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ADAPTIVE ALGORITHMS FOR THE IDENTIFICATION OF

LARGE FLOWS IN IP TRAFFIC

YOUSSEF AZZANA, YOUSRA CHABCHOUB, CHRISTINE FRICKER,
FABRICE GUILLEMIN, AND PHILIPPE ROBERT

Abstract. We propose in this paper an on-line algorithm based on Bloom
filters for identifying large flows in IP traffic (a.k.a. elephants). Because of the
large number of small flows, hash tables of these algorithms have to be regularly
refreshed. Recognizing that the periodic erasure scheme usually used in the
technical literature turns out to be quite inefficient when using real traffic
traces over a long period of time, we introduce a simple adaptive scheme that
closely follows the variations of traffic. When tested against real traffic traces,
the proposed on-line algorithm performs well in the sense that the detection
ratio of long flows by the algorithm over a long time period is quite high.
Beyond the identification of elephants, this same class of algorithms is applied
to the closely related problem of detection of anomalies in IP traffic, e.g.,
SYN flood due for instance to attacks. An algorithm for detecting SYN and
volume flood anomalies in Internet traffic is designed. Experiments show that
an anomaly is detected in less than one minute and the targeted destinations
are identified at the same time.

1. Introduction

Problem statement. We address in this paper the problem of designing an on-
line algorithm for identifying long flows in IP traffic. From the point of view of
traffic engineering, this is an important issue. This is also an illustrative and sim-
ple example exhibiting the importance for on-line algorithms to adapt to traffic
variations. Traffic variations within a flow of packets may be due to several factors
but the way the TCP protocol adapts the throughput of connections based on the
congestion of the network, notably through the number of packet losses, naturally
leads to a stochastic behavior in the arrival patterns of packets. This is a crucial
issue which is sometimes underestimated in the technical literature. Moreover, as
it will be seen in the second part, the methods developed for this problem can be
in fact used to design a quite efficient anomaly detection algorithm.

An algorithm which can satisfactorily run in some instances on limited traces
can fail when handling a large traffic trace (e.g., several hours of transit network
IP traffic) because of various reasons :

(1) Performances deteriorate with time. The size of data structures increases
without bounds as well as the time taken by the algorithm to update them.

(2) Poor performances occur even from the beginning. Quite often, algorithms
depend (sometimes in a hidden way in the technical literature) on constants
directly related to the traffic intensity. For a limited set of traces, they
can be tuned “by hand” to get reasonable performances. This procedure
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is, however, not acceptable in the context of an operational network. As
a general requirement, it is highly desirable that the constants used by
algorithms automatically adapt, as simply as possible, to varying traffic
conditions.

Identification of large flows. It is well known that if large TCP flows (elephants)
carry the main part of traffic (in Bytes and packets), most of flows are small (in
number of packets). A formal definition of “long” and “small” is defined later; as
it will be seen, this definition may depend on the context. The discussion is kept
informal until then. Small flows are typically generated by web browsing while
long flows are due to file transfers (ftp, peer-to-peer , etc.). For traffic engineering
purposes like billing, supervision and security for example, it is important to design
on-line algorithms that can identify some of these long flows on the fly.

Due to the very high bit rate and the huge number of flows in IP traffic, it
is unrealistic to maintain data structures that can handle the set of active flows.
Indeed, maintaining the list of active flows and updating counters for each of them
is hardly possible in an on-line context. Consequently, only an estimation of the
characteristics of elephants can be expected within these constraints.

A natural solution to cope with the huge amount of data in IP traffic is to
use hash tables. A data structure using hash tables, a Bloom filter, proposed by
B. Bloom [4] in 1970, has been used to test whether an element is a member of
a given set. Bloom filters have been used in various domains: database queries,
peer-to-peer networks, packets routing, etc. See Broder and Mitzenmacher [5] for
a survey. Bloom filters have been used by Estan and Varghese [10] to detect large
flows, see the discussion below.

A Bloom filter consists of k tables of counters indexed by k hash functions. The
general principle is the following: for each table, the flow ID of a given packet (that
is the addresses and port numbers of the source and the destination) is hashed onto
some entry and the corresponding counter is incremented by 1. Ideally, as soon as
a counter exceeds the value C, it should be concluded that the corresponding flow
has more than C packets.

