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A general framework for waves in random media

with long-range correlations

Renaud Marty∗ and Knut Solna†

Abstract

We consider waves propagating in a randomly layered medium with
long-range correlations. An example of such a medium is studied in
[19] and leads in particular to an asymptotic travel time described in
terms of a fractional Brownian motion. Here we study the asymptotic
transmitted pulse under very general assumptions on the long-range
correlations. In the framework that we introduce in this paper, we
prove in particular that the asymptotic time-shift can be described in
terms of non-Gaussian and/or multifractal processes.

Key-words: Waves in random media, Long range dependence,
Fractional and multifractional processes.

AMS classification (2000): 34F05, 34E10, 37H10, 60H20

1 Introduction

Wave propagation in random media has been extensively studied for many
years from both theoretic and applied points of view. In particular, the study
of the effective shape of an acoustic pulse propagating through a layered
medium has attracted a lot of attention [1, 5, 27]. Recently, applications to
time reversal [11] have also attracted a lot of attention. Currently there is
also a strong interest in problems related to noise and correlations, [12]. In
all these cases the statistical properties of the medium are important since
they affect the statistical properties of the wave field.

In [5] the authors consider an acoustic pulse propagating in a one-
dimensional random medium with rapidly decaying correlations. They rigor-
ously prove the classical O’Doherty and Anstey’s result [20] that establishes
that the effective transmitted pulse is characterised by deterministic spread-
ing and a random time-shift. More precisely, the deterministic spreading is
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expressed as a convolution with a Gaussian density and the random time-
shift is described in terms of a Brownian motion.

More recently, wave propagation in random media with long-range corre-
lations and/or defined in terms of fractional Brownian motion [2, 13, 19, 26]
has been considered. In [19], we extend the result of [5] to such a framework.
Then, the asymptotic description of the transmitted pulse is dramatically
different from what happens in a mixing case. Indeed, the pulse keeps its
initial shape, and its random time-shift is now described in terms of a frac-
tional Brownian motion whose Hurst index depends on the decay rate of
the correlation function of the random fluctuations. We considered in [19]
a particular form of a random process describing the medium, such that it
was roughly speaking close to a Gaussian process. Thus, it still remains to
study more general cases under long-range assumptions. This is the aim of
the present work. We establish that under general long-range assumptions
on the medium, the effective pulse still keeps its initial shape as observed
in [19], but the time-shift can be very different, non-Gaussian for instance,
depending on the form of the random fluctuations. Besides, our general re-
sult allow us to deal with media with a decay rate correlations varying along
the propagation direction. This leads to an effective time-shift, described
in terms of a multifractional random process which is, roughly speaking, a
fractional Brownian motion with a varying Hurst index, that reflects the
non-homogeneity of the propagation medium.

In Section 2 we introduce the problem and review the basic wave decom-
position approach. Next, we establish the general technical result (Theorem
3.1) in Section 3 that we apply to non-Gaussian media in Section 4, to multi-
fractal Gaussian media in Section 5 and to multifractal non-Gaussian media
in Section 6 where we prove the main result of the paper (Theorem 6.1).
Finally, Section 7 is devoted to the derivation of Threorem 3.1.

2 Preliminaries

2.1 Wave Decomposition

The governing equations are the non-dimensionalized Euler equations giving
conservation of moments and mass:

ρε(z)
∂uε

∂t
(z, t) +

∂pε

∂z
(z, t) = 0 , (2.1)

1

Kε(z)

∂pε

∂t
(z, t) +

∂uε

∂z
(z, t) = 0 , (2.2)

where t is the time, z is the depth into the medium, pε is the pressure and
uε the particle velocity. The medium parameters are the density ρε and the
bulk-modulus Kε (reciprocal of the compressibility). We assume that ρε is

2



a constant identically equal to one in our non-dimensionalized setting and
1/Kε is modeled as follows

1

Kε(z)
=

{
1 + µε(z) for z ∈ [0, Z] ,
1 for z ∈ R − [0, Z] ,

(2.3)

where µε is a centered random process. The number ε > 0 is a parameter
that all quantities depend on. As we will see below it is introduced to
describe the scales of the problem.

We introduce the right- and left-going waves:

Aε = pε + uε and Bε = uε − pε . (2.4)

The boundary conditions are of the form

Aε(z = 0, t) = f(t/ετ ) and Bε(z = Z, t) = 0 , (2.5)

for a positive real number τ > 0 and a source function f . This indicate
that the energy entering the medium is of order ετ . In order to deduce a
description of the transmitted pulse, we open a window of size ετ in the
neighborhood of the travel time of the homogenized medium and define the
processes

aε(z, s) = Aε(z, z + ετs) and bε(z, s) = Bε(z,−z + ετs) . (2.6)

Observe that the background or homogenized medium in our scaling has a
constant speed of sound equal to unity and that the medium is matched so
that in the frame introduced in (2.6) the pulse shape is constant if µε ≡ 0 or
if we consider the homogenized medium, [11]. We introduce next the Fourier
transforms âε and b̂ε of aε and bε respectively:

âε(z, ω) =

∫ ∞

−∞
eiωsaε(z, s)ds and b̂ε(z, ω) =

∫ ∞

−∞
eiωsbε(z, s)ds ,

that satisfy

dâε

dz
=
iω

2
νε (z)

(
âε − e−2iωz/ετ

b̂ε
)
, âε(0, ω) = f̂(ω) , (2.7)

db̂ε

dz
=
iω

2
νε (z)

(
e2iωz/ετ

âε − b̂ε
)
, b̂ε(Z, ω) = 0 (2.8)

where we use the notation

νε =
µε

ετ
. (2.9)

Following [5, 11] we express the previous system of equations in term of
propagator P ε

ω(z) which can be written as

P ε
ω(z) =

(
αε

ω(z) βε
ω(z)

βε
ω(z) αε

ω(z)

)
, (2.10)
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and that satisfies

dP ε
ω

dz
(z) = Hε

ω(
z

ετ
, z)P ε

ω(z), P ε
ω(z = 0) =

(
1 0
0 1

)
, (2.11)

with

Hε
ω(z1, z2) =

iω

2
νε(z2)

(
1 −e−2iωz1

e2iωz1 −1

)
.

