα =⇒ ∃λ s.t.. . .

. . .

{
M2(q) U(q, q̇) + N2(q, q̇) q̇ + G2(q) = C2(q)

T λ

A(λ) ≥ 0

Reintroducing the definition of the setsVα, and using
the polyhedral approximation of condition (4) that has
been proposed in section 4.3, this problem can be turned
into:

Ω = max α

s.t. V (q, q̇) < α =⇒ . . .

. . . B2(q)
[
M2(q) U(q, q̇) + N2(q, q̇) q̇ + G2(q)

]
≥ 0

(5)

Let’s consider then the alternative optimization problems:

ω = min
k

ωk (6)

with:

ωk = inf
q, q̇

V (q, q̇)

Bk
2 (q)

[
M2(q)U(q, q̇) + N2(q, q̇) q̇ + G2(q)

]
< 0

(7)

Bk
2 (q) being the kth row of B2(q), and let’s intro-

duce some notations:B for the set of states such that
B2(q) . . . ≥ 0, Bk for the set of states such that
Bk

2 (q) . . . ≥ 0, andBk for the set of states such that
Bk

2 (q) . . . < 0.
Sinceωk is the infimum ofV (q, q̇) over Bk, V (q, q̇)

takes values less thanωk only outside of this set, that is in
Bk (figure 6). In the same way,ω is the infimum ofV (q, q̇)

over the union
⋃

k B
k, so thatV (q, q̇) takes values less

thanω only outside of this union, that is in the intersection⋂
k B

k = B.
We can observe then that “V (q, q̇) takes values less than

(·) only in B” is an exact retranscription of the constraint
of problem (5). Taking the infimum on one side and the
maximum on the other side, problems (6)-(7) and problem
(5) are therefore strictly equivalent:

Ω = ω

The stability margin defined in section 5.4 can therefore
be computed fairly easily with the optimization problems
(6)-(7), at least when the functionV (q, q̇) and the control
law U(q, q̇) are continuous and differentiable (in which

Vωj

Vωi

Bj

Bi

Figure 6: Ifωi is the infimum ofV (q, q̇) overBi, V (q, q̇)
takes values less thanωi only outside of this set. Ifωj is
the infimum ofV (q, q̇) overBj, andωj ≤ ωi, thenV (q, q̇)

takes values less thanωj only outsideBi andBj.

case the strict inequality in (7) can moreover be relaxed).
Note though that great care must be taken when solving
these problems since local minima might induce an over-
estimation of the stability margin, what can be dangerous
for the safety of the system!

6.2 Time-varying control laws

For a time-varying feedbacku(t, q, q̇), such as a trajectory
tracking control law, the functionV (t, q, q̇) is usually also
time-varying, and so are the setsVα(t): the analysis of
section 5.4 has therefore to be slightly adapted. When the
function V (t, q(t), q̇(t)) doesn’t increase, the invariance
property becomes:

(q(t), q̇(t)) ∈ Vα(t)
⇓

(q(s), q̇(s)) ∈ Vα(s) for s ≥ t

But since by definition we haveVα(t) ⊂ Vβ(t) for β ≥ α,
this property can be directly generalised to non-decreasing
functions of timeα(t), what can be useful here:

(q(t), q̇(t)) ∈ Vα(t)(t)
⇓

(q(s), q̇(s)) ∈ Vα(s)(s) for s ≥ t
(8)

Then, just as in section 5.4, we can consider at each instant
t the largest setVα(t) that does not intersectF and such
that the control law is effective at the instantt on the whole
of it, and call itVΩi(t)(t). Since the instantaneous measure
Ωi(t) may not be non-decreasing, the setsVΩi(t)(t) may
not satisfy as such the invariance property (8), so we must
extract first its maximal non-decreasing part (figure 7):

Ω(t) = inf
s≥t

Ωi(s)

to obtain setsVΩ(t)(t) that duly satisfy this property, and
are the largest to do so. We can safely consider then the
stability marginΩ(t) − V (t, q, q̇), just as before.



Ωi(t)

Ω(t)

Figure 7: In the case of a time-varying control law, the
instantaneous measureΩi(t) may not be non-decreasing,
so that its maximal non-decreasing partΩ(t) must be ex-
tracted first to estimate a safe stability margin.

Now, the same computation as in section 6.1 can be car-
ried out to obtain the instantaneous measureΩi(t), from
which the non-decreasing partΩ(t) is immediate to de-
rive:

Ωi(t) = min
k

ωk(t)

with:

ωk(t)=inf
q, q̇

V (t, q, q̇)

Bk
2 (q)

[
M2(q)U(t, q, q̇)+N2(q, q̇) q̇+G2(q)

]
<0

7 Conclusion

We have shown in section 2 that the criteria usually used
to check whether a movement is realizable by a walking
system, the “projection of the center of mass” criterion
and the Zero Moment Point criterion, are only valid on
a flat level ground. We have shown also that the stabil-
ity analyses usually deduced from these criteria induce an
ambiguous usage of the words “stable” and “unstable”.

We have shown then in sections 3 and 4 how to conceive
a complete generalization of these criteria in the classical
setting of Euler-Lagrange equations, and how to derive a
computation-friendly approximation of the resulting crite-
rion.

We have proposed in section 5 to clarify the notion of
“stability” of walking systems, what has led us to intro-
duce some viability and invariance considerations. The
classical notion of Lyapunov stability has asserted itself
as the most convenient tool, but only to focus very specifi-
cally on concomitant invariance properties, what has led to
introduce a Lyapunov Stability Margin. Numerical meth-
ods to measure this stability margin efficiently have been
proposed then in section 6.

The analysis presented here clearly opens the way to
proove the stability of walking systems, but there is still a
long way to go before this may be fulfilled:all the control
laws proposed so far rely on strong suppositions on the
states of the contacts between the feet and the ground [6,

11]. The variation of the state of these contacts is a very
difficult issue to deal with (it has been completely ignored
here), and the theory needed is only emerging [6]. Still, to
proove the stability of walking systems will be impossible
as long as this question is not considered more thoroughly.
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