
HAL Id: inria-00403568
https://hal.inria.fr/inria-00403568

Submitted on 10 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing and Composing Tests with Traits
Stéphane Ducasse, Damien Pollet, Alexandre Bergel, Damien Cassou

To cite this version:
Stéphane Ducasse, Damien Pollet, Alexandre Bergel, Damien Cassou. Reusing and Composing Tests
with Traits. TOOLS’09: 47th International Conference on Objects, Components, Models and Pat-
terns, Oct 2009, New York, United States. pp.252-271. �inria-00403568�

https://hal.inria.fr/inria-00403568
https://hal.archives-ouvertes.fr

Reusing and Composing Tests with Traits

Stéphane Ducasse1, Damien Pollet1, Alexandre Bergel1, and Damien Cassou2

1 RMoD team, INRIA Lille – Nord Europe & University of Lille 1
Parc Scientifique de la Haute Borne – 59650 Villeneuve d’Ascq, France

2 Phoenix team, University of Bordeaux 1
Building A29bis – 351, cours de la libération – 33405 Talence, France

Abstract. Single inheritance often forces developers to duplicate code
and logic. This widely recognized situation affects both business code
and tests. In a large and complex application whose classes implement
many groups of methods (protocols), duplication may also follow the
application’s idiosyncrasies, making it difficult to specify, maintain, and
reuse tests. The research questions we faced are (i) how can we reuse test
specifications across and within complex inheritance hierarchies, especially
in presence of orthogonal protocols; (ii) how can we test interface behavior
in a modular way; (iii) how far can we reuse and parametrize composable
tests.
In this paper, we compose tests out of separately specified behavioral
units of reuse —traits. We propose test traits, where: (i) specific test cases
are composed from independent specifications; (ii) executable behavior
specifications may be reused orthogonally to the class hierarchy under
test; (iii) test fixtures are external to the test specifications, thus are
easier to specialize. Traits have been successfully applied to test two large
and critical class libraries in Pharo, a new Smalltalk dialect based on
Squeak, but are applicable to other languages with traits.

Key words: Reuse, Traits, Multiple Inheritance, Tests, Unit-Testing

1 The Case

One fundamental software engineering principle is to favor code reuse over code
duplication. Reusing unit tests is important, because they are valuable executable
specifications that can be applied to classes in different inheritance hierarchies.
How can we factor tests and reuse them to validate the conformance of different
classes to their common protocols? By protocol, we mean an informal group
of methods, that is implemented orthogonally to inheritance hierarchies1. This
is a typical situation where single inheritance hampers code reuse by forcing
developers to copy and paste [4].

Still, there are some techniques to reuse tests: one way is to write unit tests
that are parametrized by the class they should test. This way, it is possible to
define tests for protocols (group of methods) and interfaces and to reuse them

1 We avoid the term interface because protocols are typically of finer granularity and
implemented in a more flexible way, e.g., incompletely or with naming variations.

2 Ducasse, Pollet, Bergel, Cassou

for the different classes that implement such interfaces. Even if this does not
seem widely used, JUnit 4.0 offers a parametrized test runner to run tests on a
collection of fixtures returned by a factory method. Another approach is to define
hook methods in the generic protocol test case, which can be overridden in a test
case subclass for each implementor of that protocol. Both approaches have the
limit that they organize tests per protocol rather than per implementor. This
encourages to duplicate fixtures —which are indeed specific to the implementor—
across protocols, but also makes implementor-specific adjustments difficult: for
instance, to cancel inherited tests, subclasses may have to define phony ones2.

Traits, pure composable units of behavior[8], recently got some attention and
have been introduced in several languages including Squeak [12], AmbientTalk
[7], Fortress [10], the DrScheme object layer [9], Slate and Javascript3. Traits
are groups of methods that can be reused orthogonally to inheritance. A class
inherits from a superclass and may be composed of multiple traits.

To evaluate the expressivity of traits on real case studies, several works
redesigned existing libraries using traits [3, 5]. So far, traits have been applied to
and used when defining and designing applications. Since traits are composable
units of behavior, the question whether traits may be successfully applied for
testing naturally raises.

The research questions that drive this paper are the following ones:

– Are test traits reusable in practice? If each feature was tested by a separate
trait, how much test reuse could we obtain? What is a good granularity for
test traits that maximizes their reusability and composition?

– How far should a test fixture be adapted to specific requirements?
– How far should a test be parametrized to be reusable? What is the impact

on the maintainability of test code?

To answer these research questions, over the last two years, we performed
the following experiment: while designing a complete new implementation of the
stream library of the Squeak open-source Smalltalk [5], we defined test traits
(i.e., traits that define test methods, and which can be reused by composition
into test classes). In addition, we initiated the development of a new body of
tests for the collection library [6], in preparation for a future complete redesign.
We defined a large body of tests and reused them using traits. In this paper, we
report our results which are now part of the Pharo Smalltalk4.

The contributions of this article show that traits are really adapted to specify-
ing and reusing tests, especially in the context of multiple inheritance. A test trait
defines an abstraction over its test data (a fixture), and a set of test methods.
Test traits may then be composed and adjusted to build concrete test classes
that can parallel the domain code organization.

The article is structured as follows: Section 2 shortly presents xUnit, and
expose the problems we are currently facing; Section 3 describes the libraries

2 And canceling tests is not easily possible with the JUnit 4.0 approach.
3 respectively http://slate.tunes.org and http://code.google.com/p/jstraits
4 http://www.pharo-project.org

http://slate.tunes.org
http://code.google.com/p/jstraits
http://www.pharo-project.org

Reusing and Composing Tests with Traits 3

we selected for our study; we then explain our experimental process (Section 4)
and present some selected examples and situations (Section 5); in Section 6, we
present the traits we defined, and how they are reused to test the classes of
the libraries; finally, we discuss the benefits and limits of our approach, before
exploring related work and concluding (Sections 7, 8, 9).

2 Illustrating the Problem

In this section we briefly present the implementation principles of the xUnit
frameworks, some examples of problems found in the Squeak libraries.