Defining next the transmission coefficient T ε
ω and the reflection coefficient

Rε
ω by

T ε
ω(z) =

1

αε
ω(z)

and Rε
ω(z) =

βε
ω(z)

αε
ω(z)

, (2.12)

we can write

aε(Z, s) =
1

2π

∫ ∞

−∞
e−isωT ε

ω(Z)f̂(ω) dω , (2.13)

and

bε(0, s) =
1

2π

∫ ∞

−∞
e−isωRε

ω(Z)f̂(ω) dω . (2.14)

Hence we shall study the asymptotics of the propagator P ε
ω in order to

characterize aε and bε as ε goes to 0.

2.2 A short-range medium

We recall now what happens in a mixing (or short-range) model when τ = 1
and µε(z) = ν(z/ε2). We assume that ν = Φ ◦ m where Φ is a bounded
function and m is a centered Markov process with an invariant probability
measure whose generator satisfies the Fredholm alternative. This implies
that the correlation length σ of the medium is finite:

σ2 =

∫ ∞

0
|E[ν(0)ν(z)]| dz ∈ [0,∞) .

This property is the mixing property or the short-range property. It is well
known [5, 11] that under these assumptions the propagator equations P ε

ω

converge to a system of stochastic differential equations driven by indepen-
dent Brownian motions from which we can deduce that aε(Z, s) −→ ã(Z, s)
as ε goes to 0 with

ã(Z, s) = (f ∗G)(s−B) , (2.15)
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where G is a centered Gaussian density with variance σ2Z/2 and B a Gaus-
sian random variable that can be expressed in terms of a Brownian motion
W as B = σW (Z)/

√
2. Proving this result involves using the Diffusion

Approximation Theorem [11] to get an asymptotic propagator from which
we can deduce the expression of the limit ã(Z, s). Notice that, whereas
the variance of B depends in particular on Φ, the result does not depend
qualitatively on Φ in the sense that B remains Gaussian whatever Φ is.

2.3 A long-range medium

In [19], the propagation in a long-range medium is investigated. The model
considered is defined in terms of a fractional Brownian motion as ν(z) =
Φ(m(z)) for every z where:

• Φ is an odd C∞−function.

• m is a Gaussian process, centered, stationary and has a correlation
function rm which has the following asymptotic property as z goes to
∞:

rm(z) = E[m(0)m(z)] ∼ cmz
−γ , γ ∈ (0, 1) . (2.16)

The property (2.16) implies that the covariance function rν of ν is not inte-
grable: ∫ ∞

0
|rν(z)| dz = ∞ ,

which means that the correlation length is infinite. This is the so-called long-
range property. We mention that a typical example of a process satisfying
(2.16) can be constructed as

m(z) = WH(z + 1) −WH(z) , (2.17)

where BH is a fractional Brownian motion (fBm in short) with Hurst pa-
rameter H > 1/2. In this case, we proved that aε(Z, s) −→ ã(Z, s) with

ã(Z, s) = f(s−B) , (2.18)

where B a Gaussian random variable. We can write B as B = σHWH(Z)
where WH is a fractional Brownian motion with Hurst parameter H =
(2 − γ)/2 and σH is a positive constant that depends on H and Φ.

3 Medium assumptions and main technical result

The results presented above show that statistical properties of ν strongly
affect the asymptotic behavior of the pulse shape aε(Z, s). In Sections 4
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and 5 we carry out the analysis of the particular long-range media that we
consider in this paper. To facilitate this analysis we establish in this section
a theorem under the following general assumptions on νε = µε/ετ . Let λ > 0
and define:

• Assumption A1: As ε goes to 0, the finite-dimensional distributions of
the process {

∫ z
0 ν

ε(z′) dz′}z converge to those of a process V = {V (z)}z

with finite second-order moments.

• Assumption A2(λ): There exist two symmetric, continuous and two-
variable functions γ : [0, Z]2 → [γ−, γ+] ⊂ (0, 1) and R : [0, Z]2 → R+

such that for every δ > 0, there exists zδ > 0 sufficiently large such
that for every z1, z2 and ε satisfying |z1 − z2| > ελzδ,

|E[νε(z1)ν
ε(z2)]−R(z1, z2)|z1−z2|−γ(z1,z2)| ≤ δR(z1, z2)|z1−z2|−γ(z1,z2).

• Assumption A3(λ). For every ρ > 0 there exist Cρ > 0 and γρ ∈
(0, 1) such that E[νε(z1)ν

ε(z2)] ≤ Cρ|z1 − z2|−γρ for every ε > 0 and
|z1 − z2|/ελ < ρ.

Assumption A1 is merely the convergence of the travel-time. Assumptions
A2(λ) and A3(λ) are long-range assumptions for non-stationary processes.
They describe how the long-range property varies with the propagation dis-
tance. In particular, these enable us to apply the next theorem to multi-
fractal media (Sections 5 and 6), which are non-homogeneous.

Here we give the main technical result of this paper.

Theorem 3.1. Assume that there exists λ > 0 such that A1, A2(λ) and
A3(λ) are satisfied. Then, as ε goes to 0, {aε(Z, s)}s converges in distribu-
tion in the space of continuous functions endowed with the uniform topology
to the random process {ã(Z, s)}s that can be written as

ã(Z, s) = f

(
s− 1

2
V (Z)

)
. (3.1)

Theorem 3.1 establishes that, under general long-range assumptions, if
the travel-time converges then the asymptotic pulse keeps its initial shape
but its time shift is described in terms of the asymptotic travel-time. As
recalled in Subsection 2.3 this fact was observed in a particular case in [19].
In fact, the result of [19] follows from Theorem 3.1. Indeed, the model
presented in Subsection 2.3 satisfies A1, A2(2) and A3(2). In particular,
the finite-dimensional distributions of {

∫ z
0 ν

ε(z′) dz′}z converge to those of
the process {σHWH(z)}z, so that the asymptotic pulse is of the form (2.18).