Unfortunately, since there is a huge number of small flows, it is very likely for
instance that a significant fraction (i.e. more than C for example) of them will have
the same entry, incrementing the same counter, thereby creating a false large flow.
To avoid this problem, Estan and Varghese [10] proposes to periodically erase all

counters. Without any a priori knowledge on traffic (intensity, flow arriving rate,
etc.) which is usually the case in practical situations, the erasure frequency can be
either

(1) too low, and, in this case, the filters can be saturated: Because of the large
number of small flows, many of them may be hashed on the same entry
of the hash table and, therefore, the corresponding counter is increased
accordingly, and consequently creating a “false” large flow.

(2) too high and a significant fraction of elephants can be missed in this case:
Indeed, the value of the counter of a given entry corresponding to a large
flow with a low throughput may not reach the value C if the value of this
entry is set to 0 too often.
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The efficiency of the algorithm is therefore highly dependent on the period T of
the erasure mechanism of the filters. This quantity is clearly related to the traffic
intensity.

Starting from Estan and Varghese’s algorithm, an algorithm based on Bloom
filters with an additional structure, the virtual filter, and a completely adaptive
refreshment scheme is proposed. As it will be seen, the proposed algorithm, based
on simple principles, significantly improves the accuracy of algorithms based on
Bloom filters. Moreover, the role of the constants used by the algorithm is thor-
oughly discussed to avoid the shortcomings mentioned above.

Anomaly detection. An interesting application field of these methods is the de-
tection of anomalous behavior, for instance due to denial of service. During such an
attack, a victim is the target of a huge number of small flows coming from numer-
ous sources connected to the network. An on-line identification of such anomalous
behavior is necessary for a network administrator to be able to react quickly and to
limit the impact of the attack on the victim. The main problem is in this case to
be able to separate quantitatively “normal” variations of traffic from these sudden
bursts of traffic. Here again, adaptive properties of the detection algorithms to
traffic conditions are essential to distinguish between normal variations of traffic
and attacks.

Via an adequate aggregation by destination addresses, the problem is expressed
in terms of the detection of a single large flow. The problem is then analogous to
the one considered in the detection of large flows: Most flows have to be quickly
discarded so that only anomalous flows show up. Another algorithm using Bloom
filters with an adaptive refreshment mechanism is also proposed in this case: It is
based on a fast refreshment scheme depending on the traffic intensity and on an
adaptive estimation of some constants. This algorithm offers good performances
to detect SYN flooding attacks and also, via a variant, to detect more subtle (i.e.
progressive) attacks such volume flood attacks.

The organization of this paper is as follows: A detailed description of the al-
gorithm identifying large flows is given in Section 2. The algorithm proposed is
tested against experimental data collected from different types of IP networks in
Section 3. The application to the detection of denial of service (DoS) attacks is
developed in Section 4. Some performance issues of the algorithm are discussed in
Section 5. Concluding remarks are presented in Section 6.

2. Algorithms with Bloom Filters

2.1. Preliminary definitions. In this section, we describe the on-line algorithm
used to identify large flows and estimate their volume. Recall that a flow is the set
of those packets with the same source and destination IP addresses together with
the same source and destination port numbers and of the same protocol type. In
the following, we shall consider TCP traffic only.

To simplify the notation, large flows will be sometimes referred to as elephants
and small flows as mice. For several reasons, this dichotomy is largely used in the
literature, see the discussion in Papagiannaki et al. [18] for example.

Definition 1 (Mouse/Elephant). A mouse is a flow with less than C packets. An

elephant is a flow with at least C packets.
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The constant C is left as a degree of freedom in the analysis. Depending on the
target application, C can be chosen to be equal to a few tens up to several hundreds
of packets. The choice of C is left to the discretion of the operator.

In this first part, one investigates the problem of on-line estimation of the num-
ber of elephants. This is probably the simplest problem with all the main common
difficulties in the design of algorithms handling Internet traffic: large order of mag-
nitudes and reduced computing and memory capacities.

