
HAL Id: hal-00404053
https://hal.archives-ouvertes.fr/hal-00404053

Submitted on 6 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Consumption Reduction with Low
Computational Needs in Multicore Systems with

Energy-Performance Tradeoff
Sylvain Durand, Nicolas Marchand

To cite this version:
Sylvain Durand, Nicolas Marchand. Energy Consumption Reduction with Low Computational Needs
in Multicore Systems with Energy-Performance Tradeoff. 48th IEEE Conference on Decision and
Control, CDC 2009, Dec 2009, Shanghai, China. pp.5568-5573. �hal-00404053�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50155418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00404053
https://hal.archives-ouvertes.fr


Energy Consumption Reduction with Low Computational Needs
in Multicore Systems with Energy-Performance Tradeoff

Sylvain Durand and Nicolas Marchand

Abstract— A two voltage level electronic device is interesting
because the clock frequency and the supply voltage level could
be reduced (respecting certain rules) in order to decrease
the energy consumption. We proposed in a previous paper a
robust control architecture to deal with this power-performance
tradeoff and we are now interested in extending this principle
for several devices which works together since they are all
supplied with the same voltage and clock frequency. Thus, an
intuitive multicore control strategy which duplicates the whole
monocore architecture as much as devices is compared with
a second strategy where the duplication is reduced as much
as possible. It appears that the proposal clearly gives a low
control computational needs with the same reduction of the
energy consumption.

I. INTRODUCTION

An energy-performance tradeoff is required in many em-
bedded electronic systems. Actually, three power consump-
tion sources exist in CMOS circuits [4], which could be
sorted into a dynamic consumption from switching of elec-
trical gates and a static consumption from short circuit and
leakage currents:

P = Pswitching + Pshort circuit + Pleakage

P = KdynfclkV
2
dd +KscfclkVdd +KleakVdd

(1)

It appears that the consumption could be reduced by
decreasing Vdd, i.e. the supply voltage, or fclk, i.e. the
clock frequency. However, decreasing only the frequency
will decrease the power consumption and results in a slower
running task but the total energy consumption will remain
unchanged [12]. The voltage has hence to be reduce in order
to decrease the energy consumption. Furthermore, the supply
voltage is the dominant term especially because the dynamic
power is the most important part in (1). In other words,
decreasing the voltage will almost quadratically decrease the
energy consumption. Unfortunately, this drop will decrease
the computational speed (because of the propagation delay
of transistors) and controlling the supply voltage is hence
a power-delay tradeoff: the power consumption decreases
while the delay increases. That is why the supply voltage
and the clock frequency have to be controlled together to
guarantee the critical path (the longest electrical path a signal
can travel to go from a point to another of the circuit).
Clearly, it is required to decrease the clock frequency before
decreasing the supply voltage and, respectively, increase the
supply voltage before increasing the clock frequency.

S. Durand is with NeCS Project-Team, INRIA - GIPSA-lab - CNRS,
Grenoble, France, sylvain.durand@inrialpes.fr

N. Marchand is with NeCS Project-Team, INRIA - GIPSA-lab - CNRS,
Grenoble, France, nicolas.marchand@gipsa-lab.inpg.fr

A good energy-performance tradeoff could be achieved
using a commonly used approach in embedded systems:
the Dynamic Voltage and Frequency Scaling (DVFS). This
method consists in adapting the voltage and the frequency to
the computational load and leads up to an important energy
consumption reduction (regarding the application) [10]. Fur-
thermore, it seems that most of the applications could run
with a reduced voltage [2], [3]. Thus, several behaviors are
known to minimize the energy consumption. Firstly, each
task has to be considered independently and its execution
time has to fit with the deadline. Moreover, selecting some
suitable voltage levels leads to a drastic energy reduction
even if the number of levels is very small [7]. The supply
voltage has to be reduced as much as possible and the fre-
quency clock adapted to the computational load to minimize
the energy consumption [11].