Theorem 3.1 is next used in Sections 4 and 5 to establish the asymptotic
pulse shape respectively in non-Gaussian and multifractal media.
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4 Non-Gaussian asymptotics

In this section we study the case where νε has the form

νε(z) = εκ−τν

(
z

ε2

)
for z ∈ [0, Z]

where κ > 0 and ν is a process that is assumed to have the form

ν(z) = Φ(m(z))

for every z where:

• Φ is a continuous function such that Φ(σ0 × ·) has a Hermite index
equal to K ∈ N

∗, where σ2
0 = E[m(0)2].

• m is a continuous Gaussian process, centered, stationary and has a
correlation function rm which has the following asymptotic property
as z goes to ∞:

rm(z) = E[m(0)m(z)] ∼ cmz
−γ (4.1)

where 0 < γ < 1/K.

We denote the K−th Hermite coefficient of Φ(σ0 × ·)

J(K) = E[Φ(σ0X)PK(X)]

where X ∼ N (0, 1) and PK is the K−th Hermite polynomial. Applying
Theorem 3.1 we get the following result.

Theorem 4.1. Assume that τ − κ = γK. Then, as ε goes to 0, {aε(Z, s)}s

converges in distribution in the space of continuous functions endowed with
the uniform topology to the random process {ã(Z, s)}s that can be written as

ã(Z, s) = f

(
s− 1

2
WK

H (Z)

)
, (4.2)

where WK
H is the K−th Hermite process of index H = (2−γK)/2 ∈ (1/2, 1)

defined for every z by

WK
H (z) =

1

σ0

∫

RK

GH,K(z, x1, · · · , xK)

K∏

k=1

B̂(dxk) (4.3)

with

GH,K(z, x1, · · · , xK) =
J(K)e−iz

PK
j=1

xj − 1

K!C(H)K
∑K

j=1 xj

K∏

k=1

xk

|xk|(H−1)/K+3/2
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where B̂(dx) is the Fourier transform of a Brownian measure,

C(H)2 =

∫ ∞

−∞

|e−ix − 1|2
|x|2H+1

dx =
π

HΓ(2H) sin(πH)
.

and the multiple stochastic integral is in the sense of [9].

For H ∈ (1/2, 1) and K ∈ N
∗ given, the Hermite process defined by (4.3)

was introduced independently in [10] and [28]. Its increments are stationary
and its covariance is

E[WK
H (z1)W

K
H (z2)] =

1

2
(|z1|2H + |z2|2H − |z1 − z2|2H).

It is selfsimilar and H−Hölder. It is Gaussian if and only if K = 1, thus,
it is a fractional Brownian motion if and only if K = 1. As a consequence,
the result of [19] corresponds to the case of K = 1 in Theorem 4.1. More-
over, this result is in dramatic contrast to the short range case where the
asymptotics does not depend qualitatively on Φ.

Proof. Following [10] or [28], we find that the finite-dimensional distributions
of the antiderivative of νε converge to those ofWK

H , therefore, A1 is satisfied.
Next we show that A2(2) and A3(2) hold. Because of the stationarity of m
it is enough to show that

E[ν(0)ν(z)] ∼ cνz
−Kγ as z → ∞ (4.4)

for some constant cν > 0. In view of (4.4) we can write

ν(z) = Φ

(
σ0
m(z)

σ0

)
=

∞∑

k=K

J(k)

k!
Pk

(
m(z)

σ0

)
.

Using the properties of the Hermite polynomials we get

E[ν(0)ν(z)] =

∞∑

k=K

J(k)2

(k!)2
E

[
Pk

(
m(0)

σ0

)
Pk

(
m(z)

σ0

)]

=

∞∑

k=K

J(k)2

k!σ2k
0

rm(z)k . (4.5)

Therefore, we need to study the limit of

zγK
E[ν(0)ν(z)] =

∞∑

k=K

J(k)2

k!σ2k
0

zγKrm(z)k .

Observe that for k = K we have zγKrm(z) ∼ c as z → ∞ and for k > K
we have zγKrm(z)k → 0. Moreover, we have the uniform upper bound for z
sufficiently large:

J(k)2

k!σ2k
0

zγK |rm(z)|k ≤ J(k)2

k!
.

Using the fact that
∑∞

k=1
J(k)2

k! <∞, (4.4) follows from the uniform conver-
gence theorem.
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5 Application to multifractal media

In this section we study the case where the asymptotic medium is described
in terms of a multifractional process. In all the situations described above,
the media were asymptotically expressed in terms of fractional processes.
A drawback of fractional processes for applications is the strong homogene-
ity of their properties, which are described by their (constant) Hurst index.
Therfore, multifractional processes have attracted much attention [3, 24].
Multifractional processes have locally the same properties as fractional pro-
cesses. Their properties are governed by a (0, 1)−valued function h which
is called the multifractional function. Some of the main properties are that
multifractional processes are locally self-similar and their pointwise Hölder
exponents vary along their trajectory. In particular, multifractional pro-
cesses are relevant in order to describe non-homogeneous media. Before
stating the main result of this section, we mention that the most famous
multifractional process is the multifractional Brownian motion. It was in-
dependently introduced in [3, 24] and can be defined from the harmonizable
representation of fractional Brownian motion for every z:

WH(z) =
1

C(H)

∫ ∞

−∞

e−izx − 1

|x|H+1/2
B̂(dx), (5.1)

where B̂ is the Fourier transform of a real Gaussian measure B and the
constant C(H) is a renormalisation constant and can be written as

C(H)2 =

∫ ∞

−∞

|e−ix − 1|2
|x|2H+1

dx =
π

HΓ(2H) sin(πH)
.

