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ABSTRACT

The present work concerns the analysis of dynamic scenes

from earth observation images. We are interested in building

a map which, on one hand locates places of change, on the

other hand, reconstructs a unique visual information of the

non-change areas. We show in this paper that such a problem

can naturally be takled with conditional mixed-state random

field modeling (mixed-state CRF), where the ”mixed state”

refers to the symbolic or continous nature of the unknown

variable. The maximum a posteriori (MAP) estimation of the

CRF is, through the Hammersley-Clifford theorem, turned

into an energy minimisation problem. We tested the model

on several Quickbird images and illustrate the quality of the

results.

Index Terms— Image analysis, Conditional random

fields, Mixed-state model, Change detection, Remote sensing.

1. INTRODUCTION

The advent of very high resolution optical satellite images has

opened, since nearly one decade already, a whole range of

new possibilities in application domains like digital cartog-

raphy, urban planning or land survey. The variety and the

amount of information available in these images make never-

theless classical techniques of classification and segmentation

inadequate. High accuracy comes with high level of details

(car, road lines,..), which are not necessarily relevant infor-

mation and contribute to the highly correlated noise in the

image. The challenge is then to get rid of this ’geometric

noise’, while exploiting valid and accurate information.

The present work concerns the analysis of dynamic scenes

from earth observation images. More precisely, we are in-

terested in building a map which, on one hand locates places

of change, on the other hand, reconstructs a unique visual

information of the non-change areas. To this end, we propose

a new approach based on conditional mixed-state random

field modeling (mixed-state CRF). The so-called “mixed-

state” stems from the mixed nature of the unknown random

variable: the symbolic value is a binary indicator function of

change v.s. non change, while the continuous value provides

an estimation of the ”background image” where no change

happened. The maximum a posteriori (MAP) estimation

of the CRF is, through the Hammersley-Clifford theorem,

turned into an energy minimisation problem.

The fundamentals of mixed-state CRF, the design of the

energy functional, the preprocessing step and the optimisation

process are described in sections 3 to 7. Results and conclu-

sions are given in sections 8 and 9. We first briefly introduce

in the following section some recent works on change detec-

tion.

2. RELATED WORK

Recent advances in digital change detection involve multi-

resolution approaches. In [1] Carvalho & al. applied wavelet

transform to multi-temporal and multiresolution Landsat (TM

and MSS) data with the objective to fuse multi-resolution data

while reducing radiometric and geometric mis-registration.

In [2], the authors generate a multiscale dataset using object-

specific analysis (OSA) and object-specific up-scaling (OSU);

they detect features using marker-controlled watershed seg-

mentation (MCS) and finally proceed to change detection by

differencing the features images.

L. Bruzzone [3] proposes a segmentation framework in

which images are decomposed in homogeneous connected

regions and some features are computed for each region.

The change detection map is produced by thresholding the

features difference. In [4], a probabilistic approach inspired

from [5] is proposed; it consists in detecting man-made struc-

tures using a Discriminative Random Field model. DRF mod-

els are directly derived from Conditional Random Fields [6],

but introduce a data term which is a discriminative classifier.

Markov Random Field models have been extensively used

for various segmentation and labelling applications in vision.

The modeling task consists in defining a joint probability dis-

tribution p(x,y) over observation variables x and unknown

variables y. Typically, in a generative framework and using

the Bayes rule, the joint probability decomposes into an ob-



servation model (or likelihood) p(x|y) and a prior model

p(y). A contrario, Conditional Random Fields (CRFs) [6]

directly model the posterior probability of the unknown vari-

able given the observation, P (y|x). We will, in the next

sections, develop a new model belonging to the family of

CRFs.

3. OVERVIEW

The overall motivation of this work stems from the following

considerations:

• High resolution remote sensing images exhibit strong

structural pattern/organisation; for this reason, robust

processing of VHR images requires, in particular, to

model long range dependencies of the observations

(note that higher-order MRF can account for long-

range interaction between labels only); hence the

choice of Conditional Random Fields models (CRF);

• We aim at fully exploiting the bi-modal nature of the

problem, i.e. not only to generate a map of changes,

but also to retrieve the ’optimal’ visual image of non-

changed background; these two distinct aspects are na-

turally modeled by mixed-state variables, which simul-

taneously account for symbolic and real variables and

are estimated without additional computational step.

• CRFs or MRFs do not allow to retrieve an exact opti-

mum, but under specific conditions [7]. In this context,

a close-to-the-solution initialisation before optimising

the CRF model is important. We thus derived a robust

initialisation procedure.

The rest of the paper describes the model and each step of

the processing. Details can be found in [8].

