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Abstract—This paper proposes a new distributed
monitoring approach based on the notion of centrality
of a graph and its evolution in time. We consider an
activity profiling method for a distributed monitoring
platform and illustrate its usage in two different target
deployments. The first one concerns the monitoring of
a distributed honeynet, while the second deployment
target is the monitoring of a large network telescope.
The central concept underlying our work are the inter-
section graphs and a centrality based locality statistics.
These graphs have not been used widely in the field
of network security. The advantage of this method is
that analyzing aggregated activity data is possible by
considering the curve of the maximum locality statistics
and that important change point moments are well
identified.

Index Terms—honeypot, backscatter, telescope,
monitoring, intersection graphs, centrality, locality
statistics

I. Introduction

The motivations of this paper are twofolds. The first
motivation of our work is related to the conceptual ap-
proaches and algorithms required to perform distributed
monitoring. If we consider a distributed monitoring plat-
form for a given target deployment (please see figure 1),
several questions must be addressed.

• Do all management agents observe the same type of
events ? If no, how can we correlate a distributed view
and aggregate the commonly observed evidence?

• Can we discover a temporal behavior of the whole
platform ? Do some agents tend to observe the same
type of behavior during a particular time of the day,
while others remain to hold a localized and very
isolated observation behavior ?

A second motivation of our work came from a very
realistic requirements. We are part of a large honeynet
distributed over the Internet. Each individual honeypot
monitors backscatter packets and incoming attacks. When
working on the resulted datasets, we were challenged by
the lack of methods capable to compare such a distributed
platforms and to detect temporal/spatial trends in the
observed traffic patterns. In our work we had to process
similar attack traffic from a different security monitoring
platform (a network telescope) and compare it to the

results obtained from the honeynet. This paper extends
our previous works [1] and [2].

Our paper is structured as follows: in section 2, a generic
method for analyzing a distributed monitoring platform is
described. This method uses graph intersections in order to
model the distributed platform and to follow their tempo-
ral evolution. Section 3 describes two realistic distributed
environments (a honeynet and a network telescope) and
section 4 shows how this method can be used for them. An
analysis concerning IP related headers is done for the two
data sources and additional results concerning differences
and analogous behavior between these two are presented.
Section 5 presents related works and finally section 6
concludes the paper.

Fig. 1. Distributed monitoring model

II. Intersection graphs

The method based on intersection graphs has been
introduced in [3] for profiling communications patterns
between the users of a high profiled enterprise. Actually,
the data used were the exchanged emails and the goal
was to detect if someone was aware of the Enron scandal
before it was revealed. Thanks to this method, the authors
observe that there were significative changes of the graph
topology and highlight the responsable nodes which are
in reality people. Therefore, using this technique seems to
be a good way to detect behavior changes of the attacks
in the Internet and IP addresses which are concerned by
these changes.
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A. Graphs and activity profiling

A graph is composed of several nodes and arcs. Two
nodes are linked if there is a relation between them. A
relation can be: similarity, difference, or communication
exchanges. The relation will be formally defined for each
deployment target in the following sections. We consider
that arcs are not directed and that the graph is an
undirected graph. The adjacency matrix of a graph is a
boolean square matrix where each line and each column
represents a node. It is defined as :

Aij = 1 if an arc between i and j exists, 0 else

where i and j are 2 vertices of the graph

Since we consider a undirected graph, the adjacency
matrix is symmetric :

Aij = Aji(symmetrical matrix)

As we want to connect nodes which share or don’t
share some characteristics, it is totally useless for a node
connected to be connected to itself and we will consider
this statement as an assumption in all this article.

If we consider the figure 2, the corresponding adjacency
matrix is :

A =

a

b

c

d

e

f

g

a b c d e f g

0 0 1 0 0 0 0
0 0 1 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0

Fig. 2. An undirected graph

B. Central node

Generally, a central node is interesting because it has
multiple direct or indirect relations. Using the most central
node we can evaluate the centrality of the graph by
counting the number of relations (arcs). A simple method
to detect this node could be to get the node which has the
maximum number of neighbors.

For example, in figure 2 the most connected nodes
are c and e with 3 neighbors. However, if we consider
the node d, this one seems to be also well connected,
although it has only 2 neighbors. In fact, if a node has
only few relations but these relations lead to nodes that
are well connected, then the original node is interesting
and central. Therefore, we can consider not only the direct
neighbors but a subgraph of all nodes which are located in
an area defined by the distance from the evaluated node.

The centrality is the number of arcs of the subgraph. This
is the main idea used in [3].

In figure 2, considering an exploring distance k = 2,
nodes c and e have a centrality of 4. For the node d, the
associated value is 6. Based on this method, the central
node is d.

Another way to get the central nodes is to use the
eigenvalues and eigenvectors, as proposed in [4]. Assuming
an adjacency matrix A, x an eigen vector and λ the
corresponding eigen value, we have :

A× x = λ× x

The more central node is the highest value in the eigen-
vector of the highest eigenvalue. Considering the figure
2 and the previously introduced adjacency matrix, this
vector is (-0.5, 0, -0.316, 0.500, 0.000, -0.447, -0.447). The
maximal value is the fourth which corresponds to the node
d once again.

