# Hierarchical study of Guyton Circulatory Model

#### Rodrigo ASSAR CUEVAS, Hayssam SOUEIDAN, David J. SHERMAN

MAGNOME TEAM / INRIA, LaBRI / CNRS, 351 cours de la Libération, F-33405 Bordeaux, FRANCE

## General Hierarchical modeling

- ➤ Decomposition.
- ➤ Succesive refinement.
- ➤ Mixing formalisms.

#### Flow variables

PA: arterial pressure.

MDFLW: rate of flow of fluid in the renal tubules at the macula densa.

ANM, ANU, ANUVN: coefficients of angiotensin effects. Respectively: multiplier effect, on other functional circulation systems, on venous constriction.

AMK: multiplier effect for control of potassium transport trough cell membranes.

AMNA: multiplier effect for control of sodium.

CKE: concentration of potassium in the extracellular fluids.

CNA: concentration of sodium.

ADHC: concentration of antidiuretic hormone.

ADHMK, ADHMV: ADH effect on kidney and on blood vessels, respectively.

TVD: rate of fluid intake.

NOD: Na reabsorption rate.

KOD: K excretion rate.

VUD: urine volumen.

AU, AUH, AUM: coefficients of autonomic stimulation. Respectively: heart and for multiple points in the circulatory system.

#### Guyton model

- Extensive mathematical model of human circulatory physiology.
- ≥ 18 connected modules, Circulation Dynamics is the primary module.
- >Still the most comprehensive cardiovascular model.



## RAAS: Renin-Angiotensin-Aldosterone System

- > RAAS is crucial for the model (Guyton et al. 1974, Sagawa et al. 1975).
- Therapeutic manipulation of this pathway is very important in treating hypertension and heart failure.
- Inclusion of Renin, Angiotensin, Aldosterone and antidiuretic hormone mechanisms to control the pressure in the kidneys.

#### BioRica

- A high-level, hierarchical, modeling framework
- Extension of the AltaRica industrial modeling formalism.
- ➤ Mixing in non ambiguous way PDE/ODE & automata definitions.
- ➤ Dataflow links define hierarchical relations between nodes.
- Event synchronization shared between nodes.



# Simulations

- Complete system.
- Supposing Initial level of MDFLW low or high.
- Introducing controlled, periodic or stochastic changes of MDFLW.

# Results and advantages of the approach

- ➤ Guyton model is naturally hierarchical.
- ➤ Model includes Circulatory Dynamics and Autonomous Control.
- >RAAS nodes: Angiotensin, Aldosterone, Antidiuretic hormone,
- Thirst and drinking, Electrolytes and cell water, Kidney.
- Control of MDFLW to initial low or high levels.
- Easy inclusion of new implemented nodes or mechanisms.
- External alterations that are applied to the organism, medical treatments of pressure control, can be included.
- Inclusion of the external tool Matlab. Electrolytes and Kidney nodes.

#### References

➤A.C. Guyton, T.G. Coleman and H.J. Granger, Circulation: Overall Regulation. *Annual Review of Physiology*, 34:13-44, 1972.

➤A.C. Guyton, T.G. Coleman, A.W. Cowley, Jr., R.D. Mannings, Jr., R.A. Norman, Jr. and J.D. Ferguson, Brief Reviews: A Systems Analysis Approach to Understanding Long-Range Arterial Blood Pressure Control and Hypertension. *Circ. Res.*, 35:159-176, 1974.

➤K. Sagawa, Critique of a Large-Scale Organ System Model: Guytonian Cardiovascular Model. *Annals of Biomedical Engineering*, 3:385-400, 1975.

➤ H. Soueidan, D.J. Sherman and M. Nikolski, BioRica: A multi model description and simulation system. *Foundations of Systems Biology and Engineering (F0SBE)*, 279-287, 2007.

A. Arnold, G. Point, A. Griffault and A. Rauzy, The AltaRica Formalism for Describing Concurrent Systems. *Fundamenta Informaticae*, 34:109-124, 2000.