2.1 xUnit in a Nutshell

The xUnit family of testing frameworks originated with its Smalltalk incarnation:
SUnit. In essence, a unit test is a short piece of code which stimulates some
objects then checks assertions on their reaction [2, 14]. The stimulated objects
are collectively called a test fixture, and unit tests that have to be executed in
the context of a given fixture are grouped with it into a test case. The framework
automates executing the unit tests, ensuring each is run in the context of a freshly
initialized fixture.

In SUnit, a test case is a subclass of TestCase which defines unit tests as
methods, and their shared fixture as state. In the example below5, we define such
a subclass, named SetTest, with instance variables full and empty. We then define
the method setUp, which initializes both instance variables to hold different sets
as a fixture, and the unit test method testAdd, which checks that adding an
element works on the empty set.

TestCase subclass: #SetTest
instanceVariableNames: ’full empty’

SetTest >> setUp
empty := Set new.
full := Set with: 5 with: 6.

SetTest >> testAdd
empty add: 5.
self assert: (empty includes: 5).

5 Readers unfamiliar with Smalltalk might want to read the code aloud, as approximate
english. Message sends interleave arguments with keywords of the message name:
receiver message: arg1 with: arg2 (the message name is message:with:). Messages are
sent from left to right with priorities: unary, then operator, then keyword messages,
so that self assert: 120 = 5 factorial does not need parentheses. A dot separates full
statements, and semi-columns cascade several messages to a single receiver: receiver
msg1; msg2. Single quotes denote ’strings’, double quotes denote “comments”. #foo is
a symbol, and #(a b 42) is a literal array containing #a, #b, and 42. Curly braces are
syntactic sugar for building arrays at runtime. Square brackets denote code blocks,
or anonymous functions: [:param | statements]. The caret ^ result returns from the
method.

4 Ducasse, Pollet, Bergel, Cassou

2.2 Analyzing the Squeak Collection Library Tests

As explained above, in absence of parametrized unit tests, it is not simple to reuse
tests across hierarchies (i.e., to run tests against classes in separate hierarchies).
Indeed, the well-known limits of single inheritance apply to tests as well, and this
is particularly true when we want to reuse tests for protocol compliance. Since
protocol implementations often crosscut inheritance, a developer cannot simply
rely on inheritance and is forced to either copy and paste or use delegation [8]. In
addition to such common problems we wanted to understand the other problems
that may arise when programmers cannot reuse tests. We studied the Squeak
collection library tests and we complement the problems mentioned above with
the following points:

Test duplication. We found redundancies in testing some features, not due
to straight code duplication, but to duplicated test logic. The programmers
probably were not aware of the other tests or had no means to reuse them.
For example, the feature “adding an element in a collection after a particular
element in the collection” is implemented with the add:after: method in
LinkedList and OrderedCollection. This feature is tested in LinkedListTest and
OrderedCollectionTest.
For example, compare the following tests:

LinkedListTest >> test09addAfter
| collection last |
collection := LinkedList new.
last := self class new n: 2.
collection add: (self class new n: 1); add: last.
self assert: (collection collect:[:e | e n]) asArray = #(1 2).
collection add: (self class new n: 3) after: last.
self assert: (collection collect:[:e | e n]) asArray = #(1 2 3).

OrderedCollectionTest >> testAddAfter
| collection |
collection := #(1 2 3 4) asOrderedCollection.
collection add: 88 after: 1.
self assert: (collection = #(1 88 2 3 4) asOrderedCollection).
collection add: 99 after: 2.
self assert: (collection = #(1 88 2 99 3 4) asOrderedCollection).

Logic duplication is a problem since it limits the impact of tests and costs
more in maintenance.

No systematic feature testing. In most of the cases, the collection tests were
written to assess the compliance of Squeak with the ANSI standard. However,
instead of an overall effort, the tests are the result of punctual and independent
initiatives. The only way to assess which feature a test method covers, is by
its name and by what messages the test method sends. As a consequence:

– some features are tested only for one particular type (e.g., after: and
after:ifAbsent: are only tested for instances of OrderedCollection in Se-
quenceableCollectionTest);

Reusing and Composing Tests with Traits 5

– some features are tested twice for the same type, in different classes
(e.g., in both SequenceableCollectionTest and OrderedCollectionTest, test-
CopyWith tests the same copying features for OrderedCollection).

Testing ad hoc behavior. Since the tests were not reused, some tests ended
up covering uninteresting implementation decisions, e.g., the default capacity
of newly created collections. While it would be an interesting test if it was
generic, applied class by class it often leads to ad-hoc values being documented
in test methods. This practice can even be counter productive since tests
that assume fixed values will break when the value changes, and require
unnecessary fixes [14].

3 Experimental Context: Two Large Libraries

We experimented on two Smalltalk librairies structured around large hierarchies:
streams and collections . We selected them for the following reasons: (i) they are
complex and essential parts of a Smalltalk system, (ii) they mix subtyping with
subclassing, (iii) they are industrial quality class hierarchies that have evolved
over 15 years, and (iv) they have been studied by other researchers [13, 6, 11, 4].

We identified the problems cited above in the Squeak open-source Smalltalk
[12]. Squeak, like all Smalltalk environments, has its own implementation of such
libraries which are solely based on single inheritance without traits. In Squeak,
the abstract classes Stream and Collection have around 40 and 80 subclasses,
respectively, but many of these (like Bitmap or CompiledMethod) are special-
purpose classes crafted for use in the system or in applications. Here, we only
take into account the core classes of each hierarchy (Figures 1 and 2).

3.1 Streams

Streams are used to iterate over sequences of elements such as sequenced collec-
tions, files, and network streams. Streams may be either readable (with methods
like next and skip), or writable (with methods like write and flush), or both. There
are different kinds of streams to read/write different kinds of data (characters,
bytes, pixels. . .) and to iterate over different kind of sequences (collection, single
file, compressed file, picture. . .). This multiplicity of properties implemented
in a single inheritance object-oriented language involves either a combinatorial
number of classes or trade-offs. Since the first solution is hardly realizable, all
Smalltalk dialects chose the second approach with trade-offs (copy and paste, too
many responsibilities, methods implemented too high in the hierarchy, unused
superclass state) [5].

