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Abstract

The numerical simulation of spiking neural networks requires particular attention. On the
one hand, time-stepping methods are generic but they are prone to numerical errors and need
specific treatments to deal with the discontinuities of integrate-and-fire models. On the other
hand, event-driven methods are more precise but they are restricted to a limited class of neuron
models. We present here a voltage-stepping scheme that combines the advantages of these two
approaches and consists of a discretization of the voltage state-space. The numerical simulation
is reduced to a local event-driven method that induces an implicit activity-dependent time
discretization (time-steps automatically increase when the neuron is slowly varying). We show
analytically that such a scheme leads to a high-order algorithm so that it accurately approximates
the neuronal dynamics. The voltage-stepping method is generic and can be used to simulate
any kind of neuron models. We illustrate it on nonlinear integrate-and-fire models and show
that it outperforms time-stepping schemes of Runge-Kutta type in terms of simulation time and
accuracy.
Keywords: Voltage-stepping; Event-driven; Time-stepping; Spiking neural networks

1 Introduction

Neuronal information processing involves action potentials, or spikes. Recent findings in neu-
roscience emphasize the importance of spike timing precision. Individual spike timing seems to
play a key role in the coding of sensory information, as some neurons fire no more than one spike
during the entire presentation of the stimulus, e.g. Kenyon cells in the insect olfactory system
(Perez-Orive et al., 2002) or cortical cells in the rat auditory system (DeWeese et al., 2003). In
biological systems where the processing-speed is required to be high, the timings of spikes are
very precise and reliable (Mainen and Sejnowski, 1995; VanRullen et al., 2005). Submillisecond
precision of spike timing has been reported (Bair and Koch, 1996; Ariav et al., 2003) and small
differences in the precision of synaptic events have a severe impact on the plasticity of synapses.
Numerical simulations of neural networks are commonly used to explore the spike coding paradigm.
It is thus crucial to have accurate and efficient schemes to simulate spiking neural networks.
Different strategies have been developed for the simulation of spiking neural networks: event-
driven schemes where the timings of spikes are calculated exactly and time-stepping methods
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that approximate the membrane voltage of neurons on a discretized time (see Brette et al.
(2007) for a review of simulation environments). In pure event-driven strategies the spike tim-
ings are analytically given and are calculated with an arbitrary precision (up to the machine
precision). This scheme allows an exact simulation where no spike is missed. This method
has become increasingly popular (Mattia and Giudice, 2000; Makino, 2003; Rochel and Mar-
tinez, 2003; Brette, 2006; Brette, 2007; Rudolph and Destexhe, 2006; Tonnelier et al., 2007).
However only a limited class of simplified neuron models of integrate-and-fire type is amenable
to exact simulations.
Time-stepping schemes are generic since they can be applied to any model. Classical integra-
tion schemes of Runge-Kutta type have to be modified to properly handle the discontinuities of
integrate-and-fire neuron dynamics generated by the resettings and the synaptic events (Hansel
et al., 1998; Shelley and Tao, 2001). However when the membrane potential crosses threshold
twice during one time step (the first crossing is from below and the second is in the downward
direction), the spike event may be missed. Due to the discontinuous nature of integrate-and-fire
network, a failure to detect a spike may cause dramatic changes on the behavior of the sys-
tem and artificial dynamical states may be created if the time step is badly chosen (Hansel et
al., 1998). Moreover a fundamental limitation on the accuracy of these methods is imposed by
the smoothness of the postsynaptic potentials (Shelley and Tao, 2001).
In this paper we define a generic scheme for the simulation of neural networks based on a voltage-
space discretization that we call voltage-stepping scheme. This scheme retains the advantages
of the accuracy and the activity-dependent computational cost of event-driven strategies while
allowing a generic simulation of any neural model. The greatest asset is to define an implicit
and adaptive time-discretization for each neuron that depends on its own activity. A neuron
that evolves slowly allows long time steps and has a low computational cost whereas small
time steps are required for fast varying neurons. The proposed strategy has a clear advantage
when the inter-event period is greater than the computational time step used in classical time-
stepping methods. Here we show that our implicit and variable time-stepping scheme allows
high-order integration methods. Since recent efforts have been made on the numerical simu-
lations of integrate-and-fire networks (Brette, 2006; Brette, 2007; Brette et al., 2007; Ros et
al., 2006; Morrison et al., 2007; Rangan and Cai, 2007; Rudolph and Destexhe, 2006) we illus-
trate in the next section our method using a general nonlinear integrate-and-fire model with
synaptic currents. Generalization to other models are proposed. In section 3 we present numer-
ical results using the quadratic integrate-and-fire model and compare the performance of the
voltage-stepping scheme with standard time-stepping integration methods.

2 Method

2.1 Voltage-stepping scheme

Consider the kth integrate-and-fire neuron in a network described by its membrane potential,
vk, that evolves according to the equation

C
dvk

dt
= f(vk) + I0 + Ik

syn(t), (1)

where C is the membrane capacitance, f(v) the nonlinear current-voltage characteristic of the
membrane, I0 an external constant input current and Ik

syn the total synaptic input received by
neuron k. A spike is triggered when vk reaches the threshold vth upon when it is instantaneously
reset to vr. Specific instances of the nonlinear integrate-and-fire model (1) are the quadratic
model (Ermentrout and Kopell, 1986), (Hansel and Mato, 2001) and the exponential model
(Fourcaud-Trocmé et al., 2003).
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Let us consider a discretization of the voltage state-space Vi = [vi, vi+1[ where vi = i∆v and
∆v is a fixed voltage-step. The basic idea of our method is to approximate (1) by the voltage-
dependent integrate-and-fire neuron

C
dv

dt
= −gi(v − Ei) + I0 + Isyn(t), (2)

for v ∈ Vi. For clarity, the subscript k has been dropped. Parameter gi is a voltage-dependent
conductance and Ei is a voltage-dependent resting potential. Parameters gi and Ei are such
that the linear function f∆v(v) = −gi(v − Ei) approximates the nonlinear characteristic f(v)
on Vi. For instance, using the approximation of f by the linear interpolation function at the
boundaries of Vi gives

gi = −f(vi+1)− f(vi)
∆v

,

Ei = vi +
f(vi)

gi
.