Note that the estimation of the total number of flows in an efficient and nearly
optimal way is a quite different problem. Several on-line algorithms have recently
been proposed by Flajolet et al. [11] and Giroire and Fusy [12]. Unfortunately, the
corresponding algorithms are not able to identify elephants as previously defined.

2.2. Bloom filters. The starting point is the algorithm based on Bloom filters
designed by Estan and Varghese [10]. The filter, see Figure 1, consists of k stages.
Each stage i ≤ k contains m counters taking values from 0 to C. It is assumed
that k independent hash functions h1, h2, . . . , hk are available. The total size of
the memory used for the filter is denoted by M , recall that M should be of the
order of several Mega-Bytes. An additional auxiliary memory is used to store the
identifiers of detected elephants.

Stage 2

h (A)2

1 m
Stage 1

Stage k

h (A)k

Packet of Flow A

h (A)
1

Figure 1. A Bloom filter

The algorithm works as follows: All counters are initially set equal to 0; if a
packet belonging to a flow A is received then:
— If A is in the memory storing elephant IDs then next packet.
— If not, let min(A) the minimum value of the counters at the entries h1(A), . . . ,
hk(A) of the k hash tables.

— If min(A) < C, all the corresponding counters having the value min(A) are
incremented by 1.

— If min(A) = C, the flow of A is added to the memory storing elephant IDs.
The flow is detected as an elephant.

The algorithm as such is of course not complete since small flows can be mapped
repeatedly to the same entries and create false elephants. One has therefore to clear
the filters from the influence of these undesirable flows. Estan and Varghese [10]
proposed to erase all counters of the filters on a periodic basis (5 seconds in their
paper):

Estan and Varghese’s refreshing mechanism

— Every T time units:
All counters are re-initialized to 0.
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Ideally, the constant T should be directly related to the traffic intensity. On the one
hand, if the refreshment mechanism occurs frequently, the counters corresponding
to real elephants are decreased too often and a significant fraction of them may not
reach the value C and therefore many elephants will be missed. On the other hand,
if T is too large then, because of their huge number, small flows may be mapped
onto the same entry and would increase the corresponding counter to the value
C, creating a false elephant. This periodic refreshing mechanism could perfectly
work if there would be a way to change the value of T according to the order of
magnitude of the number of small flows. Such a scheme is however not easy to
implement in practice. Moreover, in Section 3 experiments based on real traffic
traces show that the periodic erasure scheme leads to a poor detection ratio of
elephants. This clearly exemplifies the fact that the design of simple robust traffic
adaptation scheme is not an easy task in general (think again to the congestion
avoidance mechanism of TCP).

Our contribution to this algorithmic setting is two-fold: First, a refreshing mech-
anism of hash tables properly defined on the current state of the filters and not
bound to some fixed time scale is proposed. Second, an additional data struc-
ture, the virtual filter, maintained to get a precise estimation of the statistics of
these large flows (and not only their number) is introduced. These two aspects are
separately described in the following.

2.3. Adaptive Refreshing Mechanism. The general principle is the following:
If the state of filters is declared as overloaded then all positive counters are decre-
mented by one.

Note that the values of the counters are only decreased by one instead of reini-
tialized to 0. The idea is that, if the overload condition of filters is properly chosen,
then most of the values of the non-zero counters will be low. Remember that from
the structure of traffic, when compared against the number of mice, there are only
a few elephants. The key point is that counters corresponding to elephants will
not be decremented to 0. This property is important if one wants to accurately
estimate the number of packets of elephants.

Two different criteria to declare when the state of the filter is overloaded are
proposed.

— RATIO criterion. Define r as the proportion of non null counters in the
multistage filter, the filter is overloaded when r is above some threshold R
(90% for example).

— AVERAGE criterion. Define avg as the average of counters values. The
filter is overloaded when avg is above some threshold AV G (C/2 for exam-
ple).

The adaptive property of the scheme proposed is clear: As long as the state of
the filters is not overloaded then nothing occurs and if there is a peak of activity,
the filters are quite quickly filled and the refreshment mechanism is automatically
executed.