Stream PositionableStream ReadStream

WriteStream ReadWriteStream FileStream

Fig. 1. The Squeak core stream hierarchy.

6 Ducasse, Pollet, Bergel, Cassou

Collection

String

Symbol

Object

Set

Dictionary

Array Text

Bag

OrderedCollection

SortedCollection

LinkedList

ArrayedCollection
Interval

SequenceableCollection

PluggableSet

PluggableDictionary

IdentityDictionary

ByteString

Fig. 2. Some of the key collection classes in Squeak.

3.2 The Varieties of Collections

In Smalltalk, when one speaks of a collection without being more specific about
the kind of collection, he or she means an object that supports well-defined
protocols for testing membership and enumerating elements. Here is a summary.
All collections understand testing messages such as includes:, isEmpty and occur-
rencesOf:. All collections understand enumeration messages do:, select:, collect:,
detect:ifNone:, inject:into: and many more.

Table 1 summarizes the standard protocols supported by most of the classes
in the collection hierarchy. These methods are defined, redefined, optimized or
occasionally even cancelled in Collection subclasses6.

Large set of different behaviors. Beyond this basic uniformity, there are many
different collections. Each collection understands a particular set of protocols
where each protocol is a set of semantically cohesive methods. Table 2 presents
some of the different facets of collections and their implementation. For overall un-
derstanding, the key point to grasp is that protocols presented in Table 1 crosscut
the large set of different behaviors presented in Table 2. Here is an enumeration
of the key behaviors we can find in the Smalltalk collection framework:

Sequenceable: Instances of all subclasses of SequenceableCollection start from
a first element and proceed in a well-defined order to a last element. Set, Bag
and Dictionary, on the other hand, are not sequenceable.

Sortable: A SortedCollection maintains its elements in sorted order.
Indexable: Most sequenceable collections are also indexable. This means that

elements of such a collection may be retrieved from a numerical index, using
the message at:. Array is the most familiar indexable data structure with a
fixed size. LinkedLists and SkipLists are sequenceable but not indexable, that
is, they understand first and last, but not at:.

6 Note that canceling methods in subclasses is a pattern that exists outside the
Smalltalk world. The Java runtime cancels many methods in its collection framework
to express immutability by throwing UnsupportedOperationException.

Reusing and Composing Tests with Traits 7

Table 1. Standard collection protocols

Protocol Methods

accessing size, capacity, at: anIndex , at: anIndex put: anElement

testing isEmpty, includes: anElement, contains: aBlock,
occurrencesOf: anElement

adding add: anElement, addAll: aCollection

removing remove: anElement, removeAll: aCollection,
remove: anElement ifAbsent: aBlock

enumerating do: aBlock, inject: aValue into: aBinaryBlock,
collect: aBlock, select: aBlock, reject: aBlock,
detect: aBlock, detect: aBlock ifNone: aNoneBlock

converting asBag, asSet, asOrderedCollection, asSortedCollection,
asArray, asSortedCollection: aBlock

creation with: anElement, with:with:, with:with:with:,
with:with:with:with:, withAll: aCollection

Keyed: Instances of Dictionary and its subclasses may be accessed by non-
numerical indices. Any object may be used as a key to refer to an association.

Mutable: Most collections are mutable, but Intervals and Symbols are not. An
Interval is an immutable collection representing a range of Integers. It is
indexable with Interval >> at:, but cannot be changed with at:put:.

Growable: Instances of Interval and Array are always of a fixed size. Other kinds
of collections (sorted collections, ordered collections, and linked lists) may
grow after creation.

Accepts duplicates: A Set filters out duplicates, but a Bag will not. This
means that the same elements may occur more than once in a Bag but not in
a Set. Dictionary, Set and Bag use the = method provided by the elements; the
Identity variants of these classes use the == method, which tests whether the
arguments are the same object, and the Pluggable variants use an arbitrary
equivalence relation supplied by the creator of the collection.

Contains specific elements: Most collections hold any kind of element. A
String, CharacterArray or Symbol, however, only holds Characters. An Array
will hold any mix of objects, but a ByteArray only holds Bytes. A LinkedList
is constrained to hold elements that conform to the Link accessing protocol,
and Intervals only contain consecutive integers, and not any numeric value
between the bounds.

4 Experimental Process

Experience with traits [4, 5] shows that they effectively support reuse. We
identified the problems of Section 2 in Squeak, a dialect of Smalltalk. Our ultimate

8 Ducasse, Pollet, Bergel, Cassou

Table 2. Some of the key behaviors of the main Squeak class collection.

Implementation kind

Arrayed Array, String, Symbol
Ordered OrderedCollection, SortedCollection, Text, Heap
Hashed Set, IdentitySet, PluggableSet, Bag, IdentityBag,

Dictionary, IdentityDictionary, PluggableDictionary
Linked LinkedList, SkipList

Interval Interval

Sequenceable access

by index Array, String, Symbol, Interval, OrderedCollection, SortedCollection
not indexed LinkedList, SkipList

Non-sequenceable access

by key Dictionary, IdentityDictionary, PluggableDictionary
not keyed Set, IdentitySet, PluggableSet, Bag, IdentityBag

goal is to redesign core libraries of Squeak, favoring backward compatibility, but
fully based on traits. Our results are available in Pharo, a fork of Squeak that
provides many improvements, including a first redesign of the stream library [5].
The current paper takes place in a larger effort of specifying the behavior of the
main collection classes, as a preliminary of designing a new library.

Our approach to reuse tests is based on trait definition and composition. In
both cases, our experimental process iterated over the following steps:

Protocol identification and selection. We selected the main protocols as
defined by the main classes. For example, we took the messages defined by
the abstract class Collection and grouped them together into coherent sets,
influenced by the existing method categories, the ANSI standard, and the
work of Cook [1, 6].