In this case the voltage-dependence of the approximated IF parameters is piecewise linear.
Note that we keep the same notation for the membrane potential and its approximation (if
ambiguity we will note v∆v the approximation of v). We note Vreset =] − ∞, vr] and Vth =
[vth,+∞[ the resetting and threshold intervals, respectively.
Let t0 the time at which the membrane potential of the neuron reaches Vi (v(t0) = i∆v) and
assume that the neuron stays in Vi during a non-empty time interval. Integrating (2) between
t0 and t yields

v(t) = i∆v e−(t−t0)/τi + (Ei + I0/gi)(1− e−(t−t0)/τi)

+

t∫

t0

e−(t−y)/τi
Isyn(y)

C
dy (3)

where τi = C/gi is the voltage-dependent membrane time constant. The synaptic current Isyn

is given by

Isyn(t) = w
∑

tfpre

α(t− tfpre) (4)

where the tfpre are the firing times of the presynaptic neurons, w represents the weight of the
synapse, and α is a given function that describes the post synaptic-potential. A common choice
is α(t) = 1/τse

−t/τsH(t) or α(t) = 1/(τ1−τ2)(e−t/τ1−e−t/τ2)H(t) where H is the Heaviside step
function with H(t) = 1 if t > 0 and H(t) = 0 otherwise. Since Isyn is a combination of exponen-
tial functions the integral in (3) can be computed analytically and an event-driven method can
be used to calculate the next exit time, t1. Three possibilities occur: (i) the membrane potential
goes back to its value at time t0, i.e. interval Vi−1 is reached (ii) the membrane potential reaches
the interval Vi+1, i.e. v(t1) = vi+1 and (iii) the neuron is at rest, i.e. t1 = +∞.
If the spiking interval Vth is reached, then a firing event occurs, tf = t1 and the neuron is reset.
The event-driven method is applied on a voltage-step and therefore our method may be seen as
a local event-driven method.
Let (tk)k∈N be the sequence of times at which the successive intervals (Vi)i∈I are reached. This
sequence defines the integration points of an implicit variable time-step method. The numerical
integration is reduced to the detection of the occurrence of discrete events that is achieved us-
ing symbolic computation or a Newton-Raphson algorithm (that is very efficient and only few
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Figure 1: Schematic view of the numerical integration of an integrate-and-fire neuron using (A)
a time-stepping scheme and (B) a voltage-stepping scheme. The time stepping method with a
fixed time step ∆t requires calculations at each step independently of the membrane potential
fluctuations. The voltage-stepping approach induces an adaptive time-step leading to a precise
approximation of the firing time.

iterations are needed). Symbolic derivation of the events is possible for constant input currents
and for special cases of synaptic currents (Dirac synaptic currents). Otherwise Newton-Raphson
algorithm has to be used. Note that an alternative method based on polynomial root finding
algorithms could be used for exponential currents (Brette, 2007). Within each time interval, a
symbolic expression of the membrane potential is given by (3). The result is schematically illus-
trated in Fig. 1B and compared with a fixed time-step method (Fig. 1A). Advantages are clearly
seen. At the neuron level, when the membrane potential is slowly varying the corresponding
time-steps are large whereas small time-steps are used when the membrane potential strongly
fluctuates. Near the threshold, due to the nonlinear voltage-dependent current, the membrane
voltage changes quickly leading to short time steps to accurately follow the trajectory. At the
network level, the voltage stepping method presents some interesting properties. Firstly, the
computational cost of the simulation is significantly reduced when the activity of the network is
localized. Serial activation of areas, like propagating wave or synfire activity, frequently occur in
neuronal tissue, notably the cortex, the thalamus and hippocampus (Foldiak and Young, 1995).
Neurons that participate to the wave activity are excited while the others are at rest or poorly
activated. Time steps are used to update excited neurons whereas no or little computation is
done for the others. Secondly, the spike-spike interactions 2 which is usually ignored in modified
Runge-Kutta schemes (Rangan and Cai, 2007) is naturally handled in our local event-driven
strategy. Moreover unlike standard time-stepping scheme, the implicit time-discretization de-
fined by our technique is different for each neuron in the network and only depends on its own
membrane potential fluctuations.
The basic idea of the voltage-stepping approach is to define a local variable-step integrator us-
ing an approximation of the nonlinear characteristic f by a function that is amenable to an
event-driven scheme. The piecewise linear interpolation of the nonlinear current f(v) leads to
an approximation of the original model by a voltage-dependent linear integrate-and-fire (LIF)
neuron (2). As v evolves, parameters of the LIF change. This approach is reminiscent to the
piecewise linear caricature of neuron models (McKean, 1970; Tonnelier and Gerstner, 2003). In

2interactions between spikes that are in the same time interval
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general, as we show in the Appendix, the voltage-dependent LIF, defined using an interpolation
of the nonlinear currents at the boundaries of Vi, leads to a numerical integration with an accu-
racy of O(∆v2) (Appendix 5.1). A clever choice of the interpolation points within a voltage-step
leads to an error of order O(∆v4). However it should be noted (see Appendix 5.2) that the fourth
order accuracy is only reached for the simulation of one-dimensional neuron models. A lower or-
der scheme (O(∆v)) is obtained using a voltage-dependent non-leaky IF model (f∆v is piecewise
constant). Similarly, a more accurate scheme is obtained using a piecewise quadratic approxi-
mation and the corresponding approximated model is a voltage-dependent QIF model (f∆v is
piecewise quadratic). In this paper, numerical simulations are done using voltage-dependent
LIF neurons to approximate the original neuron models.

2.2 Algorithm

Each neuron maintains a mode (i.e. its location within the discretized voltage space) and an
exit time that is the time at which a new voltage interval is reached. The exit time becomes a
spike timing whenever the neuron reaches the threshold interval.

• Initialization: Compute the events, i.e. the exit times of each neuron (including spike
timings) and insert them in a priority queue.

• Process events. Extract the event to be processed, i.e. the one with the lowest timing.
Note that local events do not have any consequence on the overall network dynamics and
only require a local updating of the corresponding neuron mode and exit time. For a spike
timing, the neuron is reset and the firing event is propagated, i.e. modes and exit times
of the target neurons are updated.

Optimization of the code can be obtained using precalculated tables of the exit-time in each
voltage-step without input. If spikes are received, these timings can be used as an initial guess
for the iterative search algorithm.

2.3 Generalization

The voltage-stepping strategy is not limited to the simulation of one dimensional integrate-and-
fire neurons. Below we sketch how to apply this technique for different widely used neural models.