The rationale behind the RATIO criterion is that if most of counters are non-
zero then, very likely, mice have contributed to a significant fraction of the values
of the counters so that false elephants show up. Thus, this proportion must be
bounded. The best threshold is difficult to find. Thus an interesting alternative
is the AVERAGE condition, which considers the average value of counters rather
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than the number of non-zero counters. Roughly speaking, this corresponds to
the saturation threshold of the filter. Notice the mean size of mice which is in
practice around 4, can raise up to 7 for some traffic types. In this case, even if
the proportion of non-null counters is significant, counters must be decremented
more often to avoid accumulation of mice generating false elephants. This is why
the AVERAGE condition considers the average value of counters. Our experiments
show nevertheless that condition RATIO is sufficient for most of IP traffic types.

Because the number of mice is much larger than the number of elephants, col-
lisions between elephants and mice can be neglected. False elephants are mainly
caused by collisions in the hash table between short flows. Missing elephants is the
drawback of the algorithm. An elephant having f packets, f ≥ C, can be missed
if its counters do not reach the threshold C because of the refreshment mechanism
(all counters are decreased by one when the state of the filters is overloaded).

The number of entries in the memory storing elephants gives an estimation of
their total number. It is also possible to store additional variables for each flow
in this memory, for instance the starting and finishing time of the elephant corre-
sponding to the arrival times of the first and last packets, the number of packets,
the total volume in bytes, the number of segments of a certain type (typically SYN
segments for attack detection), etc.

2.4. Virtual Filter. Missed elephants can be divided into two categories: ele-
phants with low throughput (less than the refreshment frequency) and small ele-
phants. An elephant having a number of packets slightly larger than C, can then
be missed if there is at least one refreshment during its life time. The following
improvement of the algorithm aims at reducing the number of missed elephants by
giving elephants more chance to be captured.

The available memory is divided in two halves. In the first half, a Bloom filter
as defined above is implemented, it will be called the virtual filter. It operates
exactly in the same way for incrementing and refreshing counters. The second half
is another Bloom filter, called the real filter; its counters are incremented in the
same way as for the virtual filter but no refreshment mechanism is used except that
when a counter becomes equal to 0 in the virtual filter, in that case, it is also set
to 0 in the real filter.

The proportion of non null counters is thus the same for the two filters. The
identification of elephants is done with the values of counters of the real filter, when
all the counters corresponding to some flow are equal to C. Note that since the
counters are not decremented by one, it is less likely that some packets of elephants
will be lost in this manner. The value of a counter in the real filter is therefore
always higher than (or equal to) the corresponding counter in the virtual filter. The
number of identified elephants is thus higher than what is obtained with the initial
version of the algorithm. In particular small elephants have more chance of being
identified.

The drawback of the virtual filter is that, in some cases, it can introduce new
false positives. As the counters in the real filter are higher, mice are more likely to
be considered as elephants. This especially happens when the mean size of mice is
not small enough compared to the threshold C.
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3. Experimental Results

In this section, the efficiency of the algorithm and the impact of some of its
parameters are discussed.

To evaluate the performance of the algorithm, two different traces have been
tested: the first trace contains commercial traffic from the France Telecom IP
backbone network carrying ADSL traffic. This traffic trace has been captured on a
Gigabit Ethernet link in October 2003 between 9:00 pm and 10:00 pm. This time
period corresponds to the peak activity by ADSL customers, its duration is 1 hour
and contains more than 10 millions of TCP flows. The second trace “20040601-
193121-1”, URL: http://pma.nlanr.net/ Traces/ Traces/ long/ ipls/ 3/, contains
academic traffic issued from Abilene III.

3.1. Results. In our experiments, the filter consists of 10 stages associated to 10
independent random hash functions (k = 10). Elephants are here defined as flows
with at least 20 packets (C = 20).

First we apply the algorithm proposed by Estan and Varghese [10] to the France
Telecom trace in order to identify elephants for which the refreshment time period
is set to 5 seconds as specified in that paper. Recall that this algorithm uses a
periodic erasure scheme of all counters to refresh the filter. Results are compared to
the adaptive refreshment using the RATIO criterion. To be fair in the comparison,
at a refreshment instant, instead of decrementing them by one, all counters are set
to zero like in Estan and Varghese algorithm.