Now we consider a (0, 1)−valued function h and we substitute H by h(z)
for every z to obtain

Wh(z) =
1

C̃(z)

∫ ∞

−∞

e−izx − 1

|x|h(z)+1/2
B̂(dx), (5.2)

where the constant C̃(z) is a renormalisation function.
We shall here use a different framework for the multifractal modeling

that is convenient for the asymptotic analysis and describe this next. We
assume that νε has the form

νε(z) = εκ(z)−τν

(
z

ε2
, z

)
for z ∈ [0, Z]

where κ is a positive function and ν is a field that is written as ν(z1, z2) =
Φ(m(z1, h(z2))) for every z1 and z2 where:

• Φ is a continuous function with Hermite index 1.
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• h is a continuous function taking values in [h−, h+] ⊂ (1/2, 1).

• m = {m(z,H)}z,H is a centered and continuous Gaussian field such
that E[m(z,H)2] = 1 for every z and H and that satisfies:

– For every M > 0 the map

(z1, z2,H1,H2) 7−→ E[m(z1,H1)m(z2,H2)]

is bounded on {(z1, z2) ∈ R
2
+, |z1 − z2| ≤M} × [h−, h+]2.

– There exists a continuous function R : [h−, h+]2 → (0,∞) (that
we call the asymptotic covariance of m) such that

lim
z1−z2→∞

sup
(H1,H2)

|R(H1,H2)

−(z1 − z2)
2−H1−H2E[m(z1,H1)m(z2,H2)]| = 0.

These assumptions describe that the field m has the long-range property
with respect to the variable z. They also express that for eachH, the process
m(·,H) is stationary and asymptotically fractional because it satisfies the
classical invariance principle. As established in [6] this field enable us to
define a process that is asymptotically multifractional.

Applying Theorem 3.1 we now get:

Theorem 5.1. Let γ(z) := τ−κ(z) and assume h(z) = (2−γ(z))/2. Then,
as ε goes to 0, {aε(Z, s)}s converges in distribution in the space of contin-
uous functions endowed with the uniform topology to the random process
{ã(Z, s)}s that can be written as

ã(Z, s) = f

(
s− 1

2
Sh(Z)

)
, (5.3)

where Sh is a centered Gaussian process with covariance given for z1, z2 ≥ 0
by:

E[Sh(z1)Sh(z2)] = J(1)2
∫ z1

0
du1

∫ z2

0
du2 R̃

(
u1, u2

)
, (5.4)

where

R̃
(
u1, u2

)
= R

(
u1, u2;h(u1), h(u2)

)
|u1 − u2|h(u1)+h(u2)−2

with

R(z1, z2;H1,H2) = R(H1,H2)1z1≥z2
+R(H2,H1)1z1<z2

. (5.5)
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The process Sh was introduced in [6]. This process is continuous and
multifractional in the sense that its pointwize Hölder exponent is h(t0) at
the point t0:

sup
{
H, lim

ε→0

Sh(t0 + ε) − Sh(t0)

|ε|H = 0
}

= h(t0).

Notice that in the case of h is constant Theorem 5.1 corresponds to the
result of [19].

Proof. By the same procedure as in proving (4.4), we get from the asymp-
totic assumptions for {m(z,H)} that

lim
z1−z2→∞

sup
(H1,H2)∈[h−,h+]2

|(z1 − z2)
2−H1−H2E[ν(z1,H1)ν(z2,H2)] − J(1)2R(H1,H2)| = 0.

If we denote respectively vε and vε
1 the antiderivatives of z 7→ νε(z) and

z 7→ ε2h(z)−2m
(
z/ε2, h(z)

)
, then, by using the same argument as above we

also get

lim
ε→0

E

[
|vε(z) − J(1)vε

1(z)|2
]

= 0, (5.6)

which implies that the convergence of the finite dimensional distributions of
vε can be reduced to those of vε

1. Hence, without loss of generality we can
assume that Φ =Id. Following [6], the finite-dimensional distributions of the
antiderivative of νε converges to those of Sh, thus A1 is fulfilled. Now we
check A2(2). We can write

νε(z) = ε2h(z)−2m
( z
ε2
, h(z)

)
.

We let δ > 0 and thanks to the asymptotic assumption on m, there exists
zδ such that for every z1, z2 and ε satisfying |z1 − z2| > ε2zδ we have

sup
(H1,H2)

∣∣∣∣∣

∣∣∣∣
z1 − z2
ε2

∣∣∣∣
2−H1−H2

E

[
m
(z1
ε2
,H1

)
m
(z2
ε2
,H2

)]
−R

(z1
ε2
,
z2
ε2

;H1,H2

)∣∣∣∣∣ < δ.

Then, noting that R(z1/ε
2, z2/ε

2,H1,H2) = R(z1, z2,H1,H2) and substi-
tuting (H1,H2) by (h(z1), h(z2)) we get
∣∣∣∣∣

∣∣∣∣
z1 − z2
ε2

∣∣∣∣
2−h(z1)−h(z2)

E

[
m
(z1
ε2
, h(z1)

)
m
(z2
ε2
, h(z2)

)]
−R (z1, z2;h(z1), h(z2))

∣∣∣∣∣ < δ.

Letting R∗(z1, z2) := R(z1, z2;h(z1), h(z2)) and noticing that sup(1/R∗) <
∞ (because inf R∗ > 0) we obtain

∣∣∣E [νε(z1)ν
ε(z2)] −R∗(z1, z2) |z1 − z2|h(z1)+h(z2)−2

∣∣∣

< δR∗(z1, z2) |z1 − z2|h(z1)+h(z2)−2 sup(1/R∗),
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which proves A2(2). It remains to check A3(2). Let ρ > 0. Because of the
boundedness assumption on m, there exists a constant C1(ρ) > 0 so that
for every z1, z2 and ε satisfying |z1 − z2|/ε2 < ρ, we have

∣∣∣E
[
m
(z1
ε2
,H1

)
m
(z2
ε2
,H2

)]∣∣∣ ≤ C1(ρ).