A. Integrate-and-fire neurons with adaptation.
An improvement of the nonlinear integrate-and-fire model is achieved by adding a second variable
to Eq. 1 (Izhikevich, 2003; Brette and Gerstner, 2005)

C
dv

dt
= f(v)− u + I0 + Isyn(t) (5)

du

dt
= a(bv − u) (6)

where u represents an adaptation current. At each firing time, the variable u is increased by
an amount c (u ← u + c). As previously, we can derive a voltage-dependent LIF using a linear
interpolation of f on Vi. The system is now two-dimensional but since the equations are linear
on a voltage-step the approximated model can be solved analytically in this interval, then the
local event-driven scheme applies similarly. Note that (i) nonlinear currents can be added in
the adaptation equation provided that a piecewise linear approximation is used. (ii) Without
resetting on v and without spike-triggered-adaptation (5)-(6) has the FitzHugh-Nagumo model
as a special instance.
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B. Conductance based synaptic currents.
More realistic descriptions of synaptic current incorporate conductance changes

Isyn(t) = gsyn(ve − v)
∑

tfpre

α(t− tfpre) (7)

where ve is a reversal potential. Recently the event-driven simulation of LIF models has been
extended to synaptic conductances (Brette, 2006). Thus we can adapt the voltage-stepping
method to neural models with synaptic conductances using the method developed in (Brette,
2006) to compute the local events. However to reduce the computational cost of the simulation,
it is useful to use the following approximation ve−v = ve−vi on the voltage-step Vi = [vi, vi+∆v[
and go back to the voltage-dependent LIF previously defined. In this case we introduce an error
of order ∆v but it is possible to restore the accuracy of the scheme rewriting the equation as

C
dv

dt
= f(v) + I0 + g(ve − v)

dg

dt
= −g/τs

where an incoming spike triggers an instantaneous additive change g → g + w. Nonlinearities
appear both in the characteristic, f , and in the conductance, g. To achieve a local event-driven
scheme, it is necessary to discretize not only the voltage space but the entire state-space (v, g).
The method is similar to conductance-based models and is detailed below.

C. Hodgkin-Huxley type neurons.
Our approach is not limited to integrate-and-fire neuron models and can be used to simulate
detailed neuron models including spike-description such as Hodgkin-Huxley type models. For
simplicity, we consider the Morris-Lecar model

C
dv

dt
= ḡCam∞(v)(vCa − v) + ḡKu(vK − v) + ḡl(vl − v) + I

du

dt
=

u∞(v)− u

τ(v)

that describes an instantaneously responding voltage-sensitive Ca2+ conductance for excita-
tion and a delayed voltage-dependent K+ conductance for recovery (see (Rinzel and Ermen-
trout, 1998) for a complete definition). Since the nonlinearity involves both v and u, it is
necessary to discretize the entire state space (v, u) (the term state-stepping is more appropriate
in this case). The state space is partitioned into subdomains where the function is approxi-
mated by a linear system Fi(X) = AiX + bi where X = (v, u). The shape of subdomains is
triangular and a simplicial partition (i.e. triangulation based on a rectangular partition) can be
used (Girard, 2002). In each triangle the approximated neuron model has a symbolic expression
from which we calculate the switching time, i.e. the time at which a new triangle is reached.
In Fig. 2 we show the result of the numerical integration. The method performs like an adap-
tive time-stepping scheme. The neuron is updated frequently when one state variable has large
variation, specially near the threshold and at the peak of the spike where the membrane voltage
present abrupt polarization. Note that the integration points are not only determined by the
membrane potential but also by the recovery variable. The fastest changing variable imposes
the time-steps of the neuron.

The algorithm can be extended to general n-dimensional conductance-based neuron using a
simplicial subdivision of the neuron state-space and interpolating the vector field at the vertices
of the simplex.
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Figure 2: Numerical simulation of the Morris-Lecar model with a state-stepping algorithm. We
simulate the model over one period of its oscillatory regime. Crosses are the membrane potential
and stars are for the potassium channel. We use a voltage-step of 6mV and a step of 0.03 for
the recovery variable. For convenience the membrane potential has been rescaled (vertical axis
is dimensionless).

2.4 Link with previous works

Traditional event-driven methods are actually spike-driven schemes; the neuron state variables
are updated when a spike is received or emitted. The voltage-stepping technique produces new
events: the events are not only firing times or spike receptions but also the times of mode switch-
ing, i.e. when the neuron reaches a new voltage interval. Consequently the number of events is
increased, albeit at a reduced computational cost because local events do not have any reper-
cussion on the overall activity of the network and are only used to update the corresponding
neuron parameters. When the cost of managing events become prohibitive, it could be useful to
introduce local event queues to reduce the cost of event management (Morrison et al., 2007).
The voltage-stepping scheme combines event-driven and discretization techniques. A method
based on a combination of event-driven and time-driven schemes has been recently developed but
requires a minimal synaptic propagation delay greater than the computation time step (Morrison
et al., 2007). Fast methods have been developed but are limited to the linear IF neuron (Rangan
and Cai, 2007). To simulate more realistic neural models, an alternative approach has been pro-
posed by (Ros et al., 2006) in which an event-driven scheme uses lookup tables. The simulation
is reduced to a search within a precalculated table of function values. This scheme combines the
benefits of using realistic neural models and high-speed simulations but becomes cumbersome
to manage when a good accuracy is required for the numerical simulation.
Adaptive time-stepping schemes provide short time-step integration for active neurons and long-
time step integration when the neuron is at rest or slightly activated. These methods have a clear
advantage when the entire shape of the spike is calculated. When simulating neural networks,
classical variable-step integrators fail to be efficient since the fastest changing neuron imposes
the time-discretization for the entire network. To avoid this problem, Lytton and Hines (2005)
have used an independent variable time-step integrator for each neuron. A critical problem is
to coordinate the local integrators of each neuron in the network and to properly handle the
events. Indeed, when an event arrives at a neuron at time te it is necessary to have all the
states of the receiving neurons at time te. This is accomplished using additional operations: a
fixed-step integration, interpolation and reinitialization. Moreover the integration coordinator
must ensure that the individual time-steps are correctly chosen:there is always an overlap be-
tween all the integration intervals of neurons. In our approach both local and global events are

7



nicely handled in an event-driven scheme and there is no requirement on the time-steps. The
variable time-steps induced by the voltage-stepping scheme present interesting properties: (i)
by construction the threshold event lies on an integration time-step boundary. (ii) Integration
points are independent, i.e. in network simulation, the time steps are different from one neuron
to another. (iii) Time-steps are imposed by the voltage-trajectory and when the neuron is at
rest, no step is computed.
Approximation by piecewise linear systems has become a classical tool for the global qualita-
tive analysis of dynamical systems and has been proposed as a technique for numerical sim-
ulations (Girard, 2002). The voltage-stepping method is a variant of the hybrid computation
method where the simulation is done by using an approximation of the vector field (Della-Dora
et al., 2001). The hybrid computation requires a full discretization of the state space that ap-
pears to be prohibitive for large dynamical systems. Taking advantage of point-like interactions
between neurons this scheme could be efficiently implemented for the simulation of spiking net-
works. Following the hybrid-system framework (differential equations with discrete events), we
interpret spiking neural networks as an hybrid system where global events are spikes and local
events are mode switches. During simulation the neuron switches between modes depending on
the value of the voltage, i.e. parameters of the model change when a mode transition is detected.