4. DEFINITIONS AND FUNDAMENTALS ON

MIXED-STATE CONDITIONAL RANDOM FIELDS

Let us first introduce a few notations; we define a graph

G(V,E), where V = {i | i ∈ [1, ..., N ]} are the vertices (or

nodes) and E = {ei,j | i 6= j; i, j ∈ [1, ..., N ]2} are edges

linking two nodes. I1 and I2 correspond to images acquired

at time t1 and t2 respectively; we assume that pairs of images

are co-registered. y = {yi} is the unknown random variable;

the observation variable x = {xi} is a feature vector of the

two images (points of same coordinates are coupled to form a

pair). Vertices and egdges define cliques of size (order) 1 and

2, Co and C1 respectively.

CRF starts from the paradigm that we can define the pos-

terior distribution directly, without explicitly modeling the

data:

p(y|x) =
e−E(x,y)

∑

y e−E(x,y)
= Z−1e−

P

C Ec(x,y) (1)

where E() is the total energy functional of the model, Ec()
are clique-wise energy functions. Z is the partition function,

which normalises the distribution ; it is a constant over y and

therefore do not play any role during the task of inference.

CRF models until now were developed for either continu-

ous or discrete random variables [6, 5]. Conversely, inspired

from [9], we are here interested in modelling a energy func-

tional E(x,y), over y ∈ SN , where S is a mixed space

defined by S = Ω ∪ R, with R the space of reals and Ω
the space of symbolic concepts. The notion of ”mixed-state”

comes then from the bi-modal nature of the unknown y, either

continuous (in R), either symbolic (ω ∈ Ω).

The mixed state nature of the random variable compels

us to define properly a density function that is associated to

it (see [9, 10]). Let us first define, for a given element yi, a

mixed measure : m(dyi) = δω(dyi) + λ(dyi) where δω is the

Dirac measure at ω ∈ Ω and λ the Lebesgue measure over R.

We note δ∗ω = 1−δω(yi). The variable yi ∈ S is defined such

as:

1. yi = ω with a probability Pi ∈ [0, 1],
2. with a probability (1 − Pi), yi follows a continous

distribution with a density function d.

Consequently, we define the probability density function of a

mixed variable yi ∈ S associated to the measure m(dyi) by:

f(yi) = P δω(yi) + (1 − P ) d(yi) δ∗ω(yi)

that indeed verifies
∫∞

−∞
f(yi)m(dyi) = 1.

We can now design a mixed-state energy functional ex-

pressed as the sum of two terms, associated respectively with

the symbolic value and the continuous value of y.

5. RADIOMETRIC FEATURES AND REVISITED

ITERATIVE PCA

The first step of our approach is to classify pixels pairs into

two rough classes, ”Change” and ”No-Change”, respectively

l1, l0. The main principle is (see [11] or [8] for details) to

first compute the intensity-level linear change between two

images, then to evaluate, after linear correction, the deviation

of the intensity level in the second image. The computation

is based on a iterative computation of principal component

analysis.

Let us consider a bi-dimensional feature space defined by

the orthogonal axes (oI1) and (oI2) —namely, a bi-temporal

feature space. A site i is thus represented in this feature space

by its coordinates (I1(i), I2(i)). We can reasonably expect all

unchanged pixels to lie in a narrow elongated cluster along a

principal axis (which tangent would be 1 if there were no il-

lumination change at all between the two acquisitions). On

the other hand, the pixels of which spectral appearance has

changed are expected to lie far away from this axis. In other

words, the magnitude of change can be quantified by the fol-

lowing inner product : c(i) = g . (I − µ), with g = [g1 g2]T

the second eigenvector of the covariance matrix (it indicates



the direction along which there is little variation of the in-

tensity level) , and µ = [µ1 µ2]T the mean vector of inten-

sity levels I = [I1 I2] in each image. An obvious problem

with principal component based change detection is that the

covariance matrix is computed from all the pixels including

those which have experienced change. Thus the computation

of the second principal axis g is obviously biased.

The iterative approach aims at decreasing progressively

the influence of outliers (i.e. the pixels of change), by com-

puting the empirical expectation : µ̄ =
∑

i I(i) p(l0|i). Com-

puting p(l|i) ≃ p(l)p(i|l), l = {l0, l1}, boils down to estimate

the likelihoods p(i|l) and the priors p(l). The latter is evalu-

ated as the ratio between the pixels belonging to class l and the

total number of pixels. The likelihood is assumed to follow a

(zero-centred) Gaussian distribution N(c(i); 0, σl), which pa-

rameters σl are estimated by fitting the empirical distribution

of c(i) and re-estimated at each iteration (see Figure 1).

Iterations converge (i.e. ∆µ̄ < ǫ) within 10 iterations. Fi-

nally, a rough map of change is obtained by maximising the

posterior at each node: li = arg maxl∈{l0,l1} p(l|i).

Fig. 1. Bi-temporal feature space and results of iterative PCA

(g orientation in red, and principal axis in blue).