Thus,

|E[νε(z1)ν
ε(z2)]| ≤ C1(ρ)ε

2h(z1)+2h(z2)−4

= C1(ρ) |z1 − z2|h(z1)+h(z2)−2

∣∣∣∣
z1 − z2
ε2

∣∣∣∣
2−h(z1)−h(z2)

= C1(ρ) |z1 − z2|h(z1)+h(z2)−2 ρ2−h(z1)−h(z2)

≤ C2(ρ) |z1 − z2|h(z1)+h(z2)−2

where C2(ρ) can be chosen such that C1(ρ)ρ
2−h(z1)−h(z2) ≤ C2(ρ). So A3(2)

is fulfilled and the proof can be concluded by applying Theorem 3.1.

We finish this subsection by applying Theorem 5.1 to an example that
was mentioned in [6]. Let us consider WH defined as in (5.1). We let

m(z,H) = WH(z + 1) −WH(z). (5.7)

We compute the covariance between m(z1,H1) and m(z2,H2) for every
z1,z2,H1 and H2:

E[m(z1,H1)m(z2,H2)] =
1

2

C
(

H1+H2

2

)2

C(H1)C(H2)
|z1 − z2|H1+H2

×
(∣∣∣1 +

1

z1 − z2

∣∣∣
H1+H2

+
∣∣∣1 − 1

z1 − z2

∣∣∣
H1+H2 − 2

)
.(5.8)

By the Taylor formula we get that the asymptotic covarianceR of {m(z,H)}z,H

can be written as

R(H1,H2) =
1

2
(H1 +H2)(H1 +H2 − 1)

C
(

H1+H2

2

)2

C(H1)C(H2)
.

Then applying Theorem 5.1 we get that {aε(Z, s)}s converges in distribution
to ã(Z, s) = f

(
s− 1

2Sh(Z)
)

where

Sh(Z) = J(1)

∫ ∞

−∞

(∫ Z

0

−ixeiux

C(h(u))|x|h(u)+1/2
du

)
B̂(dx). (5.9)
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As mentioned in Section 6.1 of [6], we also can observe that if we assume
that h is differentiable then we can write Sh(Z) as

Sh(Z) = J(1)

∫ ∞

−∞
B̂(dx)

{
(eiZx − 1)

C(h(Z))|x|h(Z)+1/2

−
∫ Z

0

(eiux − 1)

|x|h(u)+1/2

( log |x|
C(h(u))

− C ′(h(u))

C(h(u))2

)
h′(u) du

}
,(5.10)

which means that Sh(Z) is the sum of a multifractional Brownian motion
as in (5.2) and of a regular process.

6 A non-Gaussian and multifractal medium

In this section we study the case of a medium that generalizes the media
discussed above. We define {m(z,H)}z,H for every z ≥ 0 by

m(z,H) =
1

C(H)

∫

R

exp(izx)ψ(x)|x|1/2−HŴ (dx) (6.1)

where H ∈ (1/2, 1) and ψ is a complex-valued function and Ŵ (dx) is the
Fourier transform of a real Gaussian measure. We assume that ψ is con-
tinuous, ψ(0) = 1 and satisfies |ψ(x)| = O|x|→∞(|x|−1). Notice that the
family of processes defined by (5.7) in terms of fractional Brownian motion
{WH(z)}z,H is an example of such a process.

Thus {m(z,H)}z,H is a centered Gaussian field and its covariance can
be written as

E[m(z1,H1)m(z2,H2)] =

∫

R

exp(i(z1 − z2)x)|ψ(x)|2
C(H1)C(H2)|x|H1+H2−1

dx. (6.2)

Now we consider a fonction h that takes its values in [h−, h+] ⊂ (1/2, 1) and
a truncation function Φ with Hermite index K ∈ N

∗. We define νε as

νε(z) = εκ(z)−τν
( z
ε2
, z
)

where
ν (z1, z2) = Φ

(
m
(
z1, h̃K(z2)

))

with

h̃K(z) =
h(z) − 1

K
+ 1

We can observe that νε satisfies Assumptions A2(2) and A3(2). In particular
and more precisely

E[νε(z1)ν
ε(z2)] ∼

J(K)2

K!
R(h(z1), h(z2))|z1 − z2|h(z1)+h(z2)−2 (6.3)

13



when |z1−z2|/ε2 goes to ∞ if we assume that κ(z)−τ = 2h(z)−2. Therefore,
because Theorem 3.1 says that, under long-range assumptions, the asymp-
totic behavior of aε(Z, s) is essentially given by the limit of vε(z), we can
conclude by the following result.

Theorem 6.1. As ε goes to 0, {aε(Z, s)}s converges in distribution in the
space of continuous functions endowed with the uniform topology to the ran-
dom process {ã(Z, s)}s that can be written as

ã(Z, s) = f

(
s− 1

2
SK

h (Z)

)
, (6.4)

where SK
h is a centered process given for every z by:

SK
h (z) =

∫

RK

Gh,K(z, x1, · · · , xK)
K∏

k=1

B̂(dxk) (6.5)

where

Gh,K(z, x1, · · · , xK) =

∫ z

0

J(K)e−iu
PK

k=1
xk

K!C(h(u))K

K∏

k=1

−ixk

|xk|fhK(u)+1/2
du.

Notice that the process SK
h is equal (in distribution) to WK

H of Section
4 if h is a constant equal to H, and is equal to Sh of Section 5 if K = 1.
Because of these facts, SK

h is in general non-Gaussian and multifractional.
This shows that under general long-range assumptions the asymptotic time-
shift is neither Gaussian, nor homogeneous. This is in dramatic contrast to
the short-range case where the time shift is a Brownian motion, which is
homogeneous and Gaussian.