3 Numerical Results

To illustrate our numerical scheme we consider the quadratic integrate-and-fire (QIF) model.
The QIF model includes nonlinear spike generating current and represents the normal form of
any type I neuron model near the bifurcation (Ermentrout, 1996; Ermentrout and Kopell, 1986).
It is widely used as a realistic neural model (Brunel and Latham, 2003; Fourcaud-Trocmé et
al., 2003; Hansel and Mato, 2001). The dynamics of the QIF model is described by

τ
dv

dt
= v2 + I0 + Isyn(t) (8)

where v, I0 and Isyn are dimensionless membrane potential, input current and synaptic current,
respectively. Parameter τ is the membrane time constant. We treat synaptic current of the form

Isyn(t) = w exp(−(t− tf )/τs), t ≥ tf

= 0, t < tf (9)

that could be rewritten as
dIsyn

dt
= −Isyn/τs,

Isyn ← Isyn + w when t = tf

where τs is the synaptic time constant and w the synaptic weight. Numerical values of QIF
neurons are taken from (Martinez, 2005), the membrane time constant is τ = 0.25ms, the re-
set potential is vr = −0.0749 and the threshold is vth = 0.7288. The synaptic time constant
is τs = 6ms and the synaptic strength is w = 5 × 10−4. Note that the membrane poten-
tial, in voltage unit, is obtained using the variable change V ← C/qv + V0 where C = 0.2nF ,
q = 0.00643mS.V −1 and V0 = −60.68mV . Therefore a factor of C/q = 31.1mV has to be
applied to the voltage step ∆v to retrieve the physical unit.
One of the goals of our numerical scheme is to simulate accurately the dynamics of spiking neu-
rons and to investigate temporal coding properties. Therefore we are interested in reproducing
the exact timing of spikes and we use the following measure of error:

E(tf ) =
1
N

∑

f

|tfex − tfap| (10)
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where N is the number of spikes, tfex are the exact firing times (i.e. with an arbitrary precision)
and tfap are the corresponding approximated firing times that depends on ∆v for voltage-stepping
methods or on ∆t for time-stepping methods (see below). Using (10) we implicitly assume, as a
minimal requirement, that the number of spikes between the exact and the approximated spike
trains does not differ. This is achieved using a sufficiently accurate numerical scheme, i.e. the
steps are small enough to capture all the spikes. When the number of spikes may differ, we use
the following error

E(ν) = |νex − νap| (11)

where νex and νap is the exact and approximated firing rate, respectively.
We have shown previously that the QIF model is amenable to an exact simulation (Tonnelier
et al., 2007) that we will use for tfex in the error analysis (here the precision is fixed at 10−7ms
on individual spike times). We focus our numerical study to the voltage-stepping scheme with
piecewise linear approximation. Parameters of the approximated voltage-dependent LIF, using
an interpolation at the boundaries of Vi (we will call VS2 scheme), are gi = −∆v(2i + 1) and
Ei = ∆v i(i+1)/(2i+1) where ∆v is a fixed voltage-step. We also consider the voltage-stepping
scheme using a linear interpolation at gaussian abscissas (hereafter VS4 scheme).
Since fixed time-step integration remains the simulation standard, we compare the performance
of our schemes (VS2 and VS4) to the one of the ’corresponding’ time-stepping algorithms. The
second or fourth order Runge-Kutta scheme with a linear or cubic interpolation of firing times
(i.e. modified RK2 or modified RK4) has been shown to be a second or fourth order scheme,
respectively, in the simulation of spiking neurons (Hansel et al., 1998; Shelley and Tao, 2001).
The RK schemes are monitored by a fixed time-step ∆t that controls the error-functions (10),
(11) of the methods. It is important to notice that several problems may arise when comparing
the different methods: i) the computation time of voltage-stepping schemes is implementation-
dependent and many algorithmic tricks could speed up the calculations3, ii) the accuracy and
computation time of voltage-stepping schemes is activity-dependent (in the extreme case where
no spike is emitted the computational cost is negligible for our method whereas Runge-Kutta
schemes perform all the steps to reach a predetermined simulation time). We overcome issue i)
by comparing straight-forward implementations of each method and issue ii) by using different
inputs leading to different spiking activities. Voltage-stepping and time-stepping methods are
applied to simulate a single neuron with a constant input current and a Poisson input spike
train. The accuracy of the voltage-stepping approach is also demonstrated on the simulation of
a network of spiking neurons. The algorithms were programmed with Matlab and the numerical
simulations are performed on a portable PC running Windows at 1.7GHz.

3.1 Constant input current

We ignore the synaptic current, Isyn = 0, and consider a QIF neuron with a constant external
driving current I0. For I0 < 0 there is a pair of equilibrium points. One is stable and the other
is an unstable fixed point above which a spike is emitted. The neuron is said to be excitable.
For I0 > 0 the neuron fires regularly. The neuron is said to be in the oscillating regime. We
quantify the accuracy by calculating the error E(tf ) (Eq. 10) and E(ν) (Eq. 11) in the excitable
and oscillating regime, respectively.

3In particular, since our approach can be seen as a local event-driven technique, all the recently proposed
methods to optimize event-driven schemes could be tested and used.
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A. Excitable regime

Let I0 < 0 and consider an initial condition v(0) slightly above the unstable fixed point
√−I0.

Without further input, the membrane potential is given by

v(t) = −
√
−I0 coth(

√
−I0t/τ − atanh(

√
−I0/v(0))),

and the exact spike timing is given by

tfex = τ/
√
−I0

(
atanh(

√
−I0/v(0))− atanh(

√
−I0/vpeak)

)
.