Thus, different methods can be used and we propose to
use the first one in this paper because it is done easily
by walking in the graph and because we can compute
the centrality incrementally for different distances i.e. by
increasing the depth of the walking contrary to the second
methods where the eigenvectors and eigenvalues are to be
recomputed for each submatrix.

C. Locality statistics

A graph can vary over the time and thus we need to
somehow capture and describe variations in the centrality.
The main idea is to consider at each time instant the
central node and the associated centrality and to analyze
the temporal behavior of these two entities. The intuition
behind is that when major graph changes occur in the
topologies of a graph, the relations between nodes change
and this will be reflected by a change in the centrality too.
So, detecting changes in the graph can be highlighted by
looking for the maximal centrality as proposed in [3]. This
method has the advantage that one value is an indicator
of the graph topology contrary to have one value per
node. If more details are needed, the central node which is
responsible of the maximal centrality can be detected and
the appearance or disappearance of a node implies that its
relationships increased or respectively decreased.

The following formula describes formally the maximal
locality statistic, described in the previous paragraph :

ψk(v) = number of arcs of the subgraph

of neighbors of v at a maximal distance k

Mk = max
v∈nodes

ψk(v) (1)

Actually, the number of neighbors at a maximal distance
k is computed for each node. Then Mk is the maximum
value that were be calculated.

Consider the example of the evolution of a graph which
is described below and presented briefly in the figure 3:

• t = 1 : 10 nodes, 11 arcs
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• t = 2 : node and arcs added but with isolated node
• t = 3 : increase of number of arcs
• t = 4 et 5 : 5 arcs added
• t = 6 : 5 nodes removed, about linear graph
• t = 7 : increase of nodes and arcs
• t = 8 : remove only one node which was isolated
• t = 9 : increase of nodes and arcs
• t = 10 : 5 nodes removed, non linear but scattered

graph

(a) t = 1 (b) t = 2 (c) t = 4 et t = 5

Fig. 3. Graph time series (bold line : adding, dashed line : removing)

Figure 4 presents the result of this formula with different
values of k = 1..4. For k = 0, the value is always 0 which
is normal because in this case no neighbors are concerned
and only the current node composes the subgraph. Varying
k allows to select information and especially to limit the
subgraph of extended neighbors in order to avoid to have
a constant maximal locality statistic which corresponds to
a subgraph covering all the graph.

The values for k = 3 and k = 4 are identical and that
means that for k less than 3 it’s possible to find a node
having the associated subgraph of neighbors covering the
total graph. This observation shows that the choice of k
is important. k must not be too small because important
information might not be revealed. If k is to large, all the
graph is covered. In our case, the value of k = 2 seems to
be a good choice.

In the figure 4, the plot for k = 2 increases up to 5
because the graph has more and more nodes and arcs. We
can also observe that due to the linearity of the graph, the
locality statistics decreases (t = 6). The maxima locality
statistics allowed to observe this evolution. Large values
of this statistics are to be associated with major changes
in the inter-node relationships.

It is also important to observe the responsible nodes
associated to the peaks of the maximal locality statistic
(maximum centrality). In the previous example, node c is
always central.

The major goal is not only to show the evolution of
the topology of the graph but in fact to discover new
nodes that might become important. For instance, for time
instants 3 and 4, node c is the only central node. This
centrality is equal to 12 and respectively 15. The same
analysis for the node g shows that its values goes from
6 to 12. In all cases, its centrality is lower that the one
of c, but the evolution of g is more interesting. This type
of behavior can be put into evidence by a standardized
locality statistics at time t:

Fig. 4. Locality statistics according to time

ψ̃k,t(v) =
(ψk,t(v) − µ̂k,t,τ (v))

max(σ̂k,t,τ (v), 1)

µ̂k,t,τ (v) =
1

τ
∗

t−1∑

t′=t−τ

ψk,t′(v)

σ̂k,t,τ (v) =
1

τ − 1

t−1∑

t′=t−τ

(ψk,t′(v) − µ̂k,t,τ (v))2

M̃k,t = max
v∈nodes

ψ̃k,t(v) (2)

In fact, in the formula 2, the centrality is standardized
with respect to previous values of a sliding window. The
size of the window is τ . Therefore we compute for each
node the size of the subgraph which contains the neighbors
at a maximal distance k. Then we calculate the common
average value during the sliding window: µ̂k,t,τ (v). Then,
the variance is computed: σ̂k,t,τ (v). Therefore, each node
have an associated standardized value for the centrality
which is ψ̃k,t(v). The standardized locality statistics is the
maximum value between all ψ̃k,t(v). Nodes which tend to
remain constant will have a low value. In figure 5, the
interesting plot for k = 2 shows that for example between
time instants 4 and 5 when the graph does not change, the
associated value decreases quickly. This is due to the low
value of τ = 5.

When central nodes are extracted, node g becomes the
only central node at time 4, showing that node c was
only central at the beginning. Thus, the importance of
c is lowered over time and a new node g can become an
important node.