Based on these different rules, we proposed in [5] a
robust strategy to control the clock frequency and the supply
voltage level of an electronic device. The proposal leads
to minimize the energy consumption while guaranteeing a
good computational performance. We are now interested
in extending this principle to several devices which works
together (with the same voltage and frequency domain) but
where each device has to deal with a different load. In
the following section, we first propose to bring back the
monocore system architecture and summarize its control
strategy. In section III, the multicore architecture is then
presented and two control strategies are detailed: a first
intuitive one which duplicates the monocore principle as
much as devices and a second strategy which reduces consid-
erably the computational needs. Finally the two controllers
are compared in section IV in term of energy consumption
and control computational needs.

II. MONOCORE SYSTEM PRINCIPLE

The system architecture with only one device to control
is shown on Figure 1.

ω

ω

ref

f

Vlevel
Vdd

fclk

Monocore system

Controller
Vdd

hopping

Oscillator Device

Vdd

Fig. 1. Monocore system architecture

The Device is the system to control. It usually runs at
nominal supply voltage and constant clock frequency but



these quantities will now dynamically vary in order to
reduce the energy consumption. That is possible introducing
a closed-loop with a controller to monitor the activity of the
device (its computational speed ω) and to adapt the supply
voltage and the clock frequency regarding the computational
load ref provided by the operating system for each task.

The Oscillator and the Vdd-hopping are the two actuators
used in some DVFS systems. They respectively provide the
clock frequency and the supply voltage to the device:
• The oscillator could be a ring oscillator [6].
• The Vdd-hopping principle is described in [1]. Two

voltage levels are available (Vlow and Vhigh) and the one
or the other could be achieved (with a certain transition time
and dynamics that depends upon the internal controller of
the Vdd-hopping) regarding the Vlevel input signal: Vlevel =
levellow to require the low voltage and respectively levelhigh

for the high voltage.

The Controller has to provide the control signals to the
actuators. Actually, the controller can be divided into two
parts, as depicted on Figure 2:
• The computational speed controller (CSC) provides the

computational speed set point ωsp. Thus, from some task
informations - for each task Ti the operating system provides
the computational load (i.e. the number of instructions Ci)
and the time before the task has to be executed (i.e. the dead-
line Ni) - a fast predictive control law permits to calculate
the best speed set point in order to minimize the penalizing
high voltage running time (and so the energy consumption)
while guaranteeing the computational performance.
• Then the frequency and voltage level controller (FVC)

fits the measured speed ω with the desired one ωsp, by
adapting the frequency f and the voltage level Vlevel.

ω Vlevel

ωsp

ω

Ni

Ci

ω

f
Computational

speed
controller

Frequency and
voltage level
controller Σ

Monocore
system

Fig. 2. Monocore controller architecture: a computational speed controller
(CSC) plus a frequency and voltage level controller (FVC)

The whole monocore controller (CSC + FVC) leads to
a robust control (see [5] for further details): for a given
test bench, the device runs at the penalizing high supply
voltage only during 30% of time and an energy consumption
reduction of about 20% is achieved. We propose next to adapt
this principle to a system with several devices.

III. MULTICORE SYSTEM PRINCIPLE
The system architecture with several devices to control

is shown on Figure 3. In fact this system is not so different
from the monocore one (presented in section II and shown on
Figure 1). Indeed the bases remain the same, with a controller
which sends the frequency f and the voltage level Vlevel to
the actuators, i.e. a ring oscillator and a Vdd-hopping which
respectively provide the clock frequency and the supply
voltage to the electronic devices. The main difference is that

there are now N devices to control, which means as many
references refN given by the operating system (the number
of instructions and the deadline for each task) and as many
measured computational speeds ωN as devices. Therefore the
controller has to control the whole system but devices do
not work independently since they are all supplied with the
same voltage Vdd and the same clock frequency fclk. The
only allowed dimension of freedom is to trigger a device
with a ratio of the clock fclk because in fact in practice it is
possible to add one or two NOPs (i.e. No OPeration) between
each instruction in order that the device runs twice or three
times slower. For this reason, now the energy controller has
to provide the frequency ratios ρN anymore.