We compute error E(tf ) (Eq. 10) between the exact firing time given above and the approxi-
mated one, numerically obtained using the voltage-stepping method VS2 with ∆v = 0.005 and
VS4 with ∆v = 0.01 (∆v = 0.15mV, 0.31mV in physical unit). To assess the performance of
the method, we compare it to the modified RK2 and RK4 respectively with ∆t = 0.03ms and
∆t = 0.2ms that could be considered as a very high temporal resolution but are required by
the modified Runge-Kutta methods in order to calculate each neuronal trajectory accurately
(usually smaller than 0.02ms to reach a good accuracy (Shelley and Tao, 2001; Rangan and
Cai, 2007)). The precise values of ∆t are chosen here in order to obtain a mean cost similar to
the one obtained for the voltage-stepping scheme. Errors on the firing time as a function of the
initial voltage value v(0) are depicted in Fig.3. The slow decrease of the error for VS methods

0.16 0.18 0.2 0.22 0.24 0.26 0.28
0
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x 10
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V(0)

 

 

RK2: ∆t=0.03
RK4: ∆t=0.2
VS2: ∆V=0.005
VS4: ∆V=0.01

Figure 3: Error E(tf ) (in ms) on the firing time of the QIF neuron as a function of v(0) for
different algorithms. Squares and circles are the modified RK2 with ∆t = 0.03ms and RK4
with ∆t = 0.2ms, triangles and diamonds are VS2 with ∆v = 0.005 and VS4 with ∆v = 0.01
respectively.

with respect to v(0) is a consequence of the activity-dependent accuracy of the method. As
v(0) increases, the number of voltage-steps necessary to reach the voltage peak decreases and
thus the accumulating error. The RK methods are less robust and we suspect that the oscil-
lating behavior observed in Fig.3 is related to the uniform and non-optimized distribution of
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RK2 RK4 VS2 VS4
Mean error (µs) 0.245 0.177 0.129 3× 10−4

Mean time cost (ms) 0.8878 0.7705 0.7681 0.7659

Table 1: Mean error and time cost for the numerical schemes used in Fig. 3.

the time-steps. As v(0) increases the firing time occurs faster and the number of time intervals
needed to reach firing time gets smaller. As a consequence, one would expect a reduction of
the error. However, for RK methods, the same discretization of time is used independently of
v(0). As v(0) increases, the firing time occurs at different positions within a time step leading to
different accuracies that mask the expected reduction of the error. Such oscillating phenomenon
does not occur using the voltage-stepping approach since the time-steps are implicitly defined
and are adjusted to the activity profile of the neuron. The time cost of the different algorithms
applied in Fig.3 are given in Table 1. Accuracy and time cost are computed as the mean over the
different initial values v(0) taken in Fig.3. Since the mean computation time is approximately
the same for all numerical schemes, a direct comparison of the methods is done observing the
produced errors. In the following, a further comparative analysis of the efficiency is done.
To have a more practical view of the efficiency of the schemes, we compare in Fig.4 the compu-
tation times of each method as a function of the accuracy.
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RK2
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Figure 4: Log-Log plot of the time cost (ms) for both modified Runge-Kutta methods (RK2 and
RK4) and voltage-stepping methods (VS2 and VS4) as a function of the error.

Results show that, in terms of efficiency, VS2 is superior to the modified RK2 method and
comparable to the modified RK4 method. For finer resolutions, the VS2 algorithm performs
faster than RK4 whereas for an error above approximately 1µs the RK4 method is more efficient.
In all cases, the VS4 method is always more efficient. A major reason of the lack of efficiency
of the Runge-Kutta scheme is that the uniform distribution of time steps implies the use of
unnecessary time steps for subthreshold voltage in order to have short time steps at the peak of
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RK2: ∆t(ms) 0.2000 0.1667 0.1333 0.1000 0.0667 0.0333
Error (µs) 3.8257 3.1537 2.7606 2.4888 0.4650 0.2668

Time cost (ms) 0.3093 0.3119 0.3177 0.3228 0.3714 0.4452
RK4: ∆t(ms) 0.5000 0.4500 0.4000 0.3500 0.3000 0.2500

Error (µs) 1.8993 1.8645 0.7734 0.7659 0.4890 0.3992
Time cost (ms) 0.2739 0.2753 0.3055 0.3075 0.3292 0.3503

VS2: ∆v 0.0101 0.0072 0.0056 0.0046 0.0039 0.0034
Error (µs) 2.3573 1.2058 0.7302 0.4891 0.3503 0.2631

Time cost (ms) 0.2901 0.2991 0.3098 0.3176 0.3291 0.3354
VS4: ∆v 0.0201 0.0182 0.0168 0.0155 0.0144 0.0134
Error (µs) 0.0086 0.0042 0.0022 0.0013 0.0008 0.0005

Time cost (ms) 0.2306 0.2455 0.2526 0.2737 0.2940 0.3191

Table 2: Error and time cost for the different algorithms and parameters used in Fig. 4.

the spike.
We also examine the errors of VS2 and VS4 schemes as a function of the voltage-step (Fig. 5).
As expected, the errors of our VS2 scheme decreases quadratically with ∆v while the error of
the VS4 scheme diminishes as the fourth power of ∆v.
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Figure 5: Log-Log plot of the error on the first spike timing as a function of the voltage-step.
Circles and squares are voltage-stepping methods with a piecewise linear interpolation at the
boundaries of the voltage-interval (VS2) and at the gaussian abscissas (VS4), respectively. The
lines (not fits) indicate the order of the methods. Dotted-line is second order and solid-line is
fourth order.

B. Oscillating regime

For I0 > 0 the neuron fires regularly and the firing rate is given by

νex =
√

I0

τ
(
arctan ϑ√

I0
− arctan vr√

I0

) (12)
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In Fig. 6, we compare the error E(ν) (Eq. (11)) obtained by our voltage-stepping methods (VS2
and VS4) and the modified Runge-Kutta methods (RK2 and RK4) for different step-sizes. Time-
steps are those usually used for modified Runge-Kutta schemes (of order 0.01ms) (Shelley and
Tao, 2001; Rangan and Cai, 2007). The voltage steps are chosen in order to reach a similar mean
time cost. As previously, the VS method is more robust in the sense that changing the input
parameter I0 does not affect significantly the accuracy. The error and the time cost computed
as the mean over the different input currents used in Fig. 6 are computed in Table 3. Results
obtained on the error E(ν) are in line with those obtained with E(tf ). The VS4 method is the
most efficient algorithm and reaches the best accuracy with the lowest computational time.
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RK2: ∆t=0.025
RK4: ∆t=0.1
VS2: ∆V=0.008
VS4: ∆V=0.08

Figure 6: Error E(ν) (in Hz) on the firing rate of the QIF neuron as a function of the input
current. The squares and circles correspond to the modified RK2 with ∆t = 0.025 ms and the
modified RK4 with ∆t = 0.1 ms, respectively. Triangles represent VS2 with ∆v = 0.008 and
diamonds VS4 with ∆v = 0.08.