Besides, there is a peak at the beginning of the curves
due to the initialization of the sliding window. During this
stage, when a new node appears it becomes often the more
central node or at least one of the highest central node. It
is not a real problem as that the apparition of new node
is an important fact. Finally, by comparing the peaks of
the figure 2 and 5, there are not at the same positions
because the figure 5 illustrates the dynamicity of the
graph. Therefore, even if the maximum locality statistic
increases during 3 time units which means that the peak
is the last value, the standardized locality statistics can be
a previous one if the increasing is more important at the
beginning than at the end.
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Fig. 5. Locality statistics according to time (τ = 5)

D. From graphs to network monitoring

If we consider a distributed monitoring platform, we
can use a graph model to represent the relationships
among the monitoring agents. Each agent is represented
by a node in the graph. The major idea is to consider
an arc between two nodes, if and only if the associated
agents have observed a different activity. To illustrate this
idea, if we consider different honeypots of a honeynet and
each honeypot monitors commonly used parameters like
source IP addresses, source ports, destination ports, an
arc between two nodes exists if both agents have a little
overlap in the observed parameters, they should be linked
and it will be highlighted by the locality statictics.

III. Data description

A. Network telescope

The principle of network telescope is simple. A monitor-
ing device saves all incoming traffic to a specific range of
IP addresses. In fact, these addresses are unused and cover
a range which is generally a subnetwork of consecutive
addresses. The main characteristic of a telescope is its
size which is generally huge. It is possible to create more
interactive network telescopes which emulate diversified
services like shown in [5], but in our case the telescope
is totally passive and just records the incoming packets.
Because the monitored addresses are normal and are se-
cret, an attacker is unable to know these ones and attacks
can be targeted against these.

We used in our work data from the telescope developed
in the CAIDA project [6]. The monitored addresses form
an A class network and the number of addresses is 224.
This huge telescope gathers data from a fraction of 1

256

of the Internet. Only backscatter packets are captured by
this telescope. Backscatter packets are generated indirectly
by a denial of service attacks and for a comprehensive
overview, the reader is referred to [7]. Basically, a backscat-
ter packet contains an the ack field set as it is a response.
The basic scenario is as follows: an attacker does a SYN
flooding of a victim in order to force the victim to reply
to each packet. The attacker can spoof the source IP
addresses in order to hide her identity and avoid additional

bandwidth consumption on her side. The victim of the
denial of service attack replies to the spoofed addresses and
these replies are called backscatter packets. The figure 6
shows a simple scenario where an attacker spoofs three
IP addresses but only one is assigned to a real and
legitimate network interface. The others are a part of the
addresses of a telescope which collects these backscatter
packets. Therefore the response can be captured by the
telescope. The assumption of that the telescope monitors
only backscatter packets is limited because some of this
packets can be generated by an ACK port scanning.
Moreover, the telescope stores also the ICMP response
which can be due to a ICMP echo request for instance.

During our analysis, only the period from 26 to 36
August 2004 is studied on a hour by hour basis. About 460
millions of packets have been gathered during this period
corresponding to 24.1 GB of data. For more information
about the data, please refer to the table I.

Network Telescope
#Observed IP
source addresses

116 777 216

Number of
incoming
packets

2004/08/26
2004/08/27
2004/08/28
2004/08/29
2004/08/30
2004/08/31

52 784 835
88 411 307

142 096 855
77 094 947
51 850 438
45 742 568

Number
of unique
source IP
addresses

2004/08/26
2004/08/27
2004/08/28
2004/08/29
2004/08/30
2004/08/31

171 257
244 643
241 883
242 491
231060
246 982

Size of data

2004/08/26
2004/08/27
2004/08/28
2004/08/29
2004/08/30
2004/08/31

3,8 MB
6,3 GB
1,5 GB
5,5 GB
3,7 GB
3,3 GB

TABLE I
Global information about the telescope data

Fig. 6. Backscatter principle

B. Honeynet

A honeypot is described in [8] as an environment where
vulnerabilities are deliberately introduced. Malicious in-
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Fig. 7. Leurre.com honeynet architecture

truders are lured into attacking such a system and provid-
ing useful information to security officers and researchers.
Such information typically includes details about the
source of the attack, temporal patterns in this activity and
the tools used during and after an attack. More recently,
honeypots and honeynets have been used to observe the
behavior and spreading of automated malware like worms
and autorooters. The basic idea behind a honeypot is
that a vulnerable system is simulated to the outside and
more or less simulated services are exposed in order to
achieve an interaction with the attacker (or automated
malware). The degree of interactions can vary from simple
and low interaction honeypots (like the ones described
in [9]) and up to complete worm capturing architectures
(the mwcollect project is a very good example of such an
architecture), or even human driven high interaction hon-
eypots. The first description of such a honeypot, although
not named as such, can be found in the [10], where a
human network administrator manually emulates a rogue
vulnerable system in order to study an intruder.

However, only one honeypot is not sufficient for a sound
analysis at a Internet scale level. Several honeypots can
be grouped into a network which is called an honeynet.
In this case, all honeypots share their informations with
others and they are dispersed over all the Internet.

For our work, the honeynet of the Leurre.com project
was used. This network consists of 129 individual systems
run by 43 honeypots. Each individual honeypot uses 3
distinct IP addresses and emulates 3 different operating
systems (one operating system per address : Windows
NT server, Windows 98, and Linux Red Hat 7.3). The
number of monitored IP addresses is 3 × 43 which is very
lower than for the telescope. However, the IP addresses are
well distributed in IP domains contrary to the telescope
whose the data can be biased by attacks targeted specific
IP domains. Data is collected locally and centralized in
a database. There are low interactions honeypot and the
collected data are stored in a central Database accessed by
SQL request as you can see on the honeynet description
in the figure 7.

