
HAL Id: inria-00402566
https://hal.inria.fr/inria-00402566

Submitted on 10 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DSLs: the good, the bad, and the ugly
Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik,

Juha-Pekka Tolvanen

To cite this version:
Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik, et al.. DSLs: the good, the
bad, and the ugly. Conference on Object Oriented Programming Systems Languages and Applications
archive, Oct 2008, Nashville, United States. �inria-00402566�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50156759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00402566
https://hal.archives-ouvertes.fr

Panel

DSLs: The Good, the Bad, and the Ugly
1

Jeff Gray

University of Alabama at Birmingham
Department of Computer Science

Birmingham, AL USA

gray@cis.uab.edu

Gabor Karsai

Vanderbilt University
Inst. for Software Integrated Systems

Nashville, TN USA

gabor.karsai@vanderbilt.edu

Kathleen Fisher
AT&T Labs, Inc. - Research

San Jose, CA USA

kfisher@research.att.com

Marjan Mernik
University of Maribor

Department of Computer Science
Maribor, Slovenia

marjan.mernik@uni-mb.si

Charles Consel
University of Bordeaux and INRIA

Bordeaux, France

charles.consel@inria.fr

Juha-Pekka Tolvanen
MetaCase

Jyväskylä, Finland

jpt@metacase.com

ABSTRACT
A resurging interest in domain-specific languages (DSLs) has

identified the benefits to be realized from customized languages

that provide a high-level of abstraction for specifying a problem

concept in a particular domain. Although there has been much

success and interest reported by industry practitioners and

academic researchers, there is much more work that is needed to

enable further adoption of DSLs.

The goal of this panel is to separate the hype from the true

advantages that DSLs provide. The panel discussion will offer

insight into the nature of DSL design, implementation, and

application and summarize the collective experience of the panel

in successful deployment of DSLs. As a counterpoint to the

current benefits of DSLs, the panel will strive to provide a fair and

balanced assessment of the current state of the art of DSLs by

pointing to the existing limitations and future work that is needed

to take the concept of DSLs to further heights.

The assembled panelists are experts in the research and

practice of DSLs and represent diverse views and backgrounds.

The panel is made up of industrial researchers, commercial tool

vendors, and academic researchers. The panelists have different

perspectives on the technical concerns of DSLs; e.g., half of the

panelists are proponents of textual DSLs and the other half has

experience in graphical notations representing visual languages.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Classification –

Very high-level languages. D.2.6 [Software Engineering]:

Programming Environments – Programmer workbench.

General Terms

Design, Languages

Keywords

Domain-specific languages, metamodeling, Grammarware

Copyright is held by the author/owner(s).

OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.

ACM 978-1-60558-220-7/08/10.

1. Jeff Gray (Moderator)
Biography: Jeff Gray is an Associate Professor in the

Department of Computer and Information Sciences at the

University of Alabama at Birmingham (UAB) where he co-

directs the research in the Software Composition and

Modeling (SoftCom) laboratory. His research interests are

in aspect-oriented software development, model-driven

engineering, and generative programming. He is a 2007

NSF CAREER award winner in the area of evolution of

domain-specific models. He also was awarded an IBM

Eclipse Innovation grant for research supporting testing

tools for DSLs. Jeff is the 2008 Program co-Chair of the

International Conference on Model Transformation (ICMT)

and the 2009 Organizing Chair of AOSD.

Panel Position: For over three decades, DSLs have assisted

programmers and end-users by improving productivity

through automation of common tasks. DSLs allow a

programmer to concisely state a problem using abstractions

and notations that closely fit the needs of a specific domain.

Early examples include the languages from the 1970s for

the Unix „make‟ tool and yacc.

Despite the benefits offered by DSLs, there are several

limitations that hamper widespread adoption. In particular,

the state of the art for DSL tools, in general, is several

generations behind tool support provided by general-

purpose languages like Java or C++. Many DSLs are

missing even basic tools such as debuggers, testing engines,

and profilers. The lack of tool support can lead to leaky

abstractions and frustration on the part of the DSL user.

1 The title for this panel was inspired by Brent Hailpern and Perri Tarr‟s

introduction to a special issue on model-driven development in IBM

Systems Journal, 45(3), 2006, pp. 451-461.

Some of the questions that I would like to explore with the

panel include the following: What is missing in current

DSL tooling that is needed to push adoption of DSLs more

heavily in general practice? Are the problems purely

technical, or are there social and political forces at play? In

what domains do DSLs have the greatest success, and

where do they fail? Where do graphical languages offer

benefits over textual DSLs, and vice versa? How is

evolution supported with respect to changes in the various

definitions and tools?

2. Kathleen Fisher
Biography: Kathleen Fisher is a Principal Member of the

Technical Staff at AT&T Labs Research, where she has

worked since receiving her Ph.D. in Computer Science

from Stanford University in 1996. Her early work on the

foundations of object-oriented languages led to the design

of the class mechanism in Moby. The main thrust of her

recent work has been in DSLs to facilitate programming

with massive amounts of ad hoc data. Kathleen is Chair of

SIGPLAN, on the steering committee of CRA-W, an editor

of the Journal of Functional Programming, and chair of the

steering committee for the Commercial Uses of Functional

Programming Workshop.