RK2 RK4 VS2 VS4
Mean error (Hz) 0.0475 0.0647 0.0137 3× 10−5

Mean time cost (ms) 0.9766 0.7542 0.6034 0.4423

Table 3: Mean error and time cost for the different algorithms with parameters used in Fig. 6.

Again, the order of the voltage-stepping methods VS2 and VS4 is numerically evaluated in Fig.
7 and corroborates the result previously obtained.

3.2 Poisson input spike train

We consider a simple test neuron receiving a synaptic activity modeled by a fluctuating spike
train. Note that we use a current injection and a more realistic input scenario would be stochas-
tic conductance changes. However a random conductance scenario can be replaced, to a high
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Figure 7: Log-Log plot of the error E(ν) on the firing rate as a function of the voltage-step for
the voltage-stepping methods VS2 (circle) and VS4 (square). The lines (not fits) indicate the
order of the methods. Dotted-line is second order and solid-line is fourth order.

degree of accuracy, by a random current injection (Richardson, 2004). For clarity, we keep the
current injection paradigm. Firstly, we investigate two scenarios that reproduce two different
regimes of neural activity. Secondly, we study the dependence on the input rate.
In the first scenario, we use a fixed excitatory spike train generated by a Poisson process with
rate νE = 104spikes/s that models the interaction with 1000 excitatory presynaptic neurons
firing at 10 Hz. In this scenario, the neuron operates in a high activity regime with a fir-
ing rate ∼ 400spikes/s. The second scenario is described by two fluctuating synaptic cur-
rents, one excitatory Poisson process (νE = 104spikes/s) and one inhibitory Poisson process
(νI = 104spikes/s). The neuron operates in a fluctuation-driven regime with a moderate firing
rate (∼ 30spikes/s). We compute the error on the spike timings of the QIF model using the
voltage-stepping methods (VS2 and VS4) and the Runge-Kutta methods (RK2 and RK4). In
order to compare the different numerical schemes, the voltage-steps and the time-steps are cho-
sen so that to obtain a corresponding error. Simulation times are then compared. In the first
scenario the neuron fires regularly with monotonic subthreshold membrane voltage trajectories.
For different values of the time-steps and voltage-steps we compute the error and the time cost
of the different schemes. Results are depicted in Fig 8, and the corresponding data are given in
Table 4.
In this scenario, we found that the VS2 scheme is more efficient than the modified RK2 but
better results are obtained using the RK4 scheme at coarse resolutions (see Table 4). However
when a high accuracy is required (error in the order of 10µs), the time cost of the time-stepping
scheme significantly increases and VS2 becomes faster. Again, the VS4 method outperforms the
other schemes. The possible reason for the discrepancy of the modified RK schemes for high
accuracy is due to the non-smooth dynamic of the synaptic-induced changes given by (9). More
precisely, for time-stepping schemes, when a spike is emitted by the neuron (at time tf ), the
additional postsynaptic changes after the spike times are neglected (until a new step tn+1 > tf
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Figure 8: Log-Log plot of the time cost (s) for the modified Runge-Kutta methods (RK2 and
RK4) and voltage-stepping methods (VS2 and VS4) as a function of the accuracy in the high
activity regime.

RK2: ∆t (ms) 0.0200 0.0100 0.0050 0.0010
Error (ms) 0.3874 0.0196 0.0094 0.0042

Time cost (s) 982 1747 3383 15845
RK4: ∆t(ms) 0.1000 0.0500 0.0300 0.0100
Error (ms) 0.3051 0.0633 0.0272 0.0068

Time cost (s) 270 457 745 2126
VS2: ∆v 0.0161 0.0080 0.0054 0.0040

Error (ms) 0.3151 0.0794 0.0082 0.0034
Time cost (s) 890 1305 1702 2283

VS4: ∆v 0.0179 0.0124 0.0095 0.0077
Error (ms) 0.0532 0.0200 0.0021 0.0009

Time cost (s) 333 526 1131 1602

Table 4: Error and time cost for the different algorithms and parameters used in Fig. 8 (high
activity regime).

is reached). For post-synaptic changes with non-smooth initiation (like (9)) the error becomes
relevant and we suspect that the modified RK scheme behaves like a first-order scheme and
therefore requires small time-steps to accurately computes spike times. This problem does not
occur in voltage-stepping scheme since the step is automatically adjusted to the computed firing
time.
In the second scenario, the membrane potential is driven by the balance of excitation and in-
hibition leading to irregular spike-times. For a fixed voltage-step value, the accuracy of the
voltage-stepping is affected (see Table 5). The efficiency of Runge-Kutta type schemes dra-
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Figure 9: Log-Log plot of the time cost (s) for both the modified Runge-Kutta methods (RK2
and RK4) and voltage-stepping (VS2 and VS4) as a function of the accuracy for the balanced
regime.

matically decreases (mainly for the RK2 scheme) and small time-steps are necessary to compute
accurately the spike times. The respective efficiency of the schemes is similar to the one obtained
in the high activity regimes: VS4 has the better performance and RK2 the worst. The efficiency
of VS2 versus RK4 depends on the level of required accuracy.
Finally, we investigate the dependence on the rate of the input spike train. We consider the
first scenario using different values of the input firing rate νE = 104 spikes/s, 103 spikes/s,
500 spikes/s and 333 spikes/s. For a given level of accuracy (here approximatively 0.1µs) the
computation times are computed for the different numerical schemes (see Fig. 10 and Table
6). For all schemes an increase in time cost is observed as the activity becomes higher. In the
high activity regimes, the computation time of Runge-Kutta algorithms dramatically increases.
Moreover for all input firing rate the relative efficiency of the methods is the same as the one
previously obtained. Note that since high accuracy is required the VS2 scheme is more efficient
than the modified RK4 scheme.