The period of our study covers the data from May to
December 2004 and includes more than 11 millions IP
packets. The period is sliced into weeks. The table II gives
the exact details about the analyzed data.

Honeypot
#monitored addresses 129

Number of in-
coming packets

05
06
07
08
09
10
11
12

475 519
1 211 820
1 495 525
1 821 534
1 371 280
2 317 525
2 292 083
1 451 770

Number of
unique source
IP addresses

05
06
07
08
09
10
11
12

18 392
39 419
34 011
49 076
60 666
77 032
84 485
82 500

Size of data

05
06
07
08
09
10
11
12

69 MB
176 MB
217 MB
264 MB
199 MB
337 MB
333 MB
211 MB

TABLE II
Global information about the honeynet data. The months

are represented in number (05, 06, 07...)

IV. Intersection graphs application

In this section, the intersection graphs method is ap-
plied to the previously described monitoring platform :
honeynet and network telescope. Several aspects will be
studied: source IP addresses, source ports, attack tools
used, misconfigurations and targeted services.

A. Source IP addresses

1) Honeynet: The goal of our first analysis is to analyze
the distributed views of the honeypots with respect to the
source IP addresses and identify the ones that stand out
of the crowd, ie that capture suspect source addresses that
are not captured by other honeypots.

Nodes represent the different honeypot platforms. For
each nodes, the sets with captured source addresses are
compared. Two nodes are linked only if the intersection
between the corresponding sets represents less than a
threshold α of the union of addresses. If nodes were really
distinct, there would be more and more arcs and the
locality statistic would increase. The normalized locality
statistic permits to detect when the topology changes
significantly and to detect the honeypots which are respon-
sible for the new maximal locality. These central honeypots
could be considered as interesting because they detects
particular source IP addresses.

Determining the threshold is not easy. In fact, it depends
on the objective. For example, some characteristics (like
source IP addresses) are more variable and so normally the
thresholds will be very low because we should not see the
same value many times. Other characteristics have often
the same value as the targeted port of an attack (like web
servers). Therefore, the conclusions have to consider these
thresholds in order to say if the different nodes see really
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Fig. 8. Maximal locality, (shared addresses alpha ≤ 0.25%), x-axis
are the week numbers

different things or not. Moreover, tuning them to obtain
result similarities between the Honeynet and the telescope
is a good way to evaluate how these monitoring platform
kinds are different by comparing the thresholds.

After some tests, for small thresholds α, the plots tend
to overlap and a good setting of this value is 0.25%, where
only few points are not overlapped. The figure 8 shows
the maximum locality and the total number of arcs in the
graph and all the curves are very similar and close to the
number of arcs. It means that for k = 1, a node is linked
to each other one except for few cases which means that
at least one honeypot is very different in terms of observed
IP addresses. Therefore, the figure 9 shows the number of
nodes with the maximal centrality and so the ones which
are linked with each others. There are some peaks but the
curve decreases and tends to the value of 10%. Obviously,
the corresponding honeypot platforms can be known and
this information is useful for improving the analysis of
honeypot data by limiting the amount of its.

The figure 10 represents the standardized locality with
τ = 5 weeks. Using the method of the intersection graphs,
we can observe that when the value of the maximum
standardized locality statistics is low, the topology of
the graph is constant, while high values indicate major
topology changes. The plots are generally overlapping and
there are 8 peaks. The concerning central nodes have
been extracted and some nodes (6) appear several time.
Therefore, the 6 honeypots corresponding to these nodes
are very different with respect to the remaining ones.

2) Network telescope: The goal of this study is similar
to the previous honeynet analysis. We wanted to detect
if a part of a telescope detects source IP addresses which
are not detected by other parts. The range of IP addresses
monitored is sliced into several /16 subnetworks. Because
of the size of the telescope is a /8, we consider 28 = 256
subnetworks. This division is logically equivalent to a
distributed monitoring model described in figure 1. When
this model is instantiated, we obtain the architecture
illustrated in figure 11. In fact, each subnetwork of the
telescope is considered as an entity for which there is one
monitoring agent.

The nodes are the subnetworks and two nodes are linked
if the intersection of their source IP addresses is less than

Fig. 9. Number of central nodes with the maximum locality for the
honeynet

Fig. 10. Honeynet source IP addresses analysis - Standardized
locality with τ = 5 (shared addresses ≤ 0.25%)

Fig. 11. A distributed telescope

a threshold α of their union. If the subnetworks were
really different in term of observed source IP addresses,
a lot of links would appear and the locality statistic would
increase.

We have tested threshold values of 5% and the maxi-
mum locality statistic is always 0 except for the first hour
which is probably due to a lack of data at the beginning
of the capture (because the August 26 is the first day of
August for which we have data). A threshold value of 5% is
low but we also intended to compare honeynet (threshold
was 0.25%) and telescopes and we concluded that there is
a high redundancy of information in the telescope case.
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B. Source ports

A second goal was to detect plateforms which observe
port source addresses that other honeypots have not ob-
served. Only packets with both flags SYN and ACK were
considered. This kind of packets are in fact backscatter
packets. In this particular case, the perceived source ports
are in fact ports which have been attacked with IP spoofed
packets. Thus, this study is relevant to attacked ports.