Panel Position: In my years at AT&T, I have helped to

design and build two DSLs: Hancock, a procedural

language that facilitates processing massive transaction

streams to build customer profiles, and PADS, a declarative

language for describing ad hoc data formats from which a

number of supporting tools can be automatically generated.

These two languages exhibit a number of the claimed

benefits for DSLs. They raise the level of abstraction,

making it easier for domain-experts with little coding

experience to write correct and efficient programs quickly.

Code in these languages is concise and readable, making it

easier to read, understand, and maintain. PADS has the

additional benefit of being declarative, giving the compiler

the freedom to generate multiple artifacts from a single

description: a parser, a pretty-printer, a statistical analyzer,

a converter to XML, etc.

Although these advantages are real, there are also

difficulties in working with DSLs. People are generally

reluctant to learn new languages, tool support for DSLs is

poor, and it can be difficult to get DSLs to interoperate with

mainstream languages. These disadvantages mean that the

motivation for a DSL has to be compelling for it to be

successfully adopted. Challenges for the future of DSLs

include improving education in programming languages so

that people are more comfortable learning new languages,

developing meta-tool infrastructure so that tools for DSLs

can be created more easily, and improving facilities for

language interoperability so programmers can shift freely

between domain-appropriate languages.

3. Charles Consel
Biography: Charles Consel is a professor of Computer

Science at University of Bordeaux and leads the Phoenix

research group at INRIA. His research interests are in

programming language semantics and implementation,

software engineering and operating systems. His experience

with DSLs spans over two decades, in the contexts of

industry-sponsored projects and Ph.D. supervision. He has

designed and implemented DSLs in a variety of areas,

including device drivers, programmable routers, and stream

processing. Building on this experience, he has worked

towards defining methodologies to design DSLs, assist in

their development, and assess their practicality. His latest

DSL, named VisuCom, is dedicated to the creation of

telephony services and has been successfully transferred to

the INRIA spin-off Siderion Technologies.

Panel Position: The DSL approach has long been used with

great success in both historical domains, such as telephony,

and recent ones, such as Web application development.

And yet, from software engineering to programming

languages, there is a shared feeling that there is still much

work to do to make the DSL approach successful.

Unlike General-purpose Programming Languages (GPLs)

that target trained programmers, a DSL revolves around a

domain: it originates from a domain and targets members of

this domain. Thus, a successful DSL should be some kind

of a disappearing language; that is, one that is blended with

some domain process. Achieving such a goal critically

relies on the domain analysis and the language design. In

my experience, these two phases are time consuming,

human intensive and high risk. How can these two phases

be tooled? How much improvement can we expect?

A successful DSL is above all one that is being used. To

achieve this goal, the designer may need to downgrade,

simplify and customize a language. In doing so, DSL

development contrasts with programming language research

where generality, expressivity and power should

characterize any new language. As a consequence,

programming language experts may not be the perfect

match for developing a DSL. Does this mean that, for a

given domain, its members should be developing their own

DSL? Or, should there be a new community of language

engineers that bridge the gap between programming

language experts and members of a domain?

Finally, in many respects, a DSL is often an over-simplified

version of a GPL: customized syntactic constructs, simple

semantics, and by-design verifiable properties. These key

differences may raise concerns about a lack of tool support

for DSL development. Yet, there are many program

manipulation tools (parser generators, editors, IDEs) that

can be easily customized for new languages, whether

textual or graphical. Furthermore, for a large class of DSLs,

compilation amounts to producing code over a domain-

specific programming framework, and enabling the use of

high-level transformation tools. Lastly, properties can often

be checked by generic verification tools. Then, what is

missing to develop DSLs? Do we need to have an

integrated environment for DSL development, orchestrating

a library of tools? Should there be a new breed of compiler

and verification generators matching the requirements of

DSLs?

4. Gabor Karsai
Biography: Gabor Karsai is a Professor of Electrical

Engineering and Computer Science at Vanderbilt

University, and Senior Research Scientist at the Institute for

Software-Integrated Systems. He has over twenty-five years

of experience in software engineering. He conducts

research in the model-based design and implementation of

embedded systems, in programming tools for visual

programming environments, in the theory and practice of

model-integrated computing, and in resource management

and scheduling systems. He has worked on several research

projects in the recent past: on model-based integration of

embedded systems whose resulting tools are being used in

various embedded software development tool chains, on

advanced scheduling and resource management algorithms,

and on fault-adaptive control technology that has been

transitioned into the aerospace industry.

Panel Position: DSLs are great because they could

potentially increase the productivity of engineers. Every

problem domain has a „language‟ in which it is easy,

natural, and self-evident to express problems (and possibly

solutions) of the domain. Software designers are building

custom abstractions in any case, and if there is an explicit

form for using and applying those abstractions, and one

does not have to continually transcribe those into an

implementation language, then solutions require less effort.