3.3 Network activity

We demonstrate the accuracy of our integration scheme by applying it to a network of N = 100
inhibitory neurons. Such network shows rapid synchronization through mutual inhibitions and
variations of this model have been widely studied (Wang and Buzsaki, 1996; Martinez, 2005;
Ambard and Martinez, 2006). We consider all-to-all coupling between inhibitory neurons with
a synaptic strength w = 0.005. Each inhibitory neuron is driven by a pre-synaptic excitatory
spike train (Poisson process, νE = 104spikes/s) with a synaptic weight w = 0.005. The neurons
are modeled as QIF with the same parameters as before. We integrate until t = 40ms and
use the VS2 method with a subdivision of the voltage-space into N∆v = 250 voltage-intervals.
For error analysis we simulate the network using an exact event-driven simulation (Tonnelier et
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RK2: ∆t(ms) 0.0200 0.0100 0.0050 0.0010
Error (ms) 0.5327 0.0952 0.0482 0.0191

Time cost (s) 1402 2356 4476 24055
RK4: ∆t(ms) 0.1000 0.0500 0.0300 0.0100
Error (ms) 0.2123 0.1232 0.0872 0.0336

Time cost (s) 603 805 970 2795
VS2: ∆v 0.0161 0.0080 0.0054 0.0040

Error (ms) 0.5152 0.1112 0.0102 0.0062
Time cost (s) 1296 1706 2196 2543

VS4: ∆v 0.0179 0.0124 0.0095 0.0077
Error (ms) 0.0819 0.0611 0.0190 0.0091

Time cost (s) 457 543 885 1306

Table 5: Error and time cost for the different algorithms and parameters used in Fig. 9 (balanced
regime).
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Figure 10: Log-Log plot of the time cost (s) for the modified Runge-Kutta methods (RK2 and
RK4) and voltage-stepping methods (VS2 and VS4) as a function of the spikes rate in the high
activity regimes.

al., 2007). The exact and approximated spike times are shown in Fig.11. The network produces
344 spikes. Here, an accuracy of 0.22µs on individual spike-time is reached.

4 Conclusions

Recent efforts have been made to simulate integrate-and-fire neuronal networks. Specific meth-
ods like event-driven schemes (Makino, 2003; Brette, 2006; Brette, 2007), fast methods (Rangan
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νE = 333spikes/s
RK2 RK4 VS2 VS4

Eerror (µs) 0.1003 0.1044 0.0959 0.0939
Time cost (s) 3687 3035 2434 2389

νE = 500spikes/s
RK2 RK4 VS2 VS4

Error (µs) 0.1069 0.1027 0.1047 0.0990
Time cost (s) 3749 3177 2482 2423

νE = 103spikes/s
RK2 RK4 VS2 VS4

Error (µs) 0.0961 0.0959 0.0955 0.1012
Time cost (s) 5224 4264 2795 2523

νE = 104spikes/s
RK2 RK4 VS2 VS4

Error (µs) 0.1032 0.1075 0.0987 0.0964
Time cost (s) 74235 64635 4353 4032

Table 6: Mean error and time cost for the different algorithms and spikes rate used in Fig. 10.

and Cai, 2007) or exact time-stepping schemes (Morrison et al., 2007) are limited to linear
integrate-and-fire models. Voltage-stepping methods are generic numerical schemes that realize
an efficient and accurate numerical integration of spiking neural networks. Important elements
in our approach are (i) the variable time-steps that are different for each neuron in the network
depending on their activity (ii) the treatment of the possible discontinuities of the dynamics (iii)
the event-driven nature of the simulation.
In this paper we have mainly addressed the single neuron case even if we have shown that net-
work simulation could benefit from the voltage-stepping integration scheme. We expect that
the superiority of the method over traditional time-stepping schemes observed for one neuron
will be more patent in network simulations. In fact, it frequently appears that in large net-
work simulation some area are quiescent and relatively few neurons are activated. Since our
method only handles active neurons, a speed up in simulation time is expected. Our approach
forms the basis of further studies on numerical methods with an emphasis on computation time.
The recent advances made on event-driven techniques could be adapted to the voltage-stepping
scheme. Critical points are the management of the event queue and the efficiency of the zero
search algorithm. The local event queues employed in (Morrison et al., 2007) could be combined
with the voltage-stepping algorithm to reduce the cost of event management. For the second
point, improvement could be done in several ways: i) an optimized algorithm devoted to the
function considered here, ii) a ’good’ initial guess using an a priori prediction of the exit-time.
This estimation could be done using precalculated table or using more elaborate approximation
techniques. Our voltage-stepping method is not necessarily restricted to a uniform voltage step
∆v. There exist efficient algorithms (Breiman, 1993) that can be used to optimize both the
non-uniform distribution of intervals Vi and their associated linear approximations. Therefore,
a possible extension of our approach is to use a voltage-discretization adapted to the nonlinear
voltage-dependent current of the model.
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Figure 11: Simulation of a network of 100 inhibitory neurons. Spike times are computed exactly
(dots) and with the VS2 method using N∆v = 250 voltage-intervals (’+’). A high degree of
accuracy is obtained and spikes are superimposed most of time (see enlargement).

5 Appendix: Order of voltage-stepping schemes

For simplicity, we consider a general neuron model described as follows (notations are defined
in Sections 2 and 3)

dv(t)
dt

= f (v(t)) (13)

Over Vi, one possible linear interpolation of the function f(v) is achieved by interpolating it at
the boundaries vi and vi+1. Other possible linear interpolations will be discussed in the second
part of this appendix.

5.1 Linear interpolation at boundaries (VS2 method)

Let us consider v∆v the solution of the following dynamical system:

dv

dt
= f∆v(v), (14)

where f∆v is the piecewise linear function defined as follows:

f∆v(v) =
vi+1 − v

∆v
f (vi) +

v − vi

∆v
f (vi+1)

It is straightforward to show that the error of approximation is given by

|f (v)− f∆v (v)| = O
(
∆v2

)
(15)

Considering the following theorem:
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Theorem 1 Fundamental Inequality (see for instance (Hubbard and West, 1991)). For a dif-
ferential equation ẋ = F (x) satisfying the Lipschitz condition with K 6= 0 and if u1(t) and u2(t)
are two continuous, piecewise differentiable functions satisfying |u̇i(t)− F (ui(t))| ≤ εi for all t
at which u1(t) and u2(t) are differentiable and if |u1(0)− u2(0)| ≤ δ, then

|u1(t)− u2(t)| ≤ δeK|t| +
ε1 + ε2

K

(
eK|t| − 1

)
.

Applying Theorem 1 to (13)-(14) and using (15), it can be proved that |v− v∆v| = O
(
∆v2

)
.

It follows
∣∣∣tfex − tfap

∣∣∣ = O
(
∆v2

)
that means that the estimate error on the exact spike time is of

order O
(
∆v2

)
.

Remarks:

• At the neural network level, the incoming spikes generated by presynaptic neurons intro-
duced a second order error (since

∣∣∣tfex − tfap

∣∣∣ = O(∆v2)). Noting the fact that f∆v also
introduced a second-order error, the proposed voltage-stepping scheme (VS2) guarantees
the same accuracy at the network level as the neuron level, even after considering the effect
of propagation of error on spike times.