Trait definitions. For each protocol we defined some traits. As we will show
below, each trait defines a set of test methods and a set of accessor methods
which make the link to the fixture. Note that one protocol may lead to
multiple traits since the behavior associated to a set of messages may be
different: for example, adding an element to an OrderedCollection or a Set
is typically different and should be tested differently (we defined two traits
TAddTest, TAddForUniquenessTest for simple element addition). Now these
traits can be reused independently depending on the properties of the class
under test.

Composing test cases from traits. Using the traits defined in the previous
steps, we defined test case classes by composing the traits and specifying their
fixture. We did that for the main collection classes, i.e., often the leaves of the
Collection inheritance tree (Figure 2). We first checked how test traits would
fit together in one main test class, then applied the traits to other classes.
For example, we defined the traits TAddTest and TRemoveTest for adding
and removing elements. We composed them in the test cases for OrderedCol-
lection. Then we created the test cases for the other collections like Bag, etc.

Reusing and Composing Tests with Traits 9

However, the tests would not apply to Set and subclasses, which revealed
that variants of the tests were necessary in this case (TAddForUniquenessTest
and TRemoveForMultiplenessTest).

5 Selected Examples

We now show how we define and compose traits to obtain test case classes.

5.1 Test Traits by Example

We illustrate our approach with the protocol for inserting and retrieving values.
One important method of this protocol is at:put:. When used on an array, this
Smalltalk method is the equivalent of Java’s a[i] = val: it stores a value at a
given index (numerical or not). We selected this example for its simplicity and
ubiquity. We reused it to test the insertion protocol on classes from two different
sub-hierarchies of the collection library: in the SequenceableCollection subclasses
such as Array and OrderedCollection, but also in Dictionary, which is a subclass of
Set and Collection.

First, we define a trait named TPutTest, with the following test methods:

TPutTest >> testAtPut
self nonEmpty at: self anIndex put: self aValue.
self assert: (self nonEmpty at: self anIndex) == self aValue.

TPutTest >> testAtPutOutOfBounds
"Asserts that the block does raise an exception."
self should: [self empty at: self anIndex put: self aValue] raise: Error

TPutTest >> testAtPutTwoValues
self nonEmpty at: self anIndex put: self aValue.
self nonEmpty at: self anIndex put: self anotherValue.
self assert: (self nonEmpty at: self anIndex) == self anotherValue.

Finally we declare that TPutTest requires the methods empty, nonEmpty, anIndex,
aValue and anotherValue.

Methods required by a trait may be assimilated as the parameters of the
traits, i.e., the behavior of a group of methods is parametrized by its associated
required methods [8]. When applied to tests, required methods and methods
defining default values act as customization hooks for tests: to define a test class,
the developer must provide the required methods, and he can also locally redefine
other trait methods.

5.2 Composing Test Cases

Once the traits are defined, we define test case classes by composing and reusing
traits. In particular, we have to define the fixture, an example of the domain

10 Ducasse, Pollet, Bergel, Cassou

objects being tested. We do this in the composing class, by implementing the
methods that the traits require to access the fixture. Since overlap is possible
between the accessors used by different traits, most of the time, only few accessors
need to be locally defined after composing an additional trait.

The following definition shows how we define the test case ArrayTest to test
the class Array:

CollectionRootTest subclass: #ArrayTest
uses: TEmptySequenceableTest + TIterateSequenceableTest + TIndexAccessingTest

+ TCloneTest + TIncludesTest + TCopyTest + TSetAritmetic
+ TCreationWithTest + TPutTest

instanceVariableNames: ’example1 literalArray example2 empty collection result’

ArrayTest tests Array. It uses 9 traits, defines 10 instance variables, contains
85 methods, but only 30 of them are defined locally (55 are obtained from traits).
Among these 30 methods, 12 methods define fixtures.

The superclass of ArrayTest is CollectionRootTest. As explained later the class
CollectionRootTest is the root of the test cases for collections sharing a common
behavior such as iteration. ArrayTest defines a couple of instance variables that
hold the test fixture, and the variables are initialized in the setUp method:

ArrayTest >> setUp
example1 := #(1 2 3 4 5) copy.
example2 := {1. 2. 3/4. 4. 5}.
collection := #(1 -2 3 1).
result := {SmallInteger . SmallInteger . SmallInteger . SmallInteger}.
empty := #().

We then make the fixture accessible to the tests by implementing trivial but
necessary methods, e.g., empty and nonEmpty, required by TEmptyTest:

ArrayTest >> empty
^ empty

ArrayTest >> nonEmpty
^ example1

TPutTest requires the methods aValue and anIndex, which we implement by
returning a specific value as shown in the test method testAtPut given below.
Note that here the returned value of aValue is absent from the array stored in
the instance variable example1 and returned by nonEmpty. This ensures that the
behavior is really tested.

ArrayTest >> anIndex
^ 2

ArrayTest >> aValue
^ 33

TPutTest >> testAtPut
self nonEmpty at: self anIndex put: self aValue.
self assert: (self nonEmpty at: self anIndex) = self aValue.

These examples illustrate how a fixture may be reused by all the composed
traits. In the eventuality where a trait behavior would require a different fixture,
new state and new accessors could be added to the test class.

Reusing and Composing Tests with Traits 11

The class DictionaryTest is another example of a test case class. It also uses
a slightly modified version of TPutTest. This trait is adapted by removing its
method testAtPutOutOfBounds, since bounds are for indexed collections and do
not make sense for dictionaries. The definition of DictionaryTest is the following:

CollectionRootTest subclass: #DictionaryTest
uses: TIncludesTest + TDictionaryAddingTest + TDictionaryAccessingTest

+ TDictionaryComparingTest + TDictionaryCopyingTest
+ TDictionaryEnumeratingTest + TDictionaryImplementationTest
+ TDictionaryPrintingTest + TDictionaryRemovingTest
+ TPutTest - {#testAtPutOutOfBounds}

instanceVariableNames: ’emptyDict nonEmptyDict’

DictionaryTest uses 10 traits and defines 2 instance variables. 81 methods are
defined in DictionaryTest for which 25 are locally defined and 56 are brought by
the traits. For this class, a similar process happens. We define the setUp method
for this class. Note that here we use a hook method classToBeTested, so that we
can also reuse this test case class by subclassing it.