ωNωN

refN fclk&Vdd

ρN

f

Vlevel

Multicore system

Controller

Actuators

Device 1

Device 2

Device 3

Device n

ω1

ω2

ω3

ωn

ρ1

ρ2

ρ3

ρn

Fig. 3. Multicore system architecture

Notations: ρj (lower case indice) denotes the signal ρ of
the device j, whereas ρN (upper case indice) means that
there are N signals ρ, one for each device.

In the two following subsections we will detail two control
strategies: a first intuitive one which duplicates the monocore
principle as much as devices and a second one which tries
to minimize the computational needs of the controller.

A. Multicore control based on full duplication of the mono-
core control strategy

A first way to control several devices is to duplicate the
monocore control strategy (detailed in section II) as much
as devices. The resulting multicore architecture is presented
on Figure 4 and could be divided in three steps:

1) First, the computational speed controller (CSC) calcu-
lates the speed set points ωN

sp for the whole devices. Thus the
set point ωj

sp is independently calculated for each device j,
using the task information Cj

i and Lj
i (given by the operating

system) and the measured speed ωj .
2) Then the frequency and voltage level controller (FVC)

independently calculates the frequencies fN and the voltage
levels V N

level usually required to control a single device.
3) Finally a frequency ratio controller compares the

calculated frequencies fN to deduce the critical device c,
i.e. the device which needs the maximal frequency to fit with
its load. Thus the frequency f and the voltage level Vlevel

sent to the actuators are those from the critical device, i.e.
f c and V c

level, and the frequency ratios ρN are obtained by
doing the ratio between the frequency of the current device
f j and the one of the critical device f c.



ωN

fN
cor

Vlevel

ρN

ωN
sp

ωN

NN
i

CN
i

ωN

fcor

V N
level

CSCN

FVCN

Frequency
ratio

controller

Multicore
system

ΣN

Fig. 4. Multicore control architecture based on full duplication of the
monocore control strategy: the computational speed controller (CSC) and
the frequency and voltage level controller (FVC) are duplicated as much
as devices and a frequency ratio controller calculates the critical frequency
and voltage level to deduce the frequency ratios ρN

This intuitive strategy guarantees that the tasks are cor-
rectly performed for all devices because each device is in-
dependently controlled using the monocore strategy. Indeed,
the monocore strategy works for one device and we focus the
frequency and the voltage level decision on the critical one,
i.e. the device which has to treat the task with the highest
computational needs. Thus, all the non-critical tasks will be
executed with the critical voltage level and a frequency lower
or equal to the critical frequency. Moreover, an non-critical
device could become the critical one whereas its task requires
more and more computational needs.

An improvement could be done for the non-critical de-
vices. Actually, if a device runs at high level then it is
forced to the maximal frequency in order to run the shortest
possible time at the penalizing high supply voltage (see [5]
for further details). A non-critical device - which a priori
could run at Vlow - will hence have its frequency forced
anyway when the critical device needs to run at Vhigh. For
this reason, we propose to force only the frequency of the
critical device. However in practice the critical device is not
known yet when the frequencies are calculated, i.e. in step 2,
because the frequency ratio controller determined it in step 3.
Fortunately, a solution consists in using the device which
was critical during the previous sampling period, by using
the assumption that the critical device does not often change.

This intuitive duplication of the whole monocore principle
leads to reduce the energy consumption of several devices
working together while guaranteeing their computational
performance. Nevertheless, a consequence is that the control
computational needs are multiplied as much as devices and
the number of variables seriously increases too. That is
why we propose next to duplicate only some parts of the
monocore control strategy.

B. Multicore control based on partial duplication of the
monocore control strategy

This second strategy tries to minimize the control compu-
tational needs by not intuitively duplicating all the monocore
control strategy. In fact, the frequency ratios ρN require to be
calculated and so some parts have necessary to be duplicated
in order to obtain the N signals. The aim is to repeat the
least code as possible. The best solution would be to use the
references refN (given by the operating system) to deduce
the ratios without duplicating any part of the monocore
strategy, but these signals are not relevant enough. Indeed,
the critical task could not be known only from the number

of instructions and the deadline because the computational
load which was already executed is necessary too. Therefore
we propose to duplicate the computational speed controller
(which seems to have to be repeated anyway). Thus the
multicore architecture on Figure 5 is proposed:

1) First, the computational speed controller (CSC) pro-
vides the speed set points ωN

sp, from which the frequency
ratios ρN could be obtained since they provide information
on the remaining computational load.