The number of new elephants per minute found by the algorithms and its ex-
act value are plotted in Figure 2. It shows that the periodic refreshment of Estan
and Varghese (5 seconds) is not adapted to the traffic trace since many elephants
are missed in this case. The refreshment frequency is too high and elephants can-
not send their 20 packets in only 5 seconds. This is due to the fact that in the
ADSL traffic trace, elephants are generated by peer to peer file transfers, which are
basically with low bit rates (see Ben Azzouna et al. [2] for more details).

A change of the value of the period in Estan and Varghese’s algorithm would
probably improve the accuracy but it is not clear how it can be done “on line”. On
a one hour long traffic trace, this parameter has to be in fact changed regularly.
This is not necessary for short traces, a few tens of thousands of packets say, but
this becomes an issue for long traffic traces.

Using the adaptive refreshment with a threshold R = 90% and a small memory
of size M = 1.31MB, only about 12% of the elephants are missed. With a memory
size of 5.24MB, the error is of the order of 2%. See Figure 7 below.

Another important feature of the adaptive algorithm which can be seen from
Figure 2 is that it follows very closely the variations of elephant traffic, this is also
true for Estan and Varghese algorithm but in a much less accurate way. This is, in
our view, the benefit of the adaptive property of our algorithm.

Figure 3 gives the relative error on the estimation of the number of elephants
for the three versions of the algorithm: with the refreshment using RATIO and
AVERAGE criteria. Both RATIO and AVERAGE criteria give accurate estima-
tions of the total number of elephants. The fact that the relative error remains
under 7% for all the duration of the trace shows stability and robustness of the
algorithm. The same experiments performed on Abilene trace give similar results;
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Figure 2. Impact of the adaptive refreshment on the estimation
of elephants number, M = 1.31MB, R = 90%, France Telecom
trace

see Figure 4. So the adaptive algorithm is an efficient method of refreshing the
filter without impacting too much the estimation of the number of elephants.
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Figure 3. Impact of refreshing mechanism and the virtual filter
on the estimation of elephants number, M = 1.31MB, R = 90%,
France Telecom trace

Once an elephant has been identified, it is registered in an auxiliary memory
together with the number of packets seen and each time a packet of this flow is
seen, this value is incremented by 1. In this way, one can estimate the statistics of
the sizes of elephants. Figures 5 and 6 show that this statistics of this estimation
of the number of packets per elephant is really very close to the real value for the
two different traces.
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3.2. Impact of the M and R parameters. In Figure 7, we analyze the impact of
the size M of the memory used for the Bloom filter on the estimation of the number
of the elephants. As expected, using a larger memory improves the accuracy. The
error is very close to zero with a memory size of only 5MB. In fact the filter is
refreshed less frequently which gives more chance for elephants to be detected.

Figure 8 shows the dependence of the accuracy of the estimate for several values
of the threshold R. A threshold of 90% gives a good estimation of the number of
elephants. We just miss about 7% of the elephants. With a higher threshold, we
miss less elephants but some false positives can be added. So there is clearly a
trade-off on the choice of R. See Chabchoub et al. [6] for more details.
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4. Anomaly Detection

4.1. Context. Several types of anomalies are considered in this section in connec-
tion with denial of service (DoS) attacks. Here we are only interested in SYN flood

and volume flood attacks which are the most common DoS attacks. See Hussain et

al. [14] for a classification of DoS attacks.
A SYN flood exploits a weakness in the connection phase of TCP, also called

“the three way handshake”. This attack consists of sending a large number of SYN
packets to the same destination (or group of destinations) during a small interval
of time. Due to the TCP implementation, the destination allocates resources to all
these connection requests and will maintain many half-open connections waiting
for acknowledgments from sources for about one minute. A large number of SYN
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packets consume therefore a significant fraction of the resources of the targets and,
at the end, the corresponding machines become unreachable (see Wang et al. [20]
for more details). In this setting the goal is to design an one-line algorithm which
can detect an attack in less than one minute. Such a detection can be used by the
network operator in order to filter SYN segments towards the victim.

While a SYN flood consists of a sudden arrival of a large number of SYN seg-
ments, a volume flood attack uses a few TCP flows and gradually transmits with a
steady increase of the transmission rate a huge amount of data which will consume
the available bandwidth of the target.