1) Honeynet: A node in the graph is a honeypot plat-
form and similar to the previous case, an arc links 2 nodes
if the set intersection of their source ports is lower than
a threshold β of the union of the source ports. Therefore,
if honeynets were different, the locality statistic of these
nodes would increase and the plots of the maximal locality
statistic would show it. The plots corresponding to the
unnormalized maximal locality statistic are represented
in figure 12 (for a threshold of 10%) and respectively in
figure 13 for a threshold of 25%. A threshold of 25% implies
that the number of arcs is higher and the different plots
are not overlapping. However, the aim of our work was to
detect platforms that are different and a 25% threshold
means that we consider 2 honeypots different even if they
share one quarter of their source ports. If we consider both
thresholds 10% and 25% we observe that the peaks in
both plots are located at the same time instants and such
the threshold of 10% is sufficient for detecting topology
changes. The plots of the maximal centralized locality
statistic with a sliding window size of 5 look like the
figure 12 and 13.

Fig. 12. Honeynet source ports analysis - locality statistic (shared
ports ≤ 10%)

If we consider now the plots for a threshold of 10%,
at many time instants the number of arcs is 0. In these
cases the honeypots share more than 10% of the detected
attacked ports. The ports are coded with 2 bytes in the
TCP header and so 216 ports are theoretically possible.
However only few ports out of this large pool are really
used and correspond to known deployed services.

Although several peaks are visible, the maximum lo-
cality is not very high and it’s probably due to the low
quantity of data at the honeynet. For instance,if the ports
detected would be completely different between the 43
honeypots, the number of arcs would be :

∑
1

i=43−1
i = 946.

Fig. 13. Honeynet source ports analysis - locality statistic (shared
ports ≤ 25%)

2) Network telescope: The packets that have been cap-
tured by the telescope are only backscatter packets and
so the source ports of these packets are in fact attacked
ports. It’s interesting to study them in the same manner
that we have done it for the honeynets. The difference here
is that the nodes are the subnetworks of size /16 of the
range of monitored IP addresses. Our goal was to detect
if sometimes, only particular ports were attacked.

Using a threshold of 5% we obtained the plots shown in
figure 14. The number of arcs and the locality statistic
is close to 0. The source ports shown by the different
subnetworks are the same. The conclusion is the same
as for the honeynet case : attackers attack frequently the
same ports and the telescope can detect this phenomena.

A peak appears clearly on the figure 14 and in fact there
are 3 subnetworks detecting unusual source ports. This
is opposed to the honeynet case for which a peak is not
always significant due to a low amount of data. Because a
telescope monitors a fraction of 1

256
of the Internet, a high

peak like its shows a real specific phenomena at this time
and this peak is a proof of attacks on original ports.

Fig. 14. Telescope source ports analysis - locality statistic (shared
ports ≤ 5%)
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C. Attack tools

A TCP session is established thanks to the 3-way
handshake. First the initiator sends a packet with flag
SYN and a random sequence number (also called Initial
Sequence Number -ISN). The correspondent acknowledges
the packets with an acknowledgment number equal to
the previous sequence number + 1. Finally the initiator
acknowledges this reply. Some attack tools use always the
same sequence number or do not use a good (high entropy)
random number generator. Consequently, the acknowledg-
ment numbers are either always the same, or depend on
the use of a specific exploit code. We looked if the same
attack tool was used to attack different computers and for
this work we considered also the the backscatter packets
(replies of attacks). In this experiment, only the honeynet
is considered.

In this case, the construction of the graphs consists in
considering nodes as honeypots and two nodes will be
linked if they share more than a threshold of the union of
their observed acknowledgment numbers. Using a thresh-
old of 90% the plots are given in figure 15. In general the
acknowledgment numbers are different between platforms
because the number of arcs is low. This is due to the
diversification of the attack tools.

Fig. 15. Honeynet acknowledgment numbers analysis - locality
statistic (shared acknowledgment numbers ≥ 90%)

Two peaks are clearly visible and in these case the plots
are overlapping. This shows the presence of one or central
honeypot linked with all others. Using the standardized
locality statistic with a sliding window size of 5, the
obtained plots are similar because the standardization is
made thanks to previous values, which are mostly equal
to 0. The figure 16 presents the graphs of weeks 41 and
52 corresponding to the peaks. In the figure 16(a), many
nodes are linked with many others. A lot of honeypots
have detected about the same acknowledgment numbers
(threshold ≥ 90%) and the use of the same attack tools
is undeniable. However for the second peak in week 52,
(shown in the figure 16(b)) the picture is totally different
and only some honeypots are concerned. In this case, this
is probably due to a same attack tool with a bad random
numbers generator which implies that the same generated

number is used several times and detected by different
honeypots.

(a) week 41 (b) week 52

Fig. 16. Intersection graphs for acknowledgment numbers shown by
the honeynet

D. Detecting misconfigurations

During our previous analysis, many source IP addresses
were invalid like many local addresses. It can be due
to some attackers but smart ones prefer to use valid
addresses in order to be undetected. Therefore, most of
them can be considered as misconfiguration problems on
user computers or at the Internet service provider

1) Sources: There are many types of addresses that are
dedicated to specific use and that shouldn’t be use on
Internet. The table III gives a summary of such addresses
as well as their target deployment usage. However, we were
amazed by the large quantity of observed IP addresses
that should in theory never appear on the Internet. Sev-
eral factors jointly produce them: misconfigured enterprise
routers/firewalls, missing ISP level ingress/egress filtering
and maybe defective devices.