DictionaryTest >> setUp
emptyDict := self classToBeTested new.
nonEmptyDict := self classToBeTested new.
nonEmptyDict

at: #a put: 20;
at: #b put: 30;
at: #c put: 40;
at: #d put: 30.

DictionaryTest >> classToBeTested
^ Dictionary

And similarly we redefine the required methods to propose a key that is adapted
to dictionaries:

DictionaryTest >> anIndex
^ #zz

DictionaryTest >> aValue
^ 33

5.3 Combining Inheritance and Trait Reuse.

It is worth noting that we do not oppose inheritance-based and trait-based reuse.
For example, the class CollectionRootTest uses the following traits TIterateTest,
TEmptyTest, and TSizeTest (see Figure 3). CollectionRootTest is the root of all
tests, therefore methods obtained from these three traits are inherited by all test
classes. We could have defined these methods directly in CollectionRootTest, but
we kept them in traits for the following reasons:

– Traits represent potential reuse. It is a common idiom in Smalltalk to define
classes that are not collections but still implement the iterating protocol.
Having separate traits at hand will increase reuse.

12 Ducasse, Pollet, Bergel, Cassou

CollectionRootTest

TIterateTest

collection
expectedSizeAfterReject
speciesClass

testCollect
testDetect
testAllSatisfy

TEmptyTest

empty
nonEmpty

testifEmptyifNotEmpty
testIfEmptyDo

ArrayTest

SetTest

OrderedCollectionTest

...

TSetArithmetic

testUnion
testIntersection

empty
nonEmpty

testSizeWhenEmpty

TSizeTest

T...

Fig. 3. Test reuse by both trait composition and inheritance (the representation of
traits shows required methods on the left and provided methods on the right).

– A trait is a first class entity. It makes the required methods explicit and
documents a coherent interface.

– Finally, since our plans are to design a new collection library, we will probably
reuse these protocol tests in a different way.

6 Results

We now present the results we obtained by reusing tests with traits. Section 6.3
discusses the questions we faced during this work.

6.1 In the Nile Stream Library

Excluding tests, Nile is composed of 31 classes, structured around 11 traits:
TStream, TDecoder, TByteReading, TByteWriting, TCharacterReading, TCharacter-
Writing, TPositionableStream, TGettableStream, TPuttableStream, TGettablePosi-
tionableStream, TPuttablePositionableStream. More details about the design of
Nile may be found in the literature [5]. Nile has 18 test classes among which the
ones listed on Table 3 use traits.

The columns of Table 4 and Table 6 describe:
Users: how many test case classes use each trait, either directly by composition

or indirectly through both inheritance and composition;
Methods: the trait balance in terms of required methods vs. provided tests5;
Ad-hoc: defined requirements or redefined methods vs. overridden tests;
Effective: the number of unit tests executed during a test run that originate

from the trait in column 1.
For instance, TPuttableStreamTest is composed into 7 test case classes in total,
through 4 explicit composition clauses; it requires 3 methods and provides 5 unit

5 The small numbers indicate any additional non-test methods that the traits provide.

Reusing and Composing Tests with Traits 13

Table 3. Trait compositions in the Nile tests (only these 6 test classes use traits)

Test case class Traits composed

CollectionStreamTest TGettablePositionableStreamTest
+ TPuttablePositionableStreamTest

FileStreamTest TGettablePositionableStreamTest
+ TPuttablePositionableStreamTest

HistoryTest TGettableStreamTest + TPuttableStreamTest
LinkedListStreamTest TGettableStreamTest + TPuttableStreamTest
RandomTest TGettableStreamTest
SharedQueueTest TGettableStreamTest + TPuttableStreamTest

Table 4. Use, structure, adaptation, and benefit of test traits in Nile.

Test trait Users Methods5 Ad-hoc Effective

dir. / inh. req. � prov. mth. � tests unit tests

TGettablePositionableStreamTest 2 / 4 1 � 2 4 � 0 8
TGettableStreamTest 5 / 8 1 � 10 8 � 0 80
TPositionableStreamTest 2 / 8 1 � 9 8 � 0 72
TPuttablePositionableStreamTest 2 / 4 0 � 1 0 � 0 4
TPuttableStreamTest 4 / 7 3 � 5 +1 22 � 0 35

tests and an auxiliary method. The test classes provide 22 definitions for its
required methods: 3 requirements implemented in 7 test cases, plus 1 redefinition
of the auxiliary method. Overrides are to be expected since the fixtures often can
not be defined in a completely abstract way; none of the tests had to be adapted,
though, which is good. In total, the 5 tests are run for each of the 7 test cases,
so TPuttableStream generates 35 unit tests.

6.2 In the Collection Library

The collection hierarchy is far richer than the stream hierarchy. It contains
several behaviors, often orthogonal, that are intended to be recomposed. As
previously, Tables 5 and 6 describe how we composed and defined the test traits.
The coverage of the collection hierarchy is in no way complete, and we expect
to define other traits to cover behavior, like identity vs. equality of elements,
homogeneous collections, weak-referencing behavior. . .