Proof. We let

vε(z) =

∫ z

0
νε(u) du =

∫ z

0
du ε2h(u)−2Φ

(
m
( u
ε2
, h̃K(u)

))

and

vε
1(z) =

∫ z

0
du ε2h(u)−2PK

(
m
( u
ε2
, h̃K(u)

))
.

Using the same arguments as for the beginning of the proof of Theorem 5.1,
using the fact that the Hermite index of Φ is K, we get

lim
ε→0

E

[∣∣∣∣v
ε(z) − J(K)

K!
vε
1(z)

∣∣∣∣
2
]

= 0. (6.6)
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Then using the formula (see [14] for instance)

PK

(∫

R

φ(x)B̂(dx)

)
=

∫

RK

K∏

k=1

φ(xk)B̂(dxk)

for every φ ∈ L2(R) we get

vε
1(z) =

∫ z

0
du

ε2h(u)−2

C(h(u))K

∫

RK

e−iu
PK

j=1
xj/ε2

K∏

k=1

ψ(xk)

|xk|fhK(u)−1/2
B̂(dxk)

=

∫

RK

∫ z

0
du

K∏

k=1

ψ(xk)

|xk|fhK(u)−1/2
B̂(dxk)

ε2h(u)−2

C(h(u))K
e−iu

PK
j=1

xj/ε2

Then we make the substitution xk → ε2xk for every k:

vε
1(z) =

∫

RK

∫ z

0
du

K∏

k=1

ψ(ε2xk)

|ε2xk|fhK(u)−1/2
B̂(ε2dxk)

ε2h(u)−2

C(h(u))K
e−iu

PK
j=1

xj

= ε−K

∫

RK

∫ z

0
du

K∏

k=1

ψ(ε2xk)

|xk|fhK(u)−1/2
B̂(ε2dxk)

1

C(h(u))K
e−iu

PK
j=1

xj .

We let

vε
2(z) =

∫

RK

∫ z

0
du

K∏

k=1

ψ(ε2xk)

|xk|fhK(u)−1/2
B̂(dxk)

1

C(h(u))K
e−iu

PK
j=1

xj .

The selfsimilarity of the Brownian motion gives that B̂(ε2dxk) is equal in
distribution to εB̂(dxk), then we get that

vε
1 =f.d.d. vε

2

where =f.d.d. means the equality of the finite dimensional distributions.
Then, using the assumptions on ψ, we obtain the convergence a.s. of the
finite dimensional margins of J(K)

K! v
ε
2 to those of SK

h , and thus the conver-
gence of the finite dimensional distributions of vε to those of SK

h , so A1 is
satisfied. Now, as observed at the beginning of this section, using (6.2) and
by the same procedure as in the proof of Theorem 5.1 we show that A2(2)
and A3(2) hold. We conclude by Theorem 3.1.

7 Proof of Theorem 3.1

We first give an outline of the proof. As recalled in Section 2 the process
{aε(Z, s)}s can be written in terms of the propagator P ε

ω, and thus the study
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of the convergence of {aε(Z, s)}s can be analyzed via asymptotic properties
of P ε

ω. The propagator P ε
ω satisfies the equation

dP ε
ω

dz
(z) = Hε

ω

( z
ετ
, z
)
P ε

ω(z) ,

that we can write in the form

dP ε
ω(z) =

iω

2

3∑

j=1

FjP
ε
ω(z) dvε

j (z) , (7.1)

where

F1 =

(
1 0
0 −1

)
, F2 =

(
0 −1
1 0

)
and F3 =

(
0 i
i 0

)
,

and vε
1, v

ε
2 and vε

3 are three processes of bounded variation that we can write
as

vε
1(z) =

∫ z

0
νε
(
z′
)
dz′ ,

vε
2(z) =

∫ z

0
νε
(
z′
)
cos

(
2ω

z′

ετ

)
dz′ ,

vε
3(z) =

∫ z

0
νε
(
z′
)
sin

(
2ω

z′

ετ

)
dz′ .

Thanks to T. Lyons’ rough paths theory for which we recall some tools in
the Appendix we shall see that the convergence of P ε

ω can be reduced for a
convenient topology to the convergence of the process v

ε defined as

v
ε := (vε

1, v
ε
2, v

ε
3) .

Hence, we first prove the convergence of v
ε, then by Theorem A.1 (see

Appendix) we deduce the convergence of P ε
ω in Section 7.1, and thanks to

(2.13) we finally conclude by the convergence of {aε(Z, s)}s in Section 7.2.

7.1 Convergence of the Propagator

Using Theorem A.1 and the expression (7.1), the asymptotic study of the
propagator is reduced to finding the limit in a rough path space of v

ε :=
(vε

1, v
ε
2, v

ε
3) . This is the aim of the following lemma.

Lemma 7.1. There exists γ∗ ∈ (0, 1) such that for every p > 2/(2− γ∗), as
ε goes to 0, the increments of v

ε converge in Ωp to those of V which can be
written as

V = (V, 0, 0).
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The proof of Lemma 7.1 is based on establishing several technical lemmas
that we do next.

Lemma 7.2. There exist C and γ∗ so that

|E[νε(x)νε(y)]| ≤ C|x− y|−γ∗

for every x and y.

Proof. The assumptions of Theorem 3.1 imply that for every δ > 0 there
exists zδ > 0 such that for |x− y| > ελzδ we have

(1 − δ)R(x, y)|x− y|−γ(x,y) ≤ rνε(x, y) ≤ (1 + δ)R(x, y)|x− y|−γ(x,y).

Hence, taking δ = 1 we get that for |x− y| > ελz1 we have

0 ≤ rνε(x, y) ≤ C|x− y|−γ+ .

Moreover, thanks to the assumptions of Theorem 3.1, we know that there
exist Cz1

and γz1
so that for |x− y| ≤ ελz1 we have

0 ≤ |rνε(x, y)| ≤ Cz1
|x− y|−γz1 .