Several methods have been developed in the technical literature for DoS flooding
detection; they are mainly based on TCP properties such as periodicity in Chang et

al. [9], or SYN and FIN packets counting in Wang et al. [20], Barford et al. [3], Kr-
ishnamurty et al. [15]. Most of them suffer from scalability or robustness, especially
if only sampled traffic is available as it is usually the case in backbone networks.

For SYN flood detection, the main difficulty is in distinguishing between the
(normal) variations of traffic and a sudden and anomalous sequence of SYN pack-
ets. In the technical literature, attacks are sometimes defined as a notable variation
from the standard behavior of specific parameters of the model: parameters of some
specific statistical models or long range dependence variables like Hurst parame-
ters for signal processing approaches for example. If the algorithms based on these
representations may be efficient to detect some anomalous behaviors, they cannot,
in general, assert the nature of the attack because they handle a aggregated in-
formation on the flows rather than a more detailed description of the traffic. See
Chatelain et al. [8] and Lakhina et al. [16].

4.2. SYN flood attacks. The algorithm proposed for an on-line detection of SYN
and volume flood is derived from the algorithm presented in Section 2, but with a
different refreshing mechanism of the Bloom filter.

As explained above, SYN packets with a given destination address are aggregated
as a single “flow”. In this case, by using a Bloom filter as before, the refreshing
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mechanism of the multistage filter has a different purpose: it should eliminate
quickly all normal flows using an aggressive refreshing mechanism so that if a “large”
flow survives then it must be a SYN flood attack. As it is easily seen, the term
“large” has to be properly defined. Roughly speaking, this means that such a flow
is much larger than the other “normal” flows. Again, because of the variation of
traffic, an adaptive scheme has to be devised to properly define these concepts.

The main idea of the algorithm is to evaluate a varying average mn of the largest
flow in several sliding time windows of length ∆. The quantity mn describes “nor-
mal flows”; it is periodically updated in order to adapt to varying traffic conditions.
It is a weighted average that takes into account all its past values to follow carefully
traffic variations but not too closely. If a flow in the nth time window is much larger
than mn−1, it is considered as an attack, and the moving average is not updated
for this time window.

The following variables are used.

— As before, r is the proportion of non-zero counters in the Bloom filter.
— S is a multiplicative detection threshold. Roughly speaking, an attack is de-

clared when an observation is S times greater than the “normal” behavior.
The value of S is fixed by the administrator.

— Rs and R are thresholds for the variable r. The constant Rs is independent
of traffic and taken once and for all equal to 50% and R is a variable
threshold depending on the traffic type considered.

— α is the updating coefficient for averages,; α = 0.85 in our experiments.
— ∆ is the duration of the initialization phase (1 mn in the paper). It is in

fact a bound for the time before which an attack should be detected.
— mn is the weighted moving average for the nth time window.

The algorithm starts with an initialization phase of length ∆ in order to evaluate
the threshold R. At the end of this phase, R will be definitively fixed for the rest of
the experiment. In addition, as this phase corresponds to the first time window, the
moving average m1 will be initialized as the biggest counter obtained. See Table 1
for the description of the algorithm.

Note that an alarm is declared during the nth time window when the value of a
counter is greater than Smn. At the beginning, the first time window is fixed (its
duration is ∆) but, since the evolution depends on the occupation rate of the filters,
the duration of the other time windows is variable. If traffic characteristics are not
much varying, time windows durations remain around one minute. In this case, an
attack is detected at the latest after one minute so that the network administrator
can react quickly.

4.3. Volume flood attacks. For progressive attacks, the impact on traffic cannot
be clearly seen in a time window of one minute. In fact the attack can be so slow
that it could be locally considered as a normal traffic variation. This kind of attacks
has typically a long duration. In this situation, we consider a larger time window
in order to detect the anomalous impact of the attack on traffic. Thus, to cope
with these attacks, the algorithm is used but with a larger time window ∆′ of 5
minutes. This new filter operates in the same way but on a longer time scale and is
completely independent of the first filter. In particular, it has its own parameters:
R′, r′, R′

s, m′

n, max′

n, and S′.
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Initialization phase:

— All counters are 0.
— The Bloom filter is progressively updated with SYN packets by using their

destination address.
– After a duration ∆, evaluate the variable r

∗ if r ≤ Rs then R := r else R := Rs.
∗ m1 := maximum of the values of counters of the multistage filter.