When writing the test traits, we decided to make do with the collection classes
as they exist, so the traits are much less balanced than with Nile. For instance,
TGrowableTest only applies to collections that reallocate their storage, so we
tested it only for OrderedCollection. However this situation is due to a lack of time
since several other collections exhibit this behavior. In contrast, TIterateTest and
TEmptyTest are composed by nearly all test cases, so they have a much higher
reuse. We also had to adapt composed tests more: while the fixtures are defined
abstractly, they have to be specialized for each tested class and, sometimes, we

14 Ducasse, Pollet, Bergel, Cassou

Table 5. Trait composition in the collection hierarchy tests

Test case class Traits composed

ArrayTest TEmptySequenceableTest + TIterateSequenceableTest
+ TIndexAccessingTest + TCloneTest + TIncludesTest
+ TCopyTest + TSetAritmetic + TCreationWithTest
+ TPutTest

BagTest TAddTest + TIncludesTest + TCloneTest + TCopyTest
+ TSetAritmetic + TRemoveForMultiplenessTest

CollectionRootTest TIterateTest + TEmptyTest + TSizeTest
DictionaryTest TIncludesTest + TDictionaryAddingTest

+ TDictionaryAccessingTest + TDictionaryComparingTest
+ TDictionaryCopyingTest + TDictionaryEnumeratingTest
+ TDictionaryImplementationTest + TDictionaryPrintingTest
+ TDictionaryRemovingTest + TPutTest
− {#testAtPutOutOfBounds}

IntervalTest TEmptyTest + TCloneTest + TIncludesTest
+ TIterateSequenceableTest + TIndexAccessingTest
+ TIterateTest − {#testDo2. #testDoWithout}

LinkedListTest TAddTest − {#testTAddWithOccurences. #testTAddTwice}
+ TEmptyTest

OrderedCollectionTest TEmptySequenceableTest + TAddTest + TIndexAccessingTest
+ TIncludesTest + TCloneTest + TSetAritmetic
+ TRemoveForMultiplenessTest + TCreationWithTest
+ TCopyTest + TPutTest

SetTest TAddForUniquenessTest + TIncludesTest + TCloneTest
+ TCopyTest + TSetAritmetic + TRemoveTest
+ TCreationWithTest − {#testOfSize} + TGrowableTest
+ TStructuralEqualityTest + TSizeTest

StackTest TEmptyTest + TCloneTest − {#testCopyNonEmpty}
StringTest TIncludesTest + TCloneTest + TCopyTest + TSetAritmetic
SymbolTest TIncludesTest + TCloneTest − {#testCopyCreatesNewObject}

+ TCopyPreservingIdentityTest + TCopyTest + TSetAritmetic
− {#testDifferenceWithNonNullIntersection}

excluded or overrode test methods in a composition because they would not work
in this particular test case.

Table 6 shows that traits can achieve important code reuse. The presented
results should also be interpreted with the perspective that the collection hierarchy
is large and that we did not cover all the classes. For example, several kind of
dictionary (open vs. closed implementation, keeping order) exist and were not
covered. Therefore the results are definitively encouraging.

6.3 What Did We Gain?

In the introduction of this paper we stated some research questions that drove
this experiment. It is now time to revisit them.

Reusing and Composing Tests with Traits 15

Table 6. Use, structure, adaptation, and benefit of test traits in the collection hierarchy

Test trait Users Methods5 Ad-hoc Effective

dir. / inh. req. � prov. mth. � tests unit tests

TAddForUniquenessTest 1 / 1 3 � 4 3 � 0 4
TAddTest 3 / 4 3 � 7 10 � 1 28
TCloneTest 9 / 11 2 � 3 18 � 0 33
TCopyPreservingIdentityTest 1 / 1 1 � 1 1 � 0 1
TCopyTest 6 / 7 2 � 5 12 � 0 35
TCreationWithTest 3 / 3 1 � 7 3 � 0 21
TDictionaryAccessingTest 1 / 2 3 � 13 3 � 0 26
TDictionaryAddingTest 1 / 2 3 � 4 3 � 0 8
TDictionaryComparingTest 1 / 2 0 � 1 0 � 0 2
TDictionaryCopyingTest 1 / 2 3 � 2 3 � 0 4
TDictionaryEnumeratingTest 1 / 2 3 � 9 3 � 0 18
TDictionaryImplementationTest 1 / 2 0 � 8 0 � 1 16
TDictionaryPrintingTest 1 / 2 3 � 2 +1 3 � 0 4
TDictionaryRemovingTest 1 / 2 3 � 4 +1 3 � 0 8
TEmptySequenceableTest 2 / 2 3 � 6 +3 7 � 0 12
TEmptyTest 6 / 13 2 � 8 22 � 0 104
TGrowableTest 1 / 1 5 � 3 5 � 1 3
TIdentityAddTest 1 / 1 2 � 1 +1 3 � 0 1
TIncludesTest 8 / 10 5 � 6 41 � 0 60
TIndexAccessingTest 3 / 3 1 � 13 3 � 2 39
TIterateSequenceableTest 2 / 2 3 � 3 6 � 0 6
TIterateTest 2 / 9 7 � 20 +2 49 � 6 180
TPutTest 3 / 4 4 � 3 12 � 1 12
TRemoveForMultiplenessTest 2 / 3 1 � 1 2 � 1 3
TRemoveTest 2 / 4 2 � 4 6 � 0 16
TSizeTest 2 / 9 2 � 2 14 � 0 18
TStructuralEqualityTest 2 / 1 2 � 4 2 � 0 4

– Are test traits reusable in practice? If each feature was tested by a separate
trait, how much test reuse could we obtain? What is a good granularity for
test traits that maximizes their reusability and composition?
We created 13 test classes that cover the 13 classes from the collection
framework (Table 5). These 13 classes use 27 traits. The number of users for
each trait ranges from 1 to 13. Globally, the traits require 29 unique selectors,
and provide 150 test and 8 auxiliary methods.
In the end, the test runner runs 765 unit tests, which means that on average,
reuse is 4.7 unit tests run for each test written. If we do not count just tests
but all (re)defined methods, the ratio to unit tests run is still 1.8. Moreover,
since the classes we selected often exhibit characteristic behavior, we expect
that once we will cover much more cases, the reuse will increase.