By choosing γ∗ := max(γ+, γz1
) we get that there exists γ∗ so that

|E[νε(x)νε(y)]| ≤ C|x− y|−γ∗

for every x and y.

Lemma 7.3. For every z ∈ [0, Z], as ε goes to 0 the sequences vε
2(z) and

vε
3(z) converge to 0.

Proof. Without loss of generality we present the proof only for vε
2(z) and

with 2ω = 1. We have

E[vε
2(z)

2] =

∫ z

0
dx

∫ z

0
dy cos

( x
ετ

)
cos
( y
ετ

)
rνε (x, y)

= Iε
1(z) + Iε

2(z) ,

with

Iε
1(z) =

∫ z

0
dx

∫ z

0
dy cos

( x
ετ

)
cos
( y
ετ

)
R (x, y) |x− y|−γ(x,y) ,

Iε
2(z) =

∫ z

0
dx

∫ z

0
dy cos

( x
ετ

)
cos
( y
ετ

)(
rνε (x, y) −R(x, y) |x− y|−γ(x,y)

)
.

Let δ > 0, because of the assumptions of Theorem 3.1, we have that for
|x− y| > ελzδ (with zδ sufficiently large) |rνε(x, y)−R(x, y)|x− y|−γ(x,y)| ≤
δR(x, y)|x−y|−γ(x,y) for every ε. Combining this with Lemma 7.2 we obtain

|Iε
2(z)| ≤ δ

∫ z

0
dx

∫ z

0
dyR(x, y) |x− y|−γ(x,y) + Cδ

∫ z

0
dx

∫ z

0
dy|x− y|−γ∗

1|x−y|≤ελzδ
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so that

lim sup
ε→0

|Iε
2(z)| ≤ δ

∫ z

0
dx

∫ z

0
dy|x− y|−γ(x,y) .

The inequality above is valid for every δ > 0 and we conclude

lim
ε→0

Iε
2(z) = 0 .

We can deal with Iε
1(z) using a Riemann type result. Indeed, the function

R̃ : (x, y) 7→ R(x, y)|x − y|−γ(x,y) is integrable on ∆z = [0, z]2, so we can
approximate it by a sequence of constant by step functions (RN )N such that

lim
N→∞

∫ z

0
dx

∫ z

0
dy|R̃(x, y) −RN (x, y)| = 0.

Besides, we can write

|Iε
1(z)| ≤

∣∣∣∣
∫ z

0
dx

∫ z

0
dy cos

( x
ετ

)
cos
( y
ετ

)
RN (x, y)

∣∣∣∣+
∫ z

0
dx

∫ z

0
dy|R̃(x, y)−RN (x, y)|

for every ε and N . We easily see that

lim
ε→0

∫ z

0
dx

∫ z

0
dy cos

( x
ετ

)
cos
( y
ετ

)
RN (x, y) = 0

so that

lim sup
ε→0

|Iε
1(z)| ≤

∫ z

0
dx

∫ z

0
dy|R̃(x, y) −RN (x, y)|

for every N . This finally shows

lim
ε→0

Iε
1(z) = 0 ,

and then
lim
ε→0

E[vε
2(z)

2] = 0 ,

which concludes the proof.

Now we deal with a technical lemma regarding the increments of v
ε.

Lemma 7.4. There exist C > 0 and γ∗ ∈ (0, 1) such that for every z, ζ and
ε > 0 we have

E[‖vε(z) − v
ε(ζ)‖2] ≤ C|z − ζ|2−γ∗

.

Proof. Because of Lemma 7.2 there exists γ∗ so that |E[νε(x)νε(y)]| ≤ C|x−
y|−γ∗ for every x and y. Then, for every j = 1, 2, 3, we have (taking z > ζ)

E[|vε
j (z) − vε

j (ζ)|2] ≤
∫ z

ζ
dx

∫ z

ζ
dy |E [νε (x) νε (y)]|

≤ C

∫ z

ζ
dx

∫ z

ζ
dy |x− y|−γ∗

≤ 2C ′

(1 − γ∗)(2 − γ∗)
|z − ζ|2−γ∗

,

which concludes the proof.
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In the sequel we shall use the notation H∗ := (2−γ∗)/2. Using the above
lemmas we next deduce the following lemma which deals with identification
of the limit.

Lemma 7.5. The process V defined in Lemma 7.1 is a.s. continuous (up
to a modification). Moreover, as ε goes to 0, v

ε converges to V in the space
of continuous functions endowed with the uniform norm.

Proof. Assumptions and lemmas 7.3 give the convergence of finite dimen-
sional distributions of v

ε to those of V. Using then the Kolmogorov crite-
rion, [4], Lemma 7.4 and the fact that 2H∗ > 1 we get the tightness of (vε)ε

in the space of continuous functions endowed with the uniform norm which
establishes the proof.

Thanks to Lemma 7.5 we conclude with the proof of Lemma 7.1 by
establishing the tightness in a rough paths sense.

Lemma 7.6. For every p > 1/H∗, the sequence (vε)ε is tight in Ωp and the
process V is a.s. of finite p−variation.

Proof. (Lemmas 7.1 and 7.6 ) Let q ∈ (1/H∗, p). In view of Lemmas A.1
and 7.5 it is enough to prove

lim
A→+∞

sup
ε>0

P[Vq(v
ε) > A] = 0 . (7.2)

Using Tchebychev’s inequality, the fact that q < 2, Lemma A.2, the Hölder
inequality and Lemma 7.5 we find

P[Vq(v
ε) > A] ≤ 1

Aq
E[Vq(v

ε)q]

≤ C

Aq

+∞∑

n=1

nC
2n∑

k=1

E[‖vε(zn
k ) − v

ε(zn
k−1)‖q]

≤ C

Aq

+∞∑

n=1

nC
2n∑

k=1

E[‖vε(zn
k ) − v

ε(zn
k−1)‖2]q/2

≤ C ′

Aq

+∞∑

n=1

nC
2n∑

k=1

(
1

2n

)qH∗

≤ C ′

Aq

+∞∑

n=1

nC

(
1

2n

)qH∗−1

,

and since qH∗ > 1 we deduce (7.2).