Detection phase: the n th time window

— At the beginning all counters are initialized to 0.
— The Bloom filter is progressively updated with SYN packets by using their

destination address.
– if a counter exceeds S mn−1, an attack is declared.
– if r ≥ R

∗ maxn : maximum of the values of counters of the multistage
filter.

∗ if maxn < S mn−1

mn = α mn−1 + (1 − α)maxn

∗ start the (n + 1)th time window.
Table 1. Algorithm for SYN flood detection.

4.4. Experimental Results. To evaluate and validate the attack detection al-
gorithm described in the previous section, we run experiments with two France
Telecom traces, one from the IP collect network carrying in majority ADSL traffic
and the other from the IP transit network (OTIP). In this latter case, only sampled
traffic is available. The characteristics of the traffic traces are given in Table 2.

Traces Nb. IP pack. Nb. Flows Duration
OTIP 105.106 4.106 3 days
ADSL 825.105 32.105 3 hours

Table 2. Characteristics of sampled traffic traces used for attack
detection.

To detect SYN and volume flood using two time scales (∆ = 1 mn and ∆′ = 5
mn), we need four filters. Each filter contains ten stages (k = 10) and has a total
size M around 1MB.

In Figure 9, the ADSL trace is divided into several time windows of 5 mn and, for
each interval, the volume of the largest SYN flow is computed. The observed peaks
seem to correspond to attacks. Tested on this trace, the algorithm detected two
SYN flood against two different IP addresses. The response time of the algorithm
is satisfactory as the alarms are raised at the beginning of the attacks. It should be
noted that when the duration of the time window is 1 mn, only the second attack
is detected.

In Figure 10, the same trace is used to detect volume flood. The volume of the
flow is now the number of packets which are not SYN packets. SYN packets are
not computed to prevent from considering some SYN flood as volume flood. The
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Figure 9. SYN flood detection for ADSL trace with S=5 and S′=3

algorithm detects one volume flood using the time window of 5 mn. When the
duration of the time window 1 mn, no attack is detected.
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Figure 10. Volume flood detection for ADSL trace with S=5 and
S′=2

In Figures 11 and 12 the OTIP trace is considered. This trace contains many
attacks. As it can be seen, the algorithm raises several alarms which coincide with
the largest flows represented by the highest peaks.

4.5. Remark on thresholds. The algorithms use the variables S for SYN flood
and S′ for volume flood. They are related to the network administrator’s decision
about the precise definition of an anomalous behavior. In the experiments with the
OTIP trace for SYN flood detection or volume flood detection, there is clearly a set
of events which will be qualified as “attacks” for a large range of values of S and
S′. Note however that, for some large but “milder” variations, the qualification as
attack will depend on the particular value of these parameters. There is no way to
avoid this situation in our view. This is the role of the administrator to define the
level of abnormality in traffic.



ADAPTIVE ALGORITHMS FOR IP TRAFFIC 15

 1

 10

 100

 1000

 10000

 100000

 0  500  1000  1500  2000  2500  3000  3500  4000

V
o

l.
 l

a
rg

e
s

t 
S

Y
N

 f
lo

w
 (

L
o

g
)

Time(min)

Time window: 1mn
SYN flood detected

Figure 11. SYN flood detection for OTIP trace with S = 5 and
S′ = 3
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Figure 12. Volume flood detection for OTIP trace with S = 5
and S′ = 2

5. Performance issues

In this section, we discuss briefly, from a modeling point of view, some of the
performance issues concerning the refreshing mechanism of the algorithms presented
in the paper. They are addressed in more detail in Chabchoub et al. [6, 7]. Recall
that our algorithms have the following parameters:

— R: overload ratio of the filter,
— C: minimum size of large flows (elephants),
— m: number of counters per hash table,
— k: number of hash tables in the filter.