– How far should a test fixture be adapted to specific requirements? We had
to define specific test fixtures. For example, to test a bag or a set we need
different fixtures. However, we could first share some common fixtures which

16 Ducasse, Pollet, Bergel, Cassou

were abstracted using trait required methods, second we could share them
between several traits testing a given protocol. It was not our intention to
reuse test fixtures optimally, though.
To optimize the fixture reuse, we could have followed a breadth-first approach
by collecting all the constraints that hold on a possible fixture (having twice
the same element, being a character...) before writing any tests. However, this
approach makes the hypothesis that the world is closed and that a fixture can
be really shared between different test classes. We took a pragmatic approach
and wanted to evaluate if our approach works in practice. In such a context,
we had to define specific fixtures but we could share and abstract some of
the behavior using required methods.

– How far should a test be parametrized to be reusable? What is the impact on
the maintainability of test code?
In the test traits, one out of 6 methods is required. Those unique 29 require-
ments lead to 237 implementations in the test classes to define the concrete
fixtures, but often they are trivial accessors. The difficulty was in striking
a balance between reusing fixtures constrained to test several aspects, or
defining additional independent ones.

7 Discussion

Threats to validity. The collection hierarchy is complex and dense in terms
of the represented behavior. As we showed in Section 3.2, collections possess
many similar elementary facets: order and objects (OrderedCollection), order and
characters (String), no order and duplication (Bag), no order and uniqueness
(Set)... therefore we imagine that the potential of reuse is higher than in normal
domain classes. Still we believe that lots of systems designed with interfaces in
mind would benefit from our approach. For example, user interface or database
mapping frameworks also often exhibit such multiple inheritance behavior.

Factoring test code or grouping test data? As said in the introduction, without
traits, it is still possible to test protocols and interfaces orthogonally to classes,
provided the test case are parametrizable, like in JUnit 4.0 (See Section 8.2).
With this approach, test cases only test a specific protocol but are applied to each
domain class that should respect that protocol. Alternatively, with the traditional
approaches like JUnit, generic test code can be factored through inheritance or
auxiliary methods.

The natural question is then what is the advantage of using traits vs.
parametrized test cases. The JUnit scheme implies that generic test code must be
grouped with the code that passes the test data, either all in one class, or in one
hierarchy per tested protocol. Reusing generic test code is indeed a typical case
of implementation inheritance: to group the tests for several protocols and one
domain class together, one needs either multiple inheritance or delegation and
lots of glue code. In contrast, with test traits defining the generic test code, it is
possible to compose the tests for several protocols into a class that defines the test

Reusing and Composing Tests with Traits 17

data for a single domain, thus nicely separating both generic and domain-specific
parts of the tests code. Moreover, since the domain-specific code controls trait
composition, it may ignore or redefine the generic test code on a case-by-case
basis.

Traits with a single use. In the current system, some test traits are not reused; for
instance, the ones dealing with specific OrderedCollection behavior (e.g., removing
the last element, or inserting an element at a precise position) are only used by
OrderedCollectionTest, so we could have defined the methods directly in this class.
Whether it makes sense or not to have such specific protocol tests grouped as
a trait is a design question —which is not specific to test traits but applies to
using traits in general and to interface design.

We believe that it still makes sense to define such cohesive test methods
as a trait. The current collection library has a large scope but misses some
useful abstractions; even if a trait is not reused currently, it is still a potentially
reusable cohesive group of methods. For example, there is no collection which
simultaneously maintains the order of elements and their uniqueness; if a new
UniqueOrderedCollection is implemented, test traits specifying the ordering and
uniqueness protocols will make it easy to ensure that UniqueOrderedCollection
behaves like the familiar Set and OrderedCollection.

The case of implementation or specific methods. When writing test traits we
focused on public methods. In Smalltalk, since all methods are public, it is
difficult to know if one should be covered or not. Methods may be categorized
into three groups: (i) implementation and internal representation methods, (ii)
methods in a public interface specific to a given collection, and (iii) unrelated
method extensions. We think that tests for the first category are not worth
reusing and should be defined locally in the particular test case. As mentioned
above, we believe it is worth to create a trait for the second group because it
proactively promotes reuse. The last group of methods are convenience methods,
so they belong to a different library and should be tested there. For example,
OrderedCollection >> inspectorClass should be covered by the tests for the GUI
library —where it belongs.

Benefits for protocol/interface design. Our experience trying to identify common
protocols highlighted a few inconsistencies or asymmetries; for instance Ordered-
Collection >> ofSize: and Array >> new: both create a nil-initialized collection of the
given size, but OrderedCollection >> new: creates an empty collection that can grow
up to the given capacity. We imagine that these inconsistencies could appear
because the tests were not shared between several classes. Since protocol tests
are easily reused specifications, we believe they support the definition of more
consistent interfaces or uniform class behavior.

Designing traits for tests vs. for domain classes. When designing traits for domain
classes (as opposed to test traits), we often found ourselves defining required
methods that could be provided by other traits. The idea there is that the method

18 Ducasse, Pollet, Bergel, Cassou

names act as join points and glue between traits, propagating behavior from one
trait to another.

However, in the context of this work, it is better to design traits with required
methods named to avoid accidental conflicts with methods of other traits. This
way, it is easier to provide specific values and behavior in the context of the
specific collection class under test. If a value or behavior must be shared, a simple
redirection method does the trick.

Pluggable fixtures and test traits. To support reuse between test traits, we tried
to share fixtures by making them pluggable. However, it was sometimes simpler
to define a separate fixture specific to a given protocol. Indeed, each protocol will
impose different constraints on the fixture, and devising fixtures that satisfy many
constraints at the same time quickly becomes not practical. It is also important
to understand how far we want to go with pluggability; for example, we did not
use the possibility to execute a method given its name (which can be trivial
in Smalltalk using the perform: message). We limited ourselves to use required
methods to change collection elements, because we wanted to favor readability
and understandability of the tests, even at the cost of potential reuse.

8 Related Work

8.1 Inheritance-based Test Class Reuse

The usual approach to run the same tests with several fixtures is to write the
tests in terms of an abstract fixture and to redefine setUp to provide various
concrete fixtures. This approach can be extended with Template/Hook Methods
to organize and share tests within a class hierarchy; for example, the Pier and
Magritte frameworks [15] use this approach. Their test suites total more than
3200 SUnit tests when run, for only about 600 actual test methods defined; it is
then interesting to understand the pros and cons of the approach.