Range Description
10.0.0.0 → 10.255.255.255 Class A private ad-

dresses
172.16.0.0 → 172.31.255.255 Class B private ad-

dresses
192.168.0.0 → 192.168.255.255 Class C private ad-

dresses
224.0.0.0 → 239.255.255.255 Class D multicast

addresses
240.0.0.0 → 255.255.255.255 Class E addresses

reserved for exper-
imental use

127.0.0.0 → 127.255.255.255 Loopback
addresses

0.0.0.0 → 0.255.255.255 addresses of net-
work 0 (class A)

169.254.0.0 → 169.254.255.255 addresses of DHCP
client which can’t
obtain an address
from the server

192.0.2.0 → 192.0.2.255 Loopback
addresses

TABLE III
Abnormal source addresses on Internet

The left barchart of figure 17 shows the proportion
(per 100 000) of the different type of abnormal addresses
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considering unique IPs in comparison with the total num-
ber of unique IPs for the observed days in the case of
the telescope. This graph allows to observe both the
main types of abnormal addresses and their corresponding
global proportion.

There is a category which is about constant (colored in
black). It is the proportion of network 0 addresses (class
A). Normally 0.0.0.0 can be used only as source broadcast
address on local segments but not on the global Internet.
However the global proportion increases significantly from
June to August with peaks in June, at the end of August
and the beginning of September. Very strangely is also the
apparition of multicast addresses as source addresses. Mul-
ticast addresses can be only used as a destination address
and will never appear as source addresses. Moreover this
increase in abnormal addresses is also due to private IP
addresses used in outgoing reply packets. These packets
are received by the telescope (and for these packets the
source appears to be a private IP address).

An attacker is able to forge such packets thanks
different software like [11] but as previously introduced,
discovering the attacker is easier in this case. Moreover,
these packets are backscatter packets which means that
main of them are responses from victims which don’t
forge the packets, such that we can safely assume that the
majority is not malicious. The most probably source of
these packets are misconfigured routers/firewalls/NATs.
This increase can be also caused by an ISP deploying some
new policy based routing rules, which were misconfigured.
The concerned computers are connected to Internet but
don’t receive the responses of their own requests. Another
justification of the apparition of private addresses (the
class C for instance, which are generally used by home
users) are a definite evidence of misconfigured network
devices. However, the main issue is that the ISP does
not block these addresses. The observed results can be
generalized beyond the simple observed traffic as follows:

224 : IP addresses monitored by the telescope

232 : all possible IP addresses

Assuming that about 75% of addresses are used on

Internet

y : number of IP addresses concerned by an analysis

x : estimation of the number of IP addresses

corresponding to the same analysis for the whole

Internet

x =
232 ∗ 0.75 ∗ y

224

This type of generalization can be applied to all the
observed data in this paper

We performed a similar analysis with the data from
the honeynet (at the right on the same figure 17) but in
this case, a bar represents a month period. The results
show a different pattern than the backscatter analysis.
First the graph shows two peaks but not at the same

time. The first in May and the second in July. The usage
of private class IP addresses is also significant and the
explanation might be the same i.e. the misconfiguration of
local network and providers that don’t do ingress filtering.
However the main type of abnormal IPs is the range of
addresses automatically assigned by a computer when the
DHCP server don’t respond to its request for obtaining an
address. The cause is probably due to local networks with
a non valid configuration of the DHCP service.
For comparing the two traces, we had to compare data
from backscatter traffic observed from the telescope with
data (directly incoming and backscatter) from the hon-
eynets. We could not rely entirely on only the backscatter
traffic from the honeynets due to the lack of massive
datasets.

2) Open Windows specific ports: The Windows
operating systems uses a series of defaults ports for its
proprietary network protocols: ports 137, 138 and 139.
The Netbios service is designed for sharing resources on
a local network and this port is not only useless on the
Internet but represents one major entry point for malware
and malicious intruders. Moreover the port 445 is also
a dangerous port because it is used for file sharing and
many worms (Sasser and mutants exploit). To prevent
these attacks, these ports should be filtered by a firewall.

Considering the telescope, the figure 18 shows the
number of unique IPs with an open port per 100 000
unique IPs. Receiving a backscatter response of a given
port means that the port was open during the connexion
of the attacker performing the denial of service attack.
The ports 137,138 and 445 seem to be protected even
if there is a little peak for the port 445 in November.
However it’s clear that the port 139 is less filtered as
we can see on the several peaks of the graphs. It seems
that in 2004, professional networks and home computers
were generally protected by firewalls contrary to some
years before, but this is seen through traces of Denial of
service attacks. Since, most victims are typically either
enterprises or blackhats waging Internet wars, these low
numbers are justified.

The honeypot data contains only one IP address having
the port 139 open, such that the use of honeypot is not a
good way to detect this kind of misconfiguration. Only a
telescope with a large range of IP can efficiently detect it.
However you can notice that the only visible port is also
the one which is the most frequently observed as opened
by the telescope.
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Fig. 17. Number of unique IP addresses of the different categories of abnormal IPs per 100 000 unique IP addresses. (Left : backscatter
data, right : honeypot data by month)

Fig. 18. Number of unique IPs with an open port per 100 000 unique
IP addresses and according to each specific windows port. The chart
represents the backscatter data of the telescope.

3) Analysis of ICMP ’Destination unreachable’ mes-
sage: When a host connects to another host which is not
available, an ICMP message is sent to the source with
the type 3 equal to ’Destination unreachable message’.
An additional code [12] is also used to provide additional
information. We analyzed the following 8 codes in our
work:

• 0 : net unreachable
• 1: host unreachable
• 2 : protocol unreachable
• 3 : port unreachable
• 4 : fragmentation needed and don’t fragment was set
• 9 : communication with destination network is admin-

istratively prohibited
• 10 : communication with destination host is adminis-

tratively prohibited

• 13 : communication administratively prohibited

Polite firewalls will typically answer with codes 9, 10 or
13 to show that a device or service is filtered. Although
such information can be very helpful when troubleshooting
a network like detecting firewall misconfigurations, it can
leak information about existing devices/open ports to an
attacker and could determine him to try more advanced
reconnaissance techniques. Less polite firewalls, configured
by more security conscious network managers might di-
rectly reply with TCP packet whose the RST bit is set.

The figure 19 shows the evolution of the ICMP type
3 message codes. The left graph is about the telescope
and highlights clearly a main change between October
and November. First of all, the code 13 decreases much
which can be due to a significant change in the behavior of
network administrator which prefers to limit the revealed
information. Moreover, the code 3 becomes the most popu-
lar code. This code means that the port is unreachable and
so that the host exists. Therefore this change shows that
the attacks are much well targeted from November and
most of them are port scanning. The bars about honeypots
is the right one on the figure 19. Once again, there is a
change but it is smoother than for the telescope with the
same observation as before, i.e. a decrease of code 13 and
an increase of code 3. Finally, the main difference is that
the honeynet detects the change earlier than the telescope.

E. Most attacked services

A natural question is related to which services are the
most attacked services. We did this analysis on backscatter
data for the different monitoring methods. Therefore, the
packets reflect denial of service attacks. There are four
main services which are attacked:

• The most attacked port and consistently ranked num-
ber 1 over all this period is port 80: it seems that
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Fig. 19. Proportion of the different ICMP codes for the icmp type 3 (Destination unreachable). Backscatter telescope data are represented
at the left and honeypot data is at right

web servers are the major target of denial of service
attacks,

• port 6667 shows up frequently in the attacks. This
port is typically used for IRC talks (or IRC anonymiz-
ing proxies like psyBNC). We suppose that these
attacks are targeted at specific servers and can be
associated to Internet war games waged to take the
control of a a IRC channel,

• Name Servers (port 53) are also attacked (although
to a lesser extend than IRC),

• Attacks against BGP routers (port 179) are also
highly interesting and can be observed, since these
attacks aim at either de-connecting a network domain,
or can serve as preliminaries for a routing prefix
hijack.

The table IV compare the most attacked services be-
tween the telescope (3 days) and the honeypot for May.
Then we can see that the overlap of the ports is small
: only the port 80. However if we consider table V in
September, the overlap is totally different because 7 ports
appear in the Honeypot and in the Telescope data. To
conclude, even if sometimes, the two methods allow to
get the same results, it appears that the results can be
different and therefore the methods can be considered as
complementary.

Moreover, in these tables (IV and V) an interesting fact
is to have the port 7000 which is known as a backdoor.
In the table VI the ports which are in the most attacked
services with known vulnerabilities are listed. The vul-
nerabilities are common backdoors or ports used for the
spreading of a worm. So, the attackers try also to do
targeted denial of service attacks to open ports which are
not reserved for a normal service.

Thus, we can conclude that ports are opened even if
no service are traditionally associated and for which a

Port Vulnerability
1011 Augudor
1025 Spybot
1433 Spybot
6000 Lovgate
7000 SubSeven
7001 Freak88
7300 NetMonitor
8000 Gaobot

TABLE VI
Some services which are in the most attacked services and

which present known vulnerabilities

vulnerability is known.

V. Related works

The honeypots and honeynets are presented in [8] where
general definitions and platform description are are given.
That reference containts also results about the localization
of the attacks or the observation of worm spreading in the
context of the Leurre.com project. [13] is also an introduc-
tion to the different kinds of honeypot and highlights the
different advantages of them and less frequently addressed
question like legality or privacy problems.

In [14], the same authors propose a more elaborated
method to study the data of the honeynet. In fact, the
authors cluster the different captured network packets
using the Levenshtein distance in order to group packets
which are due to the same attack.

In [9], the goal of the paper is to determine the degree of
the interaction of a honeypot needed to collect useful data,
while in the same time avoiding to collect too much useless
data. Even if it seems that a low level interaction honeypot
is sufficient, the use of a high level of interaction degree is
needed to correctly configure the low level interaction.
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Honeypot Telescope
May

80 35 (63.64)
6667 5 (9.09)
3389 3 (5.45)
7000 3 (5.45)
1107 1 (1.82)
1205 1 (1.82)
1214 1 (1.82)
1235 1 (1.82)
1254 1 (1.82)
1271 1 (1.82)

2004-05-26 2004-05-27 2004-05-28
80 734 (7.61)
21 15 (0.16)
6667 15 (0.16)
139 13 (0.13)
1002 12 (0.12)
22 10 (0.10)
8080 10 (0.10)
110 9 (0.09)
113 8 (0.08)
111 6 (0.06)

80 973 (10.03)
21 17 (0.18)
4662 15 (0.15)
139 13 (0.13)
25 11 (0.11)
8080 11 (0.11)
110 10 (0.10)
113 10 (0.10)
135 10 (0.10)
22 8 (0.08)

80 980 (16.27)
139 14 (0.23)
21 13 (0.22)
22 11 (0.18)
113 10 (0.17)
25 10 (0.17)
8080 9 (0.15)
443 8 (0.13)
110 6 (0.10)
178 6 (0.10)

TABLE IV
The most attacked services during May which have sent SYN/ACK. The first number is the port and the second the number

of unique IP addresses which are concerned. The number between parenthesis is the percentage according to all unique
couple IP address - open port

Honeypot Telescope
September

80 116 (50.88)
7000 49 (21.49)
7100 11 (4.82)
22 9 (3.95)
7200 7 (3.07)
7090 6 (2.63)
3389 4 (1.75)
21 3 (1.32)
113 2 (0.88)
6667 2 (0.88)

2004-09-01 2004-09-02 2004-09-03
80 956 (14.89)
7000 37 (0.58)
7200 13 (0.20)
7100 12 (0.19)
21 10 (0.16)
25 9 (0.14)
22 8 (0.12)
443 8 (0.12)
8080 8 (0.12)
3389 7 (0.11)

80 1100 (19.66)
139 413 (7.38)
7000 30 (0.54)
7100 22 (0.39)
7200 18 (0.32)
21 14 (0.25)
3389 11 (0.20)
22 10 (0.18)
8080 8 (0.14)
25 7 (0.13)

80 508 (17.69)
7000 24 (0.84)
7100 21 (0.73)
7200 18 (0.63)
3389 12 (0.42)
21 11 (0.38)
8080 8 (0.28)
139 5 (0.17)
6000 5 (0.17)
1524 2 (0.07)

TABLE V
The most attacked services during September which have sent SYN/ACK. The first number is the port and the second the
number of unique IP addresses which are concerned. The number between parenthesis is the percentage according to all

unique couple IP address - open port

Network telescopes have been the focus of several re-
search works. In [15], the authors assume a simplified
model and propose a simple formula to compute the
probability of observing a denial of service attack with a
telescope. An updated result in [16] shows with another
telescope that the previous model is to simple and that
spoofed addresses are not uniformly randomly generated.
An interesting work is presented in [15] and leads to
the evaluation of the the aggressivity of denial of service
attacks. Finally, the authors in [5] propose to use high
interactive telescopes with emulated services in order to
learn more application specific attacks. Network telescopes
are also name darknets and the authors in [17] introduces
the greynets which are small telescopes with some unused
addresses scattered within a set of used IP addresses.
They evaluate their efficiency depending on the number
of probes, ie. the number of unused addresses.

The reference book in system administration [7] includes
several examples on the use of graphs and the centrality
of a node by using eigen vectors. The first work applying
these techniques to security monitoring is [3], where the
email exchanges in the enron database is analyzed in order
to prove that that some employees had inside level infor-
mation on the fraudulos management. The same method
was applied to network security in [18] for end user level
activity profiling. The goal was to detect if the websites
visited by employes can be associated to a normal type of
behavior and how malware spreading can be detected if

abnormal activity is observed.

VI. Conclusion

In the work presented in this paper we were challenged
by several research questions. Firstly, we needed a generic
method to analyze both telescope and honeynet data. The
main goal was to compare these two ways of gathering ma-
licious network traffic. While a telescope monitors a large
range of consecutive IP addresses, the honeynet monitors
a limited set of IP addresses dispersed over the Internet.
The amount of data is much higher for the telescope if
compared to the honeyet. A second contribution of our
work was to assess the utility of each method to collect
network information. For instance, we have observed that
a honeynet is sufficient for learning the distribution of
source addresses, contrary to telescope for which a high
redundancy might become an obstacle in the analysis.

On the other hand, both methods did provide similar
results about the services/ports that are attacked, but
the telescope is superior when detecting less frequently
attacked services. This is quite obvious, due to the much
higher data volume. Concerning the used attack tools, the
honeynet permitted to show that these are more and more
diversified and sophisticated. Regarding the misconfigura-
tions, the network telescope and the honeynet are about
equivalent for most of the studied cases.

The central concept underlying our work are the inter-
section graphs. These graphs have not been used widely
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in the field of network security. The advantage of this
method is that analyzing aggregated data is possible by
considering the curve of the maximum locality statistic
and the maximum standardized locality statistics. This is
possible because these plots are closely related to the trend
of the variation in the topology of a graph. This method
allows also to identify the nodes, which are important in
the graph. Importance can be assimilated with monitoring
agents that observe unusual network activities. The main
difficulty encountered during our work is related to pro-
cessing such large datasets: data counts to more than 200
GB and this task pushed our computational resources to
their limits. Future work will address more advanced data
mining and statistical analysis techniques.

Several papers individually analyzed either telescope
data or honeynet data, but none had tried yet to compare
these two data source simultaneously. Our work is to the
best of our knowledge the first attempt to compare the
two methods over the same time period.
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