2) Then the frequency ratio controller compares the whole
speed set points ωN

sp to deduce the critical task c, i.e. the task
which needs the maximal speed to fit with its deadline. Thus
the speed set point ωsp and the measured speed ω sent to the
FVC are those calculated for the critical task, i.e. ωc

sp and
ωc, and the frequency ratios ρN are obtained by doing the
ratio between the speed set point of the current device ωj

sp

and the one of the critical task ωc
sp.

3) Finally the frequency and voltage level controller
(FVC) calculates the frequency f and the voltage level Vlevel

to send to the actuators only for the critical device, i.e. the
device which has to compute the critical task.

With this proposal, only the CSC is repeated and not
the FVC anymore. We so hope a reduction of the control
computational needs without impacting the gain on the
energy consumption.

ωN

ωsp

ω

fcor

Vlevel

ρN

ωN
sp

ωN
ωN

NN
i

CN
i

CSCN
FVC Multicore

system

ΣN

Frequency
ratio

controller

Fig. 5. Multicore control architecture based on partial duplication of the
monocore control strategy: only the computational speed controller (CSC)
is duplicated as much as devices and then a frequency ratio controller
calculates the critical speed set point which will be used by the frequency
and voltage level controller (FVC) and deduces the frequency ratios ρN

Though all the devices are not independently controlled
using the monocore strategy, the computational performances
are yet guaranteed for each device. Indeed, with this second
architecture the monocore control strategy only guarantees
that the critical task will fit with its deadline, since the
monocore control strategy is only applied to the critical
device. The frequency ratios for the non-critical devices
are then calculated from the computational load of the
task of each device which is finally adjusted thanks to the
CSC. Thus all the non-critical tasks are executed until their
deadline anyway, or a task becomes the critical one when its
computational needs become the more important one.

C. Discret values of the frequency ratios

One could note that the control algorithms proposed
in both previous subsections were developed with ideal
continuous frequency ratios ρN . However, as explained in
introduction of the multicore principle, some devices could
be triggered with a ratio of the clock frequency fclk by
adding NOPs between instructions in order that the device
runs slower. This is why the frequency ratios could only be a



discrete value which correspond to the number of NOPs, i.e.
% = {1; 1

2 ; 1
3} for 0, 1 or 2 NOPs respectively added between

each instruction (note that the discrete frequency ratios will
be called % and the continuous ones ρ).

In order to implement this behavior, we first have to
calculate the continuous ratios ρN (i.e. ρj = f j

cor/f
c
cor for

the multicore control strategy based on full duplication of
the monocore control strategy and ρj = wj

sp/w
c
sp for the

one based on partial duplication). Then, iterations have to
be done for each device j in order to deduce the discrete
frequency ratio %j just upper than the value of the continuous
ratios ρj , as depicted by the below algorithm:

%j =



1 if 1
2 < ρj ≤ 1

1
2 if 1

3 < ρj ≤ 1
2

1
3 if 0 < ρj ≤ 1

3

0 otherwise

(2)

This discrete ratio behavior would lead to a less energy
efficient system because the frequencies of the non-critical
devices will be higher than required - thanks to (2) -
contrary to the continuous case where these frequencies
correspond exactly to the desired ones. Moreover, the control
computational needs would increase a little bit thanks to the
added code required to calculate the discrete ratios %N .

IV. PERFORMANCE EVALUATION

This section presents some simulation results. The bench-
mark test is the same for all the simulations, where four
devices with a different reference (number of instructions
and deadline shown on Figure 6) have to be controlled:
device 1 → three tasks to execute: the first task starts with

5 instructions to do in 0.5µs, then a 75 instruction task
has to be executed in 2.5µs and the last one has to
compute 10 instructions in 1µs.

device 2 → three tasks also: a 15 instruction task to execute
in 1.25µs, a task with 50 instructions to do in 2.25µs
and then 5 instructions to execute in 0.5µs.

device 3 → a single task of 40 instructions to do in 4µs.
device 4 → three tasks again: 10 instructions to compute in

0.75µs, a task with 20 instructions to do in 0.75µs and
a last 40 instruction task to execute in 2.5µs.