The principle is the following: the test hierarchy mirrors the class hierarchy
(e.g., MAObjectTest tests MAObject). Some tests are abstract or just offer default
values and define hook methods to access the domain classes and instances under
test (e.g., a method actualClass returns the domain class to test, and instance and
others return instances under test). This approach allows one to test different
levels of abstraction. In the leaves of the hierarchy, the tests defined in the
superclass can be refined and made more precise. While this approach works well,
it shows the following limits:

– Sometimes, test methods have to be cancelled in subclasses.
– When the domain exhibits multiple inheritance behavior, this approach does

not support reuse: it exhibits the same limits as single inheritance in face of
need for multiple inheritance reuse. Indeed, besides copy/paste or delegation,
there is no specific mechanism to reuse tests.

Reusing and Composing Tests with Traits 19

This approach may be improved to reuse protocol tests. The idea is to define
one test case class for each protocol and define an abstract fixture. Then for
each of the classes implementing the protocol, a subclass of the test case class is
created and a fixture is specifically defined. The drawback of this approach is
that the fixture has to be duplicated in each of the specific subclasses for each
protocol.

8.2 Parametrized Test Classes in JUnit 4.0

JUnit 4.0 provides a way to parametrize a test class intended to run a set of test
cases over a different data. For example, the code excerpt given below shows a
test class that verifies the interface IStack for two implementations. The method
annotated with @Parameters must return a collection of test data objects, in
this case instances of the stack implementations JavaStack and ArrayStack. The
Parameterized test runner instantiates the test class and run its tests once for
each parameter.

@RunWith(Parameterized.class)
public class IStackTest {

private IStack stack;
public IStackTest(IStack stack) { this.stack = stack; }

@Parameters public static Collection<Object[]> stacks() {
return Arrays.asList(new Object[][] {

{ new ArrayStack() },
{ new JavaStack() } });

}
@Test public void newStackIsEmpty() throws Exception {

assertTrue(stack.isEmpty());
}

}

When the fixtures are easy to build, the parametrized test runner is thus a
very convenient alternative to the usual xUnit approach of redefining setUp in
subclasses. However, this is not so clear if we consider complex fixtures composed
from several interrelated domain values, like we needed in our tests, and the
@Parameters annotation introduces a dependency from the test code to the
implementations: to test a new IStack implementor, one must modify IStackTest

—or subclass it, which is the non-parametrized approach.
In contrast, test traits group the protocol-level test code in an independent

entity, while test classes encapsulate details specific to the tested implementation
like building the fixture. Especially, test classes control the composition of tests
from several traits, and can define additional ad-hoc tests. This enables a workflow
where the protocol can be documented by a generic test trait, and implementation
tests can be organized in test classes that parallel the domain class hierarchy.

20 Ducasse, Pollet, Bergel, Cassou

9 Conclusion

Single inheritance hampers code reuse of business and testing code. Currently,
programming languages lack constructs that help reuse across different unit
tests. We propose test traits, an approach based on traits which reduces code
duplication and favors composition of feature testing code. Our approach is
particularly adapted to test protocols in class hierarchies with many polymorphic
classes, and is applicable to other trait-based languages. We applied test traits
to two large and critical Smalltalk libraries; in average we reused each test 4.7
times. This experiment shows definitive advantages of our approach: test reuse
across several classes, test composition, simple fixture parametrization. We will
pursue our effort to fully cover the collection hierarchy, and we expect to get
higher test code reuse.

References

1. ANSI. American National Standard for Information Systems—Programming
Languages—Smalltalk, ANSI/INCITS 319-1998, 1998.

2. K. Beck. Simple Smalltalk testing: With patterns. http://www.xprogramming.

com/testfram.htm.
3. A. P. Black and N. Schärli. Traits: Tools and methodology. In ICSE, 2004.
4. A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk collection

hierarchy. In OOPSLA, volume 38, pages 47–64, 2003.
5. D. Cassou, S. Ducasse, and R. Wuyts. Traits at work: the design of a new trait-

based stream library. Journal of Computer Languages, Systems and Structures,
35(1):2–20, 2009.

6. W. R. Cook. Interfaces and specifications for the Smalltalk-80 collection classes. In
OOPSLA, volume 27, pages 1–15. ACM Press, 1992.

7. J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, and W. D. Meuter. Ambient-
oriented programming in AmbientTalk. In D. Thomas, editor, ECOOP, volume
4067, pages 230–254. Springer-Verlag, 2006.

8. S. Ducasse, T. Gîrba, and R. Wuyts. Object-oriented legacy system trace-based
logic testing. In European Conference on Software Maintenance and Reengineering
(CSMR’06), pages 35–44. IEEE Computer Society Press, 2006.

9. M. Flatt, R. B. Finder, and M. Felleisen. Scheme with classes, mixins and traits.
In AAPLAS, 2006.

10. The Fortress language specification. http://research.sun.com/projects/plrg/

fortress0866.pdf.
11. R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T.-T. Chau. Design

of class hierarchies based on concept (Galois) lattices. Theory and Application of
Object Systems, 4(2):117–134, 1998.

12. D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future:
The story of Squeak, a practical Smalltalk written in itself. In OOPSLA, pages
318–326. ACM Press, 1997.

13. W. LaLonde and J. Pugh. Subclassing 6= Subtyping 6= Is-a. Journal of Object-
Oriented Programming, 3(5):57–62, 1991.

14. G. Meszaros. XUnit Test Patterns – Refactoring Test Code. Addison Wesley, 2007.
15. L. Renggli. Magritte — Meta-described web application development. Master’s

thesis, University of Bern, 2006.

http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm
http://research.sun.com/projects/plrg/fortress0866.pdf
http://research.sun.com/projects/plrg/fortress0866.pdf

	Reusing and Composing Tests with Traits
	Stéphane Ducasse, Damien Pollet, Alexandre Bergel, and Damien Cassou