• For the p-dimensional case, the only difference is to approximate f(v) over Vi ⊆ Rp by a
linear system: f∆v (v) = Aiv + bi, which is uniquely determined as the linear interpolation
vector field of f(v). The same result can be proved using a norm on Rp, ‖·‖, instead of
the absolute value |·| ( see (Girard, 2002) for more details).

5.2 Linear interpolation at gaussian abscissas (VS4 method)

Let us consider (13) and (14) over a voltage interval Vi. Without loss of generality, assume that
the voltage interval Vi+1 is reached. We have

∆ti = tiex − tiap =
∫ vi+1

vi

(
1

f (v)
− 1

f∆v (v)

)
dv (16)

where tiex represents the exact exit time of Vi, and tiap represents its approximation. The best
choice for f∆v is those that minimize (16). We have 1/f∆v(v) ∈ C∞ (almost everywhere). For
1/f(v) ∈ Ck, k ≥ 4, and according to Gaussian quadrature rule, the linear interpolation at
gaussian abscissas f∆v satisfies

∫ vi+1

vi

(
1

f (v)
− 1

f∆v (v)

)
dv = O

(
∆v5

)
(17)

The only point is to calculate the gaussian abscissas over Vi. Over Vi = [vi, vi+1[, the gaussian
abscissas are :

vi,1 =
√

3− 1
2
√

3
vi+1 +

√
3 + 1
2
√

3
vi

vi,2 =
√

3 + 1
2
√

3
vi+1 +

√
3− 1
2
√

3
vi

based on which, the linear interpolation of f(v) can be described as follows:

f∆v(v) =
vi,2 − v

vi,2 − vi,1
f (vi,1) +

v − vi,1

vi,2 − vi,1
f (vi,2)
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Over each Vi, the local error (approximation of exit time) is of order O
(
∆v5

)
. The estimate

error on the exact spike time is obtained considering the exit times over the entire voltage-space
that gives a global error of O

(
∆v4

)
. This error estimate agrees exactly with the results of the

numerical simulations.
It should be noted that this method requires one-dimensional neural models. The major

reason is that (17) cannot be always fulfilled in high dimensional case. Moreover the methods
also failed for neural network simulation. Assume that we can estimate the incoming spikes
generated by presynaptic neurons to an accuracy of O

(
∆v4

)
. Therefore a fourth order error

is introduced in (17) and the error can be no better than O
(
∆v4

)
which makes impossible to

calculate the exit time with a fifth-order accuracy.
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Fourcaud-Trocmé, N., D. Hansel, C. van Vreeswijk and N. Brunel (2003). How spike generation
mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23, 11628–
11640.

Girard, A. (2002). Approximate solutions of odes using piecewise linear vector fields. 5th Inter-
national Workshop on Computer Algebra in Scientific Computing.

Hansel, D. and G. Mato (2001). Existence and stability of persistent states in large neuronal
networks. Phys. Rev. Lett. 10, 4175–4178.

Hansel, D., G. Mato, C. Meunier and L. Neltner (1998). On the numerical simulations of
integrate-and-fire networks. Neural Comp. 10, 467.

Hubbard, J. and B. West (1991). Differential equations: A dynamical systems approach. Texts
in Applied Mathematics, Vol. 5, Springer-Verlag, New York.

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks
14, 1569–1572.

Mainen, Z. and T. Sejnowski (1995). Reliability of spike timing in neocortical neurons. Science
1503, 268.

Makino, T. (2003). A discrete-event neural network simulator for general neuron models. Neural.
Comput. and Applic. 11, 210–223.

Martinez, D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibi-
tion in a model of the insect antennal lobe. Neural Comp. 17, 2548–2570.

Mattia, M. and P. Del Giudice (2000). Efficient event-driven simulation of large networks of
spiking neurons and dynamical synapses. Neural Comp. 12, 2305.

McKean, H. P. (1970). Nagumo’s equation. Advances in Mathematics 4, 209–223.

Morrison, A., S. Straube, H. E. Plesser and M. Diesmann (2007). Exact subthreshold integration
with continuous spike times in discrete time neural network simulations. Neural Comp.
19, 44–79.

Perez-Orive, J., O. Mazor, G. C. Turner, S. Cassenaer, R. I. Wilson and G. Laurent (2002). Oscil-
lations and sparsening of odor representations in the mushroom body. Science 297, 359–365.

Rangan, V. A. and D. Cai (2007). Fast numerical methods for simulating large-scale integrate-
and-fire neuronal networks. J. Comput. Neurosci. 22, 81–100.

Richardson, M.J.E. (2004). Effects of synaptic conductance on the voltage distribution and firing
rate of spiking neurons. Phys. Rev. E.

Rinzel, J. and B. Ermentrout (1998). Analysis of sneural excitability. In:C Koch and I Segev,
Eds. Methods in Neuronal Modeling: From ions to networks. MIT Press pp. 251–291.

22



Rochel, O. and D. Martinez (2003). An event-driven framework for the simulation of networks
of spiking neurons. Proc. 11th European Symposium on Artificial Neural Networks.

Ros, E., R. Carrillo, E. M. Ortigosa, B. Barbour and R. Agis (2006). Event-driven simulation
scheme of spiking neural networks using lookup tables to characterize neuronal dynamics.
Neural Comp. 18, 2959–2993.

Rudolph, M. and A. Destexhe (2006). Analytical integrate-and-fire neuron models with
conductance-based dynamics for event-driven simulation strategies. Neural Comp. 18, 2305.

Shelley, M. J. and L. Tao (2001). Efficient and accurate time-stepping schemes for integrate-
and-fire neuronal networks. J. Comp. Neurosci. 11, 111–119.

Tonnelier, A. and W. Gerstner (2003). Piecewise linear differential equations and integrate-and-
fire neurons: insights from two-dimensional membrane models. Phys. Rev. E.

Tonnelier, A., H. Belmabrouk and D. Martinez (2007). Event driven simulation of nonlinear
integrate-and-fire neurons. Neural Comp. 19, 3226–3238.

VanRullen, R., R. Guyonneau and S. J. Thorpe (2005). Spike times make sense. Trends in
Neurosciences 28, 1–4.

Wang, X. and G. Buzsaki (1996). Gamma oscillation by synaptic inhibition in a hippocampal
interneuronal network model. J. Neurosci. 16, 6402–6413.

23