First, the simulation results for both control strategies
(with ideal continuous frequency ratios) are shown on Fig-
ures 7 and 8. The top plots show the average speed set point
(for guideline), the speed set point ωsp, the measured speed ω
and the critical speed ωc (for guideline) for each device. One
could verify that ω = ωc when the device is the critical one
(highlighted by the gray areas on plots). Moreover, the supply
voltage Vdd (which is the same for the whole devices because
of the multicore architecture) is shown on the bottom plot.
Note that the calculated frequency f or the clock frequency
fclk and the voltage level Vlevel are not plotted because
they do not provide relevant information: the frequencies are
proportional to the speed and the level can be deduced from
the voltage.

Fig. 6. References used for the simulations: the number of instructions, the
deadline and the laxity (the remaining available time to execute the task)
for each device

The results are quantified in term of energy consumption
and computational needs:
Energy consumption of the system: The energy consump-

tion is calculated in order to have an idea of the
reduction achieved thanks to our proposal. Thus, the re-
lation (1) is used and a ratio of this power consumption
is added due to the Vdd-hopping principle: 20% more
during the voltage transition time and 3% more during
the steady state [8]. Finally, an integration during the
whole running time gives the total energy consumption.

Computational needs of the controller: The control laws
are compared in term of computational needs, i.e. the
number of instructions required to calculated the com-
putational speed set points, the frequencies, the voltage
levels and the frequency ratios. To do that, we use the
Lightspeed Matlab toolbox proposed by T. Minka [9],
which provides a number of flops for each instruction.

Moreover, the strategies are compared with a system
using the intuitive control strategy (by duplicating the whole
monocore control strategy) but without Dynamic Voltage
Scaling (DVS): in this case the measured speed tracks the
average speed set point and the supply voltage is fixed to the
penalizing high voltage, i.e. Vlevel = levelhigh.

In both cases, the system runs during more than 50% of
the simulation time at low voltage and a reduction of the
energy consumption of about 20% is achieved in comparison
with a system without DVS. The differences between the two



Fig. 7. Simulation results of the multicore controller based on full dupli-
cation of the monocore control strategy (with ideal continuous frequency
ratios): energy consumption of 3.976 · 10−5J and computational needs
of 5.8 · 105flops, that is 82.2% of energy consumption and 94% of
computational needs compared to a controller without DVS

control strategies are during the voltage transitions and come
from the choice of the critical device:

A) For the multicore control strategy based on full dupli-
cation of the monocore control strategy, one could see on
Figure 7 that the measured speed ω is continuous for all the
devices. This is because the ratios ρN are obtained from the
frequencies fN independently calculated for each device.

B) For the strategy based on partial duplication, one could
see on Figure 8 a discontinuity of the measured speed ω as
soon as the critical device changes, such as at time 2.35µs
on device 2. Indeed, the frequency ratios ρN are obtained
from the speed set points ωN

sp which are switching variables
due to their construction (see [5] for further details). Thus
the speed set point value of a device could suddenly change
and so are the ratios. Nevertheless, the critical frequency -

Fig. 8. Simulation results of the multicore controller based on partial
duplication of the monocore control strategy (with ideal continuous fre-
quency ratios): energy consumption of 3.98 · 10−5J and computational
needs of 3.8 · 105flops, that is 82.4% of energy consumption and 62% of
computational needs compared to a controller without DVS

and so the critical speed - remains continuous.
While the energy consumption is very similar for both

strategies, the computational needs is considerably reduced
for the second one with a drop of 35% of the number of
flops. For this reason, it would be the strategy to use.