The number m is large and the value of C is fixed. The main issue is in fact to
investigate the sensitivity of the value of R on the performances: How can one
choose R no too large to avoid as much as possible false elephants but large enough
to prevent from missing many true elephants. The problem reduces to estimate
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the error generated by mice, i.e., the ratio of false positives in a simplified model
where there are just mice. The case where k = 1 is first investigated as the simplest
model. Then simplified models are developed for the case where k ≥ 2.

In a first step, a one-stage filter is considered and traffic is supposed to be
composed of only of mice of size 1. The analysis uses Markovian techniques: If
Wm

n
(i) is defined as the proportion of counters with values i, i ∈ 0, . . . , C just

before the nth refreshment for a filter with m counters then the process

(Wm

n
, n ≥ 0) = ((Wm

n
(i), i = 0, . . . , C) , n ≥ 0)

is a Markov chain on a finite state space with invariant distribution πm. As m gets
large, it is shown that the sequence (Wm

n
, n ≥ 1) converges to a dynamical system

with unique fixed point w. It turns out that w has a nice interpretation in terms
of the stationary measure µλ of a M/G/1/C queue with service time 1 and arrival
rate λ and

w = µλ(w)

where λ(w) = log(1+w(1)/(1− r)). As the invariant measure µλ can be computed
as the solution of a linear system of C + 1 equations, λ(w) is thus the solution to
a fixed point equation.

The behavior of the system can be described as follows. At equilibrium, the
average number of packets between two refreshing instants is of the order of λ(w)m.
Due to finite capacity C, this quantity is greater than the number of removed
packets Rm at each refreshment. In particular λ(w) is not necessarily less than 1.
For R enough close to 1, it is shown that λ(w) can in fact exceed 1 which changes
the qualitative behavior of the system: if the arrival rate λ(w) is less than 1, then
w is concentrated on small values 0, 1, 2 . . . of the state space {0, 1, . . .C}. When
λ(w) > 1 the distribution w is mainly concentrated on the highest values C and
C − 1. Since false positives are closely related to the quantity w(C), this implies
that the proportion of false positives is much higher in this case. Consequently,
there is a critical value rc < 1 of R, which corresponds to λ(w) = 1, so that the
performances of the algorithm deteriorate when R > rc. Similar conclusions hold
also in the case of k-stage Bloom filter.

In practice, in the (simplified) case of 1-packet mice, the critical rate rc is close
to 1. But, for general mice size distribution, rc is much lower than 1. Thus,
the RATIO criterion does not perform well for any value of R. To conclude, the
analysis confirms that the threshold R has to be chosen, otherwise the RATIO
criterion cannot control the saturation of the filter. This control is contained in the
design of the AVR criterion.

Let us give an insight into a model taking into account the case where just
the counters having the minimum value are incremented. The analysis can be
generalized to more general situations. The idea is also to express quantities via a
continuous time process. The main tool is the system of m queues with a Poisson
arrival process with rate λm where customers join the shortest of the k queues
chosen at random among m. This system is well-known in the literature (see
Mitzenmacher [17], Vvedenskaya [19], Graham [13] and others). In order to use it,
the model must be slightly modified: the mouse increments just one counter having
the minimum value and C is taken as 20/k. The conclusion is that the behavior of
the model should follow the same lines but many points are more difficult to catch.
For example, as far as we know, the system of queues corresponding to mice with
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general size distribution has never been studied in the literature. Nevertheless, the
analysis gives rise to related models which could lead to improve or simplify the
algorithm.

6. Concluding remarks

We have presented in this paper an original adaptive algorithm for identifying
elephants in Internet traffic. As earlier proposed by Estan and Varghese, this
algorithm is based on Bloom filters, but instead of periodically erasing the filter,
we introduce different original criteria to decrement the various counters of the
filter. In order to improve the accuracy of the algorithm, we have introduced the
concept of virtual filter, whose counters are less frequently decreased. The proposed
algorithm has been tested against different traffic traces and performs better than
the one by Estan and Varghese.

Finally, the proposed elephant identification mechanism has been adapted in or-
der to detect flood anomalies (SYN and volume floods) in Internet traffic. This
gives rise to a new algorithm, whose key parameters adapt to network traffic. This
algorithm has been successfully tested with two types of traffic traces (correspond-
ing to residential and transit traffic).
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