6. CHANGE ANALYSIS FROM CONDITIONAL

MIXED STATE MODEL

6.1. Overview

We can re-write equation 1 such as to highlight the mixed-

state nature of the model. Taking the negative log-likelihood,

and incorporating the variable y ∈ S, we have

L = − log (p(y|x)) = E(x,y) + log(Z)

∼ Esymb(x,y) + β Econt(x,y)
(2)

β is a weight balancing the contributions of the symbolic and

continuous terms, Esymb and Econt respectively. (Z being

constant, it is neglected in the rest of the paper). Both compo-

nents are in turn decomposed into a data term (or likelihood),

and a pairwise term (or regularisation).

6.2. Data energy term

We define

Edata =
∑

i∈C0

Edata,cont(i) + α Edata,symb(i)

with

Edata,symb(i) = − 1Iyi=ω log (p(l0|i))

Edata,cont(i) = 1Iyi 6=ω ρ

(

(xi − yi)
2

σ2
d

)

(3)

The symbolic part is the negative log of the probability of

change, p(l0|i), as defined in section 5. If p(l0|i) is close to

one then this term is close to zero. If there is no change, then

the energy term is positive and large. As for the continuous

part, it tells us that, if yi takes value in R, then its value should

be close to x(i) = min(I1(i), I2(i)) (we could have chosen

the mean function rather than the minimum, it is an arbitrary

choice). We set ρ(t) = tanh(t) = et−e−t

et+e−t ; its role is to make

the energy terms vary on comparable intervals and, when the

dynamic of the variations is too tight, to stretch it. σd is the

variance computed on a neighbour around node i (usually 7 x

7 or 9 x 9 pixels): it enables a local normalisation.

6.3. Pairwise energy terms

We define the pairwise/regularisation term such that

Ereg =
∑

i∈C0

Ereg,cont(i) + γ Ereg,symb(i)

with

Ereg,symb(i) = 1Iyi=ω

(

1 −

∑

j∈Ci,1
1Iyj=ω

|Ci,1|

)

Ereg,cont(i) = 1Iyi 6=ω

∑

j∈Ci,1

1Iyi 6=ω ρ

(

φ(i, j)
(yi − yj)

2

σ2
r

)

(4)

|Ci,1| is the number of C1 cliques around node i (typically we

choose a 4-connectivity neighbourhood, hence |C1| = 4). The

symbolic part of the spatial regularisation is inspired from the

Ising model : it favours the presence of symbolic labels in

the neighbourhood of i. The continuous term has for effect

to prevent large intensity gradients between two neighbour-

hood pixels labelled ”non-changed”, except at edges. Func-

tion φ(i, j) is used to reduce smoothing around edges; its ex-

pression is : φ(i, j) = 1
max(∆I1,∆I2,ξ) , where ∆Ik(i, j) =

∣

∣Ik(i) − Ik(j)
∣

∣, for k = 1, 2, index of each of the two im-

ages, and ξ is a constant, typically small enough. The vari-

ance σr plays similar role as above. Note that this pairwise

term depends on the observation variable.



7. OPTIMISATION FRAMEWORK

We seek for the optimal configuration y that minimises L,

given the observation x. We are not dealing with conventional

random fields and need to develop an algorithm that is adapted

to the mixed-state nature of the energy function.

For its simplicity of implementation, we adapted the Iter-

ated Conditional Model (ICM) (it would be worth comparing

with global optimisation methods, such as graph-cuts or simu-

lated annealing [12, 7]). At each iteration, at each node, we

compute the local energy for the two possible cases (i.e. yi is

real —no-change–, or symbolic –change) and retain the value

of yi which minimises the energy. Note that, when minimis-

ing the energy for yi ∈ R, yi can be estimated analytically:

if one develops the expression Ereg,cont + Edata,cont, it re-

sults in a polynomial of degree two, whose minima can be

computed without difficulty.

8. EXPERIMENTAL RESULTS

Experiments were performed on several pairs of Quickbird

panchromatic images (0.6m resolution), covering the same

geographical site (Beijing area). Pairs are assumed to be re-

gistered (via geo-coding in our case). While selecting test im-

ages, in purpose, we chose difficult cases which contain true

structural changes (that we want to detect) and visual changes

(cars, vegetation, projective effects) associated to ”noise”.

Figure 2 illustrates some results. Top images show the

two input data and their associated ground truth (in red). The

results from mixed-state CRF is given in bottom right : gray

level values indicate the reconstructed image associated to the

unchanged regions of the scene, while in red colour are pixels

detected as change. More results are given in [8]. It appears

clearly that mixed-state CRF model performs better than a

simple IPCA. Remaining false positive detections are mainly

due to projective effects of high buildings, and could be over-

come by a multi-scale approach or a better fitted data term.

9. CONCLUSION

We have described a mixed-state conditional random field

model for change analysis problems. We designed an energy

functional robust to visual (appearance) variations and geo-

metric noise inherent to VHR images. We have shown that

the mixed-nature of the random variable enables to naturally

retrieve a bi-modal solution, mapping the areas of changes

and simultaneously reconstructing the visual background im-

age where no changes happened. The model could further be

exploited to multi-category change analysis.
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