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Abstract. In this paper, we introduce a prototype-based clustering al-
gorithm dealing with graphs. We propose a hypergraph-based model for
graph data sets by allowing clusters overlapping. More precisely, in this
representation one graph can be assigned to more than one cluster. Us-
ing the concept of the graph median and a given threshold, the pro-
posed algorithm detects automatically the number of classes in the graph
database. We consider clusters as hyperedges in our hypergraph model
and we define a retrieval technique indexing the database with hyperedge
centroids. This model is interesting to travel the data set and efficient to
cluster and retrieve graphs.

1 Introduction

Graphs give a universal and flexible framework to describe the structure and
the relationship between objects. They are useful in many different application
domains like pattern recognition, computer vision and image analysis. For exam-
ple in the context of content-based image retrieval, the user formulate a visual
query. The user’s target is seldom represented by a whole image which should
not be processed like a one unit, because it is generally composed by a set of
visual regions carrying out some semantics. Then, the graphs, by their natures,
propose an adjusted solution for this task. Moreover, to reduce the number of
graphs to be computed for matching or indexing tasks it is generally required
to cluster objects. By this way, clustering similar images becomes equivalent to
look for those graph representations that are similar to each other in a database.
In this context, it is natural to apply clustering techniques to graphs. Clustering
large set of graphs is still widely unexplored and is one of the most challenging
problems in structural pattern recognition. In the recent years, some investiga-
tions on graph clustering and the organization of graph databases have been
revitalized in [6, 10, 13, 22]. Graph clustering problems rely in the organization
of large structural databases, in discovering shape categories and view structure
of objects, or in the construction of nearest neighbor classifiers. In this perspec-
tive, we propose a hypergraph model to cluster a set of graphs. A hypergraph
[3] H=(ϑ, ξ) consists of a set of vertices ϑ and a set of hyperedges ξ; each hyper-
edge is a subset of vertices. We can note that the difference between an edge in
a graph and a hyperedge in a hypergraph is that the former is always a subset of
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one or two vertices, and in the latter, the subset of vertices can be of arbitrary
cardinality. In our model, we represent each graph by a vertex and each cluster
by a hyperedge. The degree of a vertex is the number of hyperedges it belongs
to, and the degree of a hyperedge is the number of vertices it contains. We de-
note the maximum degree of a vertex v by ∆ϑ(v) and the maximum degree of a
hyperedge h by ∆ξ(h). Recently, the hypergraph has been used, in the pattern
recognition domain, for object representation [15], similarity measures [5], and
object clustering [1]. In this paper we establish a hypergraph-based model for
a graph database, we process as follows: firstly, a clustering technique based on
the prototype selection is proposed to cluster the graph set into k independent
clusters (k is detected automatically using a given threshold). Secondly, these
clusters will be overlapped to define the final hypergraph structure. The idea of
clusters overlapping is in the same vein as the works in [4, 24] but the represen-
tation is different here. In fact from a set of experiments, we have remarked that
the hypergraph structure provides a framework to retrieve and to browse graphs.
This also leads to high clustering rate and improves the retrieval performance.

2 The proposed Hypergraph model

Since, we have focus our work in that one graph can belongs to several clus-
ters, we consider that the proposed hypergraph is connected (1-edge-connected).
Therefore, each graph Gi in the proposed structure is assigned to ∆ϑ(Gi) clusters
and each cluster Cj contains ∆ξ(Cj) graphs. However, a key problem in struc-
turing a set of graphs into a hypergraph is the determination of the number of
clusters (hyperedges) and the determination of related graphs (similar graphs)
that can be grouped as hyperedges. In this perspective, we consider that the
number of hyperedges is equal to the size of a representative set, defined on a
selection of the most representative graphs in the whole set. We denote each
selected graph as a hyperedge centroid. The selection of these graphs is similar
to the problem of Prototype Selection [2, 17, 23]. K. Riesen and al. [17] enumer-
ate some techniques to select prototypes from a training set. These techniques
require a specification of the number of prototypes and there are no premises
for determining automatically this number. Therefore, if we are in a unsuper-
vised context where no information about the number of representative graphs is
available, this number will be determined empirically. In this perspective, Spath
[23] proposes an algorithm using leaders and distance based threshold where the
number of selected prototype is inversely proportional to the selected threshold.
However, the Leader algorithm [23] is sensitive to the selection of the initial
prototype which is selected randomly among the input data. To overcome this
problem, we introduce a representative graphs (hyperedge centroids) selection
based on a peeling-off strategy. This method can be viewed as an improvement
of the Leader algorithm and the K -Centers. After the selection of the hyperedge
centroids, we define the hypergraph structure by assigning each graph to the
corresponding hyperedges. Then the browsing and the retrieval of the graphs
will be transposed into the hypergraph structure.
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Hyperedge centroids selection. As stated above, the hyperedge centroids se-
lection is similar to the Prototype Selection problem. Therefore, we aim to select
a set of graphs which capture the most significant aspects of a set of graphs. We
introduce an improvement for the Leader algorithm [23]. The proposed algorithm
proceeds as follows:

1. Select the median graph [11] Gm from the unassigned graphs in the whole
set of graphs S. Then the furthest graph Gpk

(which has not been previ-
ously assigned) to Gm, becomes the centroids of the cluster Ck. In the first
iteration, the graph Gpk

is the initial selected prototype.
2. Distances of every unassigned graph gi ∈ S�{Gpk

} are compared with that
of the last selected prototype Gpk

. If the distances d(gi, Gpk
) and d(gi, gj

∈Ck
) are less than a predefined threshold T, the graph gi is assigned to the

cluster Ck with the centroid Gpk
, and gi is tagged as assigned.

3. Recompute the median graph Gmk
of Ck, if Gmk

6= Gpk
, replace Gpk

by
Gmk

. If any replacements is done, go to the next step, otherwise all gj are
tagged as unassigned, ∀gj ∈ Ck, then return to step 2.

4. While S contains an unassigned graphs return to step 1, otherwise stop.

Given a threshold T, the algorithm clusters the set of graphs with an intra-
class inertia (Ii) less or equal to T. This property is performed on the step 2.
In addition, this algorithm ensures the selection of the prototypes which are
given by the centers of the resulted clusters. Futhermore, it guarantees a certain
separability between classes of one partition. By using an edit distance d, we can
formulate the between-class inertia (Ib) of a partition C composed of two classes
C1,C2 by the Ward [25] criterion:

Ib(C1, C2) =
η1 × η2

η1 + η2
d2

gc1,gc2
(1)

where gci
is the centroid of the class Ci and ηi is the number of members of Ci.

The analysis of this formula shows that there is a strong dependence between the
interclass inertia and the centroid. However, we know that the distance between
two centroids is higher than the threshold T and Ii ≤ T. Moreover, by fixing
the initial selected prototype as the furthest graph to the median graph of the
graph set, multiple runs of the algorithm produce identical results. We denote
this clustering algorithm by D-hypergraph (disconnected hypergraph).

The hypergraph-based representation. Let S be the whole set of graphs and
P be the set of selected prototypes P (P⊂S ). Classical clustering techniques find
for each graph g∈ S�P its nearest neighbor pi ∈ P and add the graph to the
cluster Ci corresponding to the prototype pi. In fact, if a graph g presents a
similar distances to two prototypes pi and pj , g is added to the cluster with the
nearest prototype even though the difference between the two distances is very
minor. Moreover, the provided clusters are disