
HAL Id: inria-00393029
https://hal.inria.fr/inria-00393029

Submitted on 9 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing Domain-Specific Component Frameworks
through Architecture Refinement

Frédéric Loiret, Michal Malohlava, Ales Plsek, Philippe Merle, Lionel
Seinturier

To cite this version:
Frédéric Loiret, Michal Malohlava, Ales Plsek, Philippe Merle, Lionel Seinturier. Constructing
Domain-Specific Component Frameworks through Architecture Refinement. 35th EUROMICRO Con-
ference on Software Engineering and Advanced Applications (SEAA), Aug 2009, Patras, Greece.
pp.375-382. �inria-00393029�

https://hal.inria.fr/inria-00393029
https://hal.archives-ouvertes.fr

Constructing Domain-Specific Component Frameworks through Architecture

Refinement

Frédéric Loiret, Aleš Plšek, Philippe Merle, Lionel Seinturier

INRIA-Lille, Nord Europe, Project ADAM

USTL-LIFL CNRS UMR 8022, France

Email: firstname.lastname@inria.fr

Michal Malohlava

Distributed Systems Research Group

Charles University in Prague, Czech Republic

Email:firstname.lastname@dsrg.mff.cuni.cz

Abstract

Recently, a plethora of domain-specific component frame-

works (DSCF) emerges. Although the current trend empha-

sizes generative programming methods as cornerstones of

software development, they are commonly applied in a costly,

ad-hoc fashion. However, we believe that DSCFs share the

same subset of concepts and patterns. In this paper we

propose two contributions to DSCF development. First, we

propose DomainComponents — a high-level abstraction to

capture semantics of domain concepts provided by contain-

ers, and we identify patterns facilitating their implementa-

tion. Second, we develop a generic framework that auto-

matically generates implementation of DomainComponents

semantics, thus addressing domain-specific services with

one unified approach. To evaluate benefits of our approach

we have conducted several case studies that span different

domain-specific challenges.

1. Introduction

Component-based Software Engineering (CBSE) [8] has

emerged as a technology for the rapid assembly of flexible

software systems, where the main benefits are reuse and

separation of concerns. The success of this technology has

been proved by variety of its applications, from the general

component frameworks [4], [6], [9] to domain specific

component frameworks (DSCF) addressing a wide scale of

challenges — embedded [25] or real-time constraints [20],

[14], dynamic adaptability [13], distribution support [24],

and many others.

DSCF offers a domain-specific component model and

a tool-support that allow developers to address domain-

specific challenges by using appropriate abstractions avail-

able already at the component-model level. To achieve

separation of concerns, domain-specific services (such as

dedicated memory ares, tasks parameters, security, ...), in

the literature [12] referred to also as non-functional require-

ments/aspects/properties/concerns, are usually deployed in

the runtime platform — composed of a set of custom made

containers [18].

Today, a plethora of DSCFs emerges. However, based on

our experience, from a concise and specifically designed

component model [22] to a full fledged component frame-

work [20] is a long road. Although the current trend empha-

sizes generative programming methods [11] as cornerstone

of software development, generative methods are usually

tailored to specific domains and applied in a costly, ad-hoc

fashion which prevents from any reuse or amelioration of

solutions to a framework construction. We however believe

that DSCFs share the same concepts and patterns to their

construction and application.

Therefore, this paper brings two key contributions. First,

we propose Domain Components – a high-level abstrac-

tion of domain-specific services provided by the container.

Second, we develop a generic framework employing tech-

niques of generative programming [11] to create custom and

component-based runtime platforms leveraging development

of Domain Components. Moreover, we introduce architec-

ture optimizations independent from the target domains,

which contributes to better performance of resulting applica-

tions. Finally, to evaluate our approach, we have conducted

several case studies addressing domain-specific challenges

and we report on the benefits acquired.

To reflect the goals, the paper is structured as follows.

Section 2 stipulates the context of this work and clarifies

more precisely our goals. In Sect. 3 we introduce the basic

concept that we employ — Domain Components and the

Generic Framework. In Sect. 4 we describe HULOTTE—

our prototype implementation. Section 5 presents the case

studies that we have conducted to evaluate the proposed

approach. We discuss related work in Sect. 6. Section 7

concludes and draws future directions of our research.

2. Context and Goals

Domain-Specific Component Frameworks and their

Application. Typically, DSCF is composed of a component

model and the tool support which permit assembling, de-

ploying and executing demanded applications [5]. Moreover,

such component model defines the relevant architectural

concepts, called domain-specific concepts, according to the

(a) Current Methodology: Using Domain-Specific Frameworks

(b) Our Proposal: Using a Generic Framework

Figure 1. Development Methodologies of Domain-

specific Component Application

requirements of the targeted application domain (e.g. to

address the distribution support or real-time constraints).

A recognized methodology of developing DSCF [10] is

composed of several steps as it is illustrated on Fig. 1a.

In this case, each component model (step 1) is used to

develop functional concerns of the application — functional

components. Typically, functional components encapsulate a

business logic of an application.

Afterwards, the framework tool-support is employed to

create a runtime platform, in Fig. 1a step 2. The runtime

platform is composed of a set of containers [18] that encap-

sulate functional components, and its goal is to relieve the

developer from dealing with domain-specific requirements

and to implement the execution support. Current trend in

developing the runtime platform emphasizes a generative

programming approach. While this task can be seen only

as an engineering challenge, the runtime platform plays

a crucial role in deciding whether the component model

itself will be successful in real-life applications, since its

implementation has a direct impact on the performance of

a given application. Here, different optimizations should be

employed to mitigate notoriously known problem of CBSE

system — performance overhead (caused e.g. by intercom-

ponent communication). Finally, functional components and

the runtime platform are assembled together to form the

resulting application, Fig. 1a step 3.

We distinguish two types of development roles involved

in this process — application developer and framework

developer. Application developer is responsible for

development of functional components and specification

of domain-specific requirements — in Fig. 1a step 1.

The role of the framework developer is to design and

implement the runtime platform generation process, and

the domain-specific requirements defined by the application

developer — in Fig. 1a step 2 and 3.

Our Proposal. Considering the presented process, we can

notice that for each domain, a different process is used.

However, the steps 2 and 3 share many similar concepts

across different application domains (from code generation

tasks, application instating and deployment, to tool-chain de-

velopment etc.). Moreover, they are usually implemented in

an ad-hoc manner without any reuse. We therefore propose

a new development process presented in Fig. 1b. As the

cornerstone we use a generic component model that is easily

extendable towards different application domains, in Fig. 1b

step 1. Consequently, since all domain specific models share

the same concept, an unified approach to runtime platform

generation can be employed in steps 2 and 3. Therefore, we

can summarize the key contributions of our paper:

• A Generic Component Model and Domain Com-

ponents. We propose Domain Components — a unified

approach to specification of domain-specific requirements

presented in custom containers. This allows the application

developer to easily manipulate domain specific requirements

since they are represented as first-class entities and are sepa-

rated from the functional concerns. Furthermore, we identify

common patterns that are used by framework developers to

implement semantics of Domain Components.

• A Framework To Build Component Frameworks.

We develop a framework, in the literature also refereed as

meta-framework [5], composed of high-level tools, methods,

and patterns allowing framework developers to generate

runtime platforms in a generic way according to concerns

captured by Domain Components. Within our approach,

the platform is built using component assemblies and is

based on our generic component model. Moreover, since we

are able to reason about the whole system (functional and

platform concerns) using common concepts (components,

assemblies), various architecture optimizations independent

from the target domains can be introduced, which contributes

to better performance of resulting applications.

3. Constructing Domain-Specific Component

Frameworks

In this section, we introduce the basic concepts of our

generic framework presented in Fig. 1 b). As the cornerstone

of our proposal we define a generic component model,

depicted in Fig. 2. The model is divided into core- and

platform-level. First, in Sect. 3.1, we present the core-level

concepts and introduce Domain Components — special

components for expression of domain-specific concerns in

the application. Furthermore, responsibilities of application

and framework developers are exactly defined. Second, in

Sect. 3.2 we introduce the runtime platform construction

process – the architecture refinement. In this process, frame-

work developer refines the application architecture through

the architectural patterns that we define in the platform-level

of the model.

3.1. A Generic Component Model

The model is based on the popular CBSE prin-

ciples [4], containing the basic entities Component,

Interface, Binding, Primitive and Composite

component. Moreover, the component model adopts the

sharing paradigm [4] — one specific component can be a

subcomponent of more than one composite component.

Figure 2. Component Metamodel and Domain Compo-

nent

A brand new entity that we introduce is Domain

Component, inspired by [20]. The main purpose of domain

components is to model domain-specific requirements in

a unified way. Within our model, domain components are

reified as composite components. The sharing paradigm

allows developers to fully exploit this concept. By de-

ploying subcomponents into a certain domain component,

the developer specifies that these subcomponents or the

bindings between them support the domain-specific property

represented by the domain component. Moreover, a domain

component contains a set of attributes parameterizing its

semantics.

The approach of modeling domain-specific aspects as

components brings advantages commonly known in the

component-based engineering world such as reusability,

traceability of selected decisions or documentability of so-

lution itself. Also, by preserving a notion of a component,

it is possible to reuse already invented methods (e.g. model

verification) and tools (e.g. graphical modeling tools) which

were originaly focused on functional components. If we go

further and retain domain components at runtime then it is

possible to reconfigure non-functional properties represented

by domain components on-the-fly.

We illustrate the DomainComponent concept in Fig. 3a.

Components Writer, Readers, MailBox, Library

and their bindings represent a business logic of the applica-

tion. The domain component DC1 encapsulates MailBox

and Library, thus defining a domain-specific service (e.g.

logging of every interface method invocation) provided by

these two components. At the same time, component DC2

represents a different service (e.g. runtime reconfiguration)

and defines that this service will be supported by com-

ponents Writer and Readers. Therefore, the domain-

specific concerns are now represented as first-class entities

and can be manipulated at all stages of component-software

development lifecycle.

The role of the application developer is therefore to

create and implement functional components and to spec-

ify domain-specific requirements by deploying functional

components into domain components. While the applica-

tion developer is aware of the semantics behind domain

components, he does not provide their implementation and

therefore can fully focus on functional concerns of the ap-

plication. To give an example, a domain specific component

ThreadArea can specify execution context (an executing

thread and its properties) of an active functional component,

however, the application developer does not need to know

how these properties are enforced at runtime. For more

examples see Sect. 5.

The role of the framework developer is to define and

implement semantics of domain components. First, his re-

sponsibility is to define domain components according to

the needs of application developers and to define the rules

constraining application of domain components at the func-

tional level. Afterwards, the framework developer designs

and implements semantics of domain components using the

platform-level concepts — see Fig. 2, and the architectural

patterns that we introduce in Sect. 3.2.

3.2. Architecture Refinement of Domain Compo-

nents

The key role of the framework developer is therefore

to implement semantics of domain-specific components.

When considering domain components and the functionality

they express, they impact two core architectural concepts:

Functional Component and Binding. We further refer to

this phenomenon as architectural refinement of core-level

concepts through the platform-level concepts.

A functional component typically implements the business

part — a code provided by the application developer, and re-

quires the platform part that implements the domain-specific

services — the container. By the Functional Component

Refinement we mean that the set of domain specific services

is determined by the domain components, consequently

the container architecture of a functional component is

refined with according platform concepts. A domain-specific

service can also pose special requirements on the inter-

component communication (e.g. logging, broadcast com-

munication management), in these cases we speak about

Binding Refinement. From our current experiment in using

our approach, we claim that these two refinement points

(components and bindings) allow to specialize the core-

level concepts according to arbitrary domain-specific re-

quirements. We therefore define two architectural patterns,

Writer
Readers

LibraryMailBox

DC1: Logging

DC2: Runtime Reconfiguration

DC3: Memory Domain

(a) Domain Components

Example

(b) ChainComposite Pattern

(c) ContainerComposite Pattern

Figure 3. Domain Components and Architectural Patterns

in Sect. 3.2.1, that address the challenge of the architec-

tural refinement and allow framework developers to develop

properly implementations of domain-specific concepts.

3.2.1. Architectural Patterns. The key purpose of archi-

tectural patterns is to allow framework developers to define

semantics of domain components and thus to refine the

application architecture in a systematic and programmatic

way. The patterns are designed to implement any type of

a domain-specific service that can potentially be reflected

by a container, they therefore define architecture invariants,

design and composition rules for the platform-level. In

Fig. 2, the platform-level presents two architectural pat-

terns: ChainComposite and ContainerComposite,

and we clarify them in the remainder of this section.

ChainComposite Pattern is defined as a composite com-

ponent, the subcomponents of such a composite are special

components — interceptors. Within the ChainComposite

pattern, the interceptor components are bounded via their in-

coming and outgoing interfaces in an acyclic list, as depicted

in Fig. 3a. Here, the IN and OUT interface signatures of the

interceptors are not necessarily identical, this allows devel-

opers to identify interceptors as adaptors of the intercepted

execution flow. The interceptor itself could be a composite

component allowing framework developer to implement

complex intercepting mechanisms. The ChainComposite

component at the platform level refines a binding specified at

the functional level, thus the pattern is similar to the concept

of the connector [17].

ContainerComposite Pattern, initially introduced in [19],

is also specified as a composite component and reifies a

container of a functional component. As defined in Fig. 2,

it is composed of ChainComposite components and

Controller components. The ContainerComposite

pattern is applied on a primitive (see example in Fig. 3b) or

composite functional component as follows:

• A set of Controller components implementing various

domain-specific services and meta-data influencing the

whole component (e.g. lifecycle management, recon-

figuration management) is composed in the container.

Moreover, a special control interfaces are provided to

allow an access to these services from outside of the

component.

• For each interface of the functional component

a ChainComposite pattern is used.

ChainComposite components can be interconnected

by TRAP interfaces with the controllers, thus allowing

centralized management of strategies for interception

mechanisms.

3.2.2. Architectural Refinement Process. Once we specify

the functional architecture containing domain components

and also architectural patterns for these domain components

we employ the architecture refinement process – a process

where the core-level architecture specified by the applica-

tion developer is refined into an architecture where both

functional architecture and runtime platform architecture

are designed using the platform-level concepts. As a result

of this process we obtain a runtime platform architecture

where both functional and domain-specific concerns are

represented. The crucial point of the architecture refine-

ment process is therefore the propagation of domain-specific

concerns into the architecture. The important feature of the

architecture refinement process is its variability and exten-

sibility to allow employing different refinement strategies

as well as support for new domain-specific components,

validation and optimizations. All properties stated above are

reflected in the implementation of the architecture refinement

process called HULOTTE, described in Sect. 4.

4. HULOTTE Framework

In this section we describe HULOTTE framework — an

extensible tool-set that we have developed to implement

the architecture refinement process. However, rather than

to implement the whole process in a single transformation

step that can be error-prone and hard to extend, we employ

a step-wise refinement process [2] in order to refine the

high-level concepts in our architecture gradually in several

stages. This technology allows framework developers to

easily modify and extend this process with new domain-

component definitions and semantics. Consequently, we

employ methods of generative programming to compose

functional code implemented by the application developer

with the runtime platform implementation.

To develop the framework, we have applied the tech-

nology for development of extensible tool-sets introduced

in [15]. HULOTTE is thus developed purely using CBSE

paradigm allowing framework developers seamless exten-

sions towards different refinement strategies. The HULOTTE

framework, depicted in Fig. 4, consists of three main units

— front-end processing a description of a functional archi-

tecture stored in ADL, middle-end responsible for a step-

by-step architecture refinement, and backend which serves

as a target domain specific implementation generator.

Figure 4. Overview of the Internal HULOTTE Implemen-

tation Structure

The motivation for decomposition of the process into three

independent units is to separate responsibilities and concerns

between the transformation steps. The front-end allows us

to process architectures represented by different notations

(e.g. Fractal-ADL, UML, ACME) and to transform them into

an independent internal representation. Consequently, the

middle-end, executing the architecture refinement process,

is independent from the architecture description format.

Finally, the back-end permits generation of different types

of target implementations according to deployment require-

ments (e.g. C for embedded devices, Java for enterprise

applications). In the remainder of this section we highlight

interesting issues of each part of the HULOTTE framework.

Front-end implements the translation layer that proceeds

an architecture description — in our case given in an

extended Fractal-ADL (see [20] for an example), and trans-

forms it into an internal EMF-model based representation.

The translation process gradually proceeds ADL artifacts

(component, interface, domain component, binding) and for

each applies a dedicated translation component responsible

for extracting the information and building an appropriate

representation in the internal model. The translation process

can be extended by appending a new translator component.

The new translator typically reflects a domain-specific exten-

sion of ADL (e.g. DistributedNode, ThreadArea presented in

Sect. 5).

Middle-end is the central part of the HULOTTE frame-

work and implements the refinement process. Its task is to

process the architecture description in the form of the EMF

model produced by the front-end, apply defined architecture

refinements — creating, connecting, or merging model el-

ements according to employed transformations. Internally,

the middle-end is composed of three processing units —

PlatformBuilder, Validator, and Optimizer.

PlatformBuilder is responsible for the model refinement

and consists of a chain of component builders (for im-

plementations of interceptors, controllers, and components)

where each chain participates in the refinement process.

From the builders the runtime platform components are

instantiated either by loading definitions from an off-the-

shelf component library or programmatically, via the high-

level API provided by the framework. The selection and

execution order of chains is controlled by MainBuilder Dis-

patcher that recursively explores the platform architecture

and applies appropriate builder chains. Moreover, refining

the internal structure as a chain of ComponentBuilders

encourages extensibility of the whole process, since a new

domain-specific builder can be easily introduced.

Validator verifies that resulting platform architectures are

in conformance to the architectural constraints and invariants

of domain components. The task is not only to verify

whether the architectural patterns were applied correctly

but also to assert that domain components were specified

with respect to their constraints (e.g. to arbitrarily apply

two different domain components over the same functional

component is sometimes not meaningful, see the Limitations

of the Approach in Sect. 5.3).

Optimizer introduces optimization heuristics in order to

mitigate the common overhead of component-based ap-

plications. The heuristics focus on reducing interceptions

in inter-component communication which usually causes

performance overhead, and on merging architecture elements

in order to decrease memory footprint. A detailed description

of the heuristics provided by our framework is out of the

scope of this paper, we refer the interested reader to [20].

Moreover, since a complete architecture of the system is

available at this stage, additional architecture optimizations

can be introduced while still being independent from the

target domain.

Back-end part of the framework is also highly config-

urable in order to reflect current target domain and chosen

implementation language. In the case of our implementation

of HULOTTE, the back-end is a collection of Java code

generators generating Java classes from particular model

elements.

5. Evaluation

5.1. Case Study: A Framework for Real-time Java

based Systems

The initial case study introduces a component-based

framework for RTSJ-based real-time and embedded sys-

tems [20]. As the cornerstone of the framework we have

defined a domain-specific component model [22] which fully

reflects the specifics of Real-time Specification for Java

(RTSJ) [3]. The key motivation for this case study is to

employ the domain component concept and the HULOTTE

framework in order to achieve a better separation of concerns

of RTSJ systems and to mitigate complexities of the RTSJ-

based development process.

(a) RCD Application

Architecture

(b) Runner and

CollisionDetector Containers

Figure 5. Real-Time Collision Detector

Therefore, the domain component concept is used to

represent RTSJ concerns. We define MemoryArea domain

component to express different allocation areas of RTSJ

systems - heap, scoped memory, and immortal memory.

Furthermore, ThreadDomain component is defined to

represent various execution concepts enforced by RTSJ -

non-realtime, real-time and non-heap real-time, and to dis-

tinguish between active and passive functional components.

Consequently, the HULOTTE patterns were used to imple-

ment defined domain components. The ChainComposite

pattern is employed to implement MemoryArea components

by providing correct switching between allocation contexts

and supporting cross-area communication. Similarly, the

ContainerComposite patterns implements containers

of components deployed in the ThreadDomain compo-

nent.

Real-time Collision Detector. To apply our domain spe-

cific framework, we have implemented a large case study —

Real-time Collision Detector (RCD) introduced in [1]. The

RCD algorithm is about 25K Loc and its task is to proceed

a periodic stream of aircraft positions and determine if any

of these aircrafts are on a collision course.

Figure 5a shows a snippet of the RCD architecture de-

signed in our approach. The Runner component represents

the starting point of the application, by deploying it in the

ThreadDomain:NHRT component we precisely define its

execution context. Furthermore, ScopedMemory2 encap-

sulates functional components responsible for computations

performed in every iteration of the algorithm and thus imple-

ments deallocation of temporal data between every iteration,

results of these computations are stored in a StateTable com-

ponent defined as a persistent by the ScopedMemory1 do-

main component. Finally, the patterns introduced in Sect. 3.2

were employed to implement domain components. In Fig. 5b

we demonstrate application of the ChainComposite pat-

tern that implements cross-scope communication between

MotionCreator and StateTable component; and application

of the ContainerComposite pattern that was used to

implement the ThreadDomain component for the Runner

component.

Evaluation. When developing the RCD example we can

witness several benefits of our approach. The domain spe-

cific component model [22], designed through the domain

component concept, allowed us to construct a specific frame-

work [20] addressing fully the challenges of RTSJ-based

software development. The domain components simplified

expression of RTSJ specific properties, since these prop-

erties are present in the architecture as first-class entities.

A full separation of functional and real-time concerns is

achieved, therefore, the functional code is more readable

— reflecting the functional needs of the application without

any constrains imposed by the real-time properties. As the

second benefit of our approach we consider application of

the HULOTTE tool-chain for automatic generation of the

runtime platform implementing RTSJ-related code, which is

highly error-prone when implementing by hand. Moreover,

performed benchmarks published in [20] showed that our

approach does not introduce any overhead comparing to

purely object-oriented methods.

5.2. Other Applications and Lessons Learned

Apart from the presented case study, we have validated

our approach in studies spanning various domains.

In [16] we have introduced a new domain component

— DistributionNode (DN), to address challenges of dis-

tribute applications. A functional component in DN will

be thus deployed on the corresponding node together with

its runtime support extended towards the specifics of dis-

tributed communication. The role of the framework devel-

oper is therefore to apply the ChainComposite pattern on

each distributed binding, consequently corresponding stubs

and skeletons will be refined as a subcomponents of the

ChainComposite and automatically generated by the

HULOTTE framework. Moreover, the framework generates

each DN component as a self-standing application allowing

deployment of the components into the corresponding nodes.

The evaluation showed that the approach brings significant

ease into a distributed system development.

In [21] we have addressed the challenges of ambient and

ubiquitous computing by designing dedicated domain com-

ponents. The HULOTTE framework allowed us to implement

specifics of ambient communications using the architectural

patterns.

Furthermore, we have conducted a study on reflective

and reconfigurable services, a challenging topic addressed

by many component frameworks [4], [6], [9], [13]. In

our approach, such requirements can be specified by ded-

icated domain component - ReconfigurationDomain.

The achieved result corresponds to the Fractal component

model [4]. The non-functional properties are specified by do-

main components and architectural patterns are used during

their development, see Fig. 6, thus reducing the complexity

for application developers. Moreover, our approach outper-

forms Fractal by using the Domain Component concept,

since we are able to exactly specify where the introspection

and reconfiguration services will be supported, which allows

us to pay for the runtime flexibility only where needed.

Figure 6. Applying the Architectural Patterns to Achieve

Reconfigurable Components

When conducting these studies, we learned that the ap-

proach scales very well for various domain-specific prop-

erties orthogonal to business logic, while reducing com-

plexity of developed applications. Moreover, the framework

structure allowed us to easily extend the set of supported

domains.

5.3. Limitations of the Approach

In this paper we focus on definition of domain com-

ponents and their integration in the HULOTTE framework.

However, an open research issue still remains specifica-

tion of policies and constraints that regulate application

of domain components at the functional level. Since some

domain-specific services are non-orthogonal - competing or

dependent on each other, their application must be exactly

delimited in a form of policies that will manage non-trivial

combinations of domain-specific services. This is however

out of the scope of the paper, we plan to pursue this topic

in our future work.

6. Related Work

Applying generative methods [11] to propose a general

approach to component framework development is not a

novel idea. Bures et. al. [5] summarize properties and

requirements of current component-based frameworks and

proposes a generative method for generating runtime plat-

forms and support tools (e.g. deployment tool, editors,

monitoring tools) according to specified features reflecting

demands of a target platform and a selected component

model. Comparing to our approach, the authors provide the

similar idea of generation runtime platform, however they

merely focus on runtime environment and related tools and

neglect a definition of component model requirements by

claiming that the proposed approach is generative enough to

be tailored to reflect properties of contemporary component

models.

Similarly, Coulson et. al. [9] argue for the benefits and

feasibility of a generic yet tailorable approach to component-

based systems-building that offers a uniform programming

model that is applicable in a wide range of systems-oriented

target domains and deployment environments.

Furthermore, many state-of-the-art domain-specific com-

ponent frameworks propose a concept of containers with

controllers refined as components, e.g. DiSCo frame-

work [23] addressing future space missions where key chal-

lenges are hard real-time, embedded constraints, different

levels of application criticalities, and distributed computing.

Cechticky et al. [7] presented the generative approach to

automating the instantiation process of a component-based

framework for such on-board systems.

On the other hand, aspect-oriented programming (AOP) is

a popular choice to non-functional services implementation.

Moreno [18] argued that non-functional services should be

placed in the container and showed how generative program-

ming technique, using AOP, can be used to generate custom

containers by composing differen non-functional features.

This corresponds with our approach, however, as we have

shown in [19], aspects can also be represented as domain

components — AspectDomain component, thus allowing de-

velopers to leverage the aspect-techniques to the application

design layer, and to represent them as components.

7. Conclusion and Future Work

The recent boom of domain-specific component frame-

works (DSCF) brings a challenge of constructing them

effectively by enforcing reuse, since ad-hoc approach to their

implementation still dominates.

This paper brings the following contributions. First, we

have proposed Domain Components — a unified approach

that clarifies specification and manipulation of domain-

specific requirements presented in custom containers. More-

over, we have identified common patterns that facilitate

implementation of Domain Component semantics. Second,

we have developed a generic framework that uses gener-

ative programming methods to instantiate domain-specific

applications together with their runtime platform. Finally,

the whole approach is highly transparent since it is based

on a component model with a configurable tool-set, which

allow developers to easily extend it towards various domains.

To evaluate benefits of our approach, we have conducted

various case studies that span different domain challenges.

The results showed that our approach supports clear sepa-

ration of functional and non-functional concerns of applica-

tions. Furthermore, proposed architectural patterns together

with employed generative programming methods mitigate

complexities of implementation of domain-specific concerns.

Additionally, as we have shown in [20], our approach intro-

duce various optimizations that reduce the usual overhead

of component-based applications.

As for our future work, an open research issue still

remains consistent and symmetric approach to construction

of containers needs to be specified in a form of policies

that will manage non-trivial combinations of domain-specific

services.

References

[1] C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and
T. Zhao. Scoped Types and Aspects for Real-time Java
Memory Management. Real-Time Syst., 37(1):1–44, 2007.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
wise Refinement. In ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, pages 187–
197, Washington, DC, USA, 2003. IEEE Computer Society.

[3] G. Bollela, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Addison-
Wesley, 2000.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Ste-
fani. The Fractal Component Model and its Support in Java.
Software: Practice and Experience, 36:1257 – 1284, 2006.

[5] T. Bures, P. Hnetynka, and M. Malohlava. Using a Product
Line for Creating Component Systems. In Proceedings of
ACM SAC 2009, Honolulu, Hawaii, U.S.A., 2009.

[6] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model. In
SERA ’06: Proc. of the 4th International Conference on Soft-

ware Engineering Research, Management and Applications,
pages 40–48, USA, 2006. IEEE Computer Society.

[7] V. Cechticky, P. Chevalley, A. Pasetti, and W. Schaufelberger.
A Generative Approach to Framework Instantiation. Proceed-
ings of GPCE, pages 267–286, Sept. 2003.

[8] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming, 2nd ed. Addison-Wesley Profes-
sional, Boston, 2002.

[9] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan. A Generic Component Model
for Building Systems Software. ACM Trans. Comput. Syst.,
26(1):1–42, 2008.

[10] I. Crnkovic and S. Larsson. Building Reliable Component-
based Systems. Addison-Wesley Professional, Boston, 2002.

[11] K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley Publishing Co., 2000.

[12] F. Duclos, J. Estublier, and P. Morat. Describing and using
non functional aspects in component based applications. In
AOSD ’02: Proceedings of the 1st international conference
on Aspect-oriented software development, pages 65–75, New
York, NY, USA, 2002. ACM.

[13] E. Gjørven, F. Eliassen, and R. Rouvoy. Experiences from
Developing a Component Technology Agnostic Adaptation
Framework. In CBSE, pages 230–245, 2008.

[14] H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren.
SaveCCM - A Component Model for Safety-Critical Real-
Time Systems. In EUROMICRO ’04: Proceedings of the 30th
EUROMICRO Conference, pages 627–635, Washington, DC,
USA, 2004. IEEE Computer Society.

[15] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani.
Supporting Heterogeneous Architecture Descriptions in an
Extensible Toolset. In ICSE ’07: Proceedings of the 29th in-
ternational conference on Software Engineering, pages 209–
219, Washington, DC, USA, 2007. IEEE Computer Society.

[16] M. Malohlava, A. Plšek, F. Loiret, P. Merle, and L. Sein-
turier. Introducing Distribution into a RTSJ-based Component
Framework. In 2nd Junior Researcher Workshop on Real-
Time Computing (JRWRTC’08), Rennes, France, 2008.

[17] N. Medvidovic, E. M. Dashofy, and R. N. Taylor. The Role
of Middleware in Architecture-Based Software Development.
International Journal of Software Engineering and Knowl-
edge Engineering, 13(4):367–393, 2003.

[18] G. A. Moreno. Creating custom containers with generative
techniques. In GPCE ’06: Proceedings of the 5th interna-
tional conference on Generative programming and component
engineering, pages 29–38, New York, NY, USA, 2006. ACM.

[19] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A
Component-based and Aspect-Oriented Model for Software
Evolution. Int. Journal of Computer Applications in Technol-
ogy, 31(1/2):94–105, 2008.

[20] A. Plšek, F. Loiret, P. Merle, and L. Seinturier. A Component
Framework for Java-based Real-time Embedded Systems.
In Proceedings of 9th International Middleware Conference
(Middleware’08), Leuven, Belgium, 2008.

[21] A. Plšek, P. Merle, and L. Seinturier. Ambient-Oriented
Programming in Fractal. In Proc. of the 3

rd Workshop on
Object Technology for Ambient Intelligence at ECOOP, 2007.

[22] A. Plšek, P. Merle, and L. Seinturier. A Real-Time Java
Component Model. In Proceedings of the 11th International
Symposium on Object/Component/Service-oriented Real-Time

Distributed Computing (ISORC’08), pages 281–288, Orlando,
Florida, USA, May 2008. IEEE Computer Society.

[23] M. Prochazka, S. Fowell, and L. Planche. DisCo Space-
Oriented Middleware: Architecture of a Distributed Runtime
Environment for Complex Spacecraft On-Board Applications.
In 4th European Congress on Embedded Real-Time Software
(ERTS 2008), Toulouse, France, 2008.

[24] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and
I. Crnkovic. A Component Model for Control-Intensive
Distributed Embedded Systems. In CBSE, pages 310–317,
2008.

[25] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala Component Model for Consumer
Electronics Software. Computer, 33(3):78–85, 2000.

	Introduction
	Context and Goals
	Constructing Domain-Specific Component Frameworks
	A Generic Component Model
	Architecture Refinement of Domain Components
	Architectural Patterns
	Architectural Refinement Process

	Hulotte Framework
	Evaluation
	Case Study: A Framework for Real-time Java based Systems
	Other Applications and Lessons Learned
	Limitations of the Approach

	Related Work
	Conclusion and Future Work
	References