Finally, we can now derive the following lemma which deals with the
convergence of the propagator.
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Lemma 7.7. Let {ω1, · · · , ωn} be a collection of frequencies. Then, as ε
goes to 0, the propagator vector (P ε

ω1
, · · · , P ε

ωn
) converges in distribution in

the space of continuous functions to (Pω1
, · · · , Pωn) which is the asymptotic

propagator Pω that we can write as

Pω(z) =

(
exp

(
iω

2
V (z)

)
0

0 exp

(
− iω

2
V (z)

)
)
.

Proof. By combining Theorem A.1, (7.1) and Lemma 7.1 we get that, as ε
goes to 0, P ε

ω converges in distribution in the space of continuous functions
(endowed with the uniform topology) to the solution Pω of the following
system of equations:

dPω(z) =
iω

2

(
1 0
0 −1

)
Pω(z) dV (z) .

This concludes the proof.

We remark that the situation here contrasts with the short range case.
Indeed, the asymptotic propagator is driven by one process in the long range
case whereas it is driven by three processes in the short range case.

7.2 Conclusion of the proof

The remaining part of the proof of Theorem 3.1 follows the lines of [5, 11],
however, we present it here for completeness. Recall that thanks to the
formula (2.13) we can write aε(Z, s) in a Fourier-type formula using the
transmission coefficient :

aε(Z, s) =
1

2π

∫
e−isωT ε

ω(Z)f̂(ω) dω , (7.3)

with the transmission coefficient being a functional of the propagator P ε
ω.

We shall use Lemma 7.7 to deduce the convergence of the transmitted wave.
Let n ∈ N, s1 ≤ · · · ≤ sn ∈ [0,∞). We can write :

E[aε(Z, s1) · · · aε(Z, sn)] = E

[
1

(2π)n

n∏

j=1

∫
e−isjωT ε

ω(Z)f̂(ω) dω

]

=
1

(2π)n

∫
· · ·
∫
e−i

Pn
j=1

sjωj f̂(ω1) · · · f̂(ωn)E[T ε
ω1

(Z) · · ·T ε
ωn

(Z)] dω1 · · · dωn .

Thanks to Lemma 7.7 we have that as ε→ 0

E[T ε
ω1

(Z) · · ·T ε
ωn

(Z)] → E

[
exp

( iV (Z)

2

n∑

j=1

ωj

)]
,
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and then

E[aε(Z, s1) · · · aε(Z, sn)] → 1

(2π)n

∫
· · ·
∫
e−i

Pn
j=1

sjωj f̂(ω1) · · · f̂(ωn)

×E

[
exp

( iV (Z)

2

n∑

j=1

ωj

)]
dω1 · · · dωn

= E

[
1

(2π)n

n∏

j=1

∫
e−i(sj−V (Z)/2)ωf̂(ω) dω

]

= E

[ n∏

j=1

f(sj − V (Z)/2)

]
.

The tightness proof is similar to the proof of Lemma 3.2 in [5] and the
convergence of aε(Z, s) follows.

A Differential equations and rough paths

In this section we fix p ∈ [1, 2) and consider a closed interval I = [0, Z]. We
define the p−variation of a continuous function w : I → R

n by

Vp(w) :=

(
sup
D

k−1∑

j=0

‖w(zj+1) − w(zj)‖p

)1/p

,

where supD runs over all finite partition {0 = z0, ..., zk = Z} of I and where
here and below ‖ · ‖ refers to the L2 norm. The space of all continuous
functions of bounded variation (1-variation) is endowed with the p−variation
distance

‖w‖p = Vp(w) + sup
z∈[0,1]

|w(z)| ,

and is denoted by Ω∞
p . The closure of this metric space is called the space of

all geometric rough paths and is denoted by Ωp. One of the most important
theorems of rough paths theory is the following :

Theorem A.1. ( T. Lyons’ Continuity Theorem)
Let1 G : R × R

d → L(R,Rd) and F : R × R
d → L(Rn,Rd) be two smooth

functions. Let y be the unique solution of the differential equation

dy(z) = G(z, y(z)) dz + F (z, y(z)) dw(z), y(z = 0) = y0 ,

where w is a bounded variation function. Then the Itô’s map I : w 7→
y is continuous with respect to the p−variation distance from Ω∞

p (Rn) to

Ω∞
p (Rd). Therefore there exists a unique extension of this map (that we still

denote by I) to the space Ωp(R
n)

1Here L(R, R
d) (resp. L(Rn

, R
d)) denotes the space of all linear maps from R (resp.

R
n) to R

d
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This theorem has been proved by T. Lyons and extensively studied and
applied (see [8, 15, 16, 17]).

The proof of Theorem 3.1 is based on analysis of the tightness in the
space of geometric rough paths. In the context of this we need to compute
the p−variation for p > 1. To this effect we will need the following lemmas
of which the first can be found for instance in [16], and the second in [15, 16].

Lemma A.1. Let q ∈ [1, 2) and (vε)ε>0 a family of continuous random pro-
cesses of finite q−variation which is tight in the space of continuous functions
on I and satisfying

lim
A→+∞

sup
ε>0

P[Vq(v
ε) > A] = 0 . (A.1)

Then (vε)ε>0 is tight in Ωp for every p > q.

Lemma A.2. For every n ∈ N and every k = 0, 1, ..., 2n, we let zn
k :=

Zk/2n. Let q ∈ [1, 2) and v be a function of finite q−variation. Then there
exist two positive constants C1, C2 which do not depend on v such that

Vq(v)
q ≤ C1

+∞∑

n=1

nC2

2n∑

k=1

‖v(zn
k ) − v(zn

k−1)‖q .
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