Such productivity increases have been observed since the

days of Lisp macros (which could be used to define DSLs),

and novel developments (e.g., the use of Simulink/Stateflow

by control software engineers) just reinforce the point.

There are some downsides of DSLs, however. One is that if

they are too easy to define, then there is a danger of their

unmanaged and uncontrollable proliferation on a project.

We need efficient and effective techniques for specifying

and implementing DSLs rapidly, but in such a way that their

users can understand their semantics. The generative

programming (program generation) community has come

up with very nice solutions (in a functional language

context) for adding DSLs to a base language, but it is not

clear how this carries over to more traditional languages.

Using a multitude of DSLs on a project unavoidably causes

problems with DSL to DSL integration (i.e., composition),

as well as managing the DSL‟s evolution. That is, if the

DSL changes how can we ensure that old „code‟ written

using the „old‟ DSL remains (re-)usable with the new DSL?

5. Marjan Mernik
Biography: Marjan Mernik is an Associate Professor at the

Faculty of Electrical Engineering and Computer Science,

University of Maribor, where he leads the Programming

Methodologies laboratory. He has worked on several

research projects on programming languages,

grammarware, and evolutionary computation. Recently, his

research has focused on DSLs. He is the co-author of the

paper entitled “When and how to develop domain-specific

languages” (with Jan Heering and Tony Sloane, ACM

Computing Surveys, 37(4), December 2005, pp. 316-344).

Panel Position: By providing notations and constructs

tailored toward a particular application domain, DSLs offer

substantial gains in expressiveness and ease of use

compared with general-purpose languages for the domain in

question, with corresponding gains in productivity and

reduced maintenance costs. By reducing the amount of

domain and software development expertise needed, DSLs

open up their application to a larger group of software

developers compared to general-purpose languages. These

benefits have often been observed in practice and are

supported by quantitative studies, although perhaps not as

many as one would expect. The advantages of

specialization are equally valid for programming, modeling,

and specification languages. However, DSLs are not a

panacea for all software engineering problems, but their

application is currently unduly limited. Below are my top-

10 reasons why DSLs are not used more in industry:

1. Cost-benefit analysis for a particular domain is hard to

perform. Is it worth the effort to develop a DSL? Often,

this decision is postponed or never answered.

2. Lack of proper tool support (e.g., debuggers, test

engines, profilers). Such tools are costly to build. Just

building a DSL compiler is not enough.

3. Inadequate DSL support by existing Integrated

Development Environments (IDEs). Programmers want

to work with existing IDEs that they are familiar with.

4. Poor interoperability with other languages. In industrial

projects, multiple languages are the norm rather than an

exception.

5. Personal/social barriers: “I know Java, why should I

learn something else?”

6. Instability of design and implementation of DSLs (i.e.,

frequent changes to DSL definition).

7. Improper education to general developer community

about DSL benefits (e.g., gains in productivity,

expressiveness, better possibility for analysis,

verification, optimization, parallelization, and

transformation)

8. Lack of proper semantic definition of DSLs.

9. Poor documentation and training.

10. Limited knowledge and expertise on how to perform

domain analysis and how the results of domain analysis

can be used in DSL design and implementation.

6. Juha-Pekka Tolvanen
Biography: Juha-Pekka Tolvanen is the CEO of MetaCase.

He has been involved in model-driven approaches,

metamodeling, and domain-specific modeling languages

and tools since 1991. He has acted as a consultant

worldwide on modeling language and code generator

development. Juha-Pekka has authored a book on Domain-

Specific Modeling and written over sixty articles for

software development magazines and conferences. He holds

a Ph.D. in computer science and he is an adjunct professor

at the University of Jyvaskyla, Finland.

Panel Position: I have seen many times in industrial cases

how productivity has improved 500-1000% when

companies have moved to Domain-Specific Modeling. In

this panel I would like to discuss the key mechanisms that

make domain-specific (graphical, textual, matrix) languages

successful in practice. These include raising the level of

abstraction away from implementation (rather than mixing

levels with embedded DSLs), providing full code

generation in one step from integrated languages (rather

than having CIM-PIM-PSM mappings of MDA), defining

languages incrementally, and focusing on one company

situation only. The last is often the most crucial since trying

to build languages and generators for everybody is far more

difficult. In the modeling language area it has led to

creation of languages like UML and SySML that are tied to

the code level, do not raise the abstraction significantly, nor

provide possibilities for adequate code generation.

Obstacles to DSLs are often related to tooling and the

language design process. Many of the tools require man-

months, if not man-years, to implement, test, and share the

languages to developers. More importantly, tools often

totally ignore language evolution: too often models made

earlier can no longer be used when the metamodel changes.

Because this is naturally unacceptable in industry use it is

not surprising that most of the tools have not been applied

on a large scale. The second issue deals with the language

design process. Because most developers are creating their

first language, it is relevant to define and test languages

incrementally to reduce the risks, support evolution and

prepare the organization to work at a higher level of

abstraction. Recently, more industry cases and proven

practices for language design process have been reported,

which I will summarize at the panel.