Finally we propose to compare the simulation results of the
control strategy with low computational cost, on a first hand
when the frequency ratios are the ideal continuous variables
ρN and on an other hand when they are the discrete variables
%N described by the algorithm (2). One could immediately
remarks than the results, respectively shown on Figures 8
and 9, are quite similar. The main difference is that the
measured speed ω does not track the speed set point ωsp in
the discrete case as well as in the continuous case. However,
the algorithm assures that the speed will be at least upper



Fig. 9. Simulation results of the multicore controller based on partial
duplication of the monocore control strategy (with discrete frequency ratios):
energy consumption of 4·10−5J and computational needs of 4.3·105flops,
that is an increase of 1% of energy consumption and 11% of computational
needs compared to the controller with ideal continuous frequency ratios

than the desired one and so the computational load will be
correctly computed. This is why this principle is interesting
since it only leads to an increase of less than 1% of the
energy consumption and 11% of the control computational
needs in comparison with the continuous frequency ratio case
(which could not be implemented in practice anyway).

V. CONCLUSIONS AND FUTURE WORKS

This paper proposes architectures to control several de-
vices which work together since they are all supplied with
the same voltage Vdd and the same clock frequency fclk (or a
ratio of this clock). The multicore control strategies are based
on the monocore control strategy depicted in [5], where a fast
predictive control technique gives a computational speed set
point to track in order to minimize the energy consumption

while guaranteeing the computational performance.
While the first multicore control strategy intuitively dupli-

cates the whole monocore architecture as much as devices,
the second strategy - the contribution of this paper - tries
to minimize as much as possible the duplication in order to
decrease the control computational needs. Both architectures
lead to a similar gain of energy consumption (compared to a
system without DVS mechanism) but an important reduction
of the number of flops is achieved with the second one. We
finally propose to use discrete frequency ratios which are the
only way to implement our controller in practice.

Next steps in this research is to test these control strategies
in practice.

VI. ACKNOWLEDGMENTS
This research has been supported by the NeCS Project-

Team (INRIA, GIPSA-lab, CNRS) in the ARAVIS project
context. ARAVIS project is a Minalogic project gathering ST
Microelectonics with academic partners of different fields,
namely TIMA and CEA-LETI for micro-electronics and
INRIA for operating system and control. The aim of the
project is to overcome the barrier of subscale technologies
(45nm and smaller).

REFERENCES

[1] C. Albea, C. Canudas de Wit, and F. Gordillo. Control and stability
analysis for the vdd-hopping mechanism. In Proceedings of the IEEE
Conference on Control and Applications, 2009.

[2] T. Burd and R. Brodersen. Processor design for portable systems. In
The Journal of VLSI Signal Processing, volume 13, pages 203–221,
1996.

[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A dynamic
voltage scaled microprocessor system. In IEEE International Solid-
State Circuits Conference Digest of Technical Papers, volume 35,
pages 1571–1580, 2000.

[4] A. Chandrakasan and R. Brodersen. Minimizing power consumption
in digital cmos circuits. In Proceedings of the IEEE, volume 83, pages
498–523, 1995.

[5] S. Durand and N. Marchand. Fast predictive control of micro con-
troller’s energy-performance tradeoff. In Proceedings of the 3rd IEEE
Multi-conference on Systems and Control - 18th IEEE International
Conference on Control Applications, 2009.

[6] S. Fairbanks and S. Moore. Analog micropipeline rings for high
precision timing. In Proceeding of the International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 41–
50, 2004.

[7] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynami-
cally variable voltage processors. In Proceedings of the International
Sympsonium on Low Power Electronics and Design, pages 197–202,
1998.

[8] S. Miermont, P. Vivet, and M. Renaudin. A power supply selector
for energy- and area -efficient local dynamic voltage scaling. In
PATMOS’07: 17th International Workshop on Power and Timing
Modeling, Optimization and Simulation, pages 556–565, 2007.

[9] T. Minka. The lightspeed matlab toolbox v2.2.
http://research.microsoft.com/˜minka/software/lightspeed/.

[10] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the
lparm microprocessor system. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), pages
96–101, 2000.

[11] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling
on a low-power microprocessor. In Proceedings of the 7th Annual In-
ternational Conference on Mobile Computing and Networking, pages
251–259, 2001.

[12] A. Varma, B. Ganesh, M. Sen, S. Choudhury, L. Srinivasan, and
J. Bruce. A control-theoretic approach to dynamic voltage scheduling.
In Proceedings of the International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems, pages 255–266, 2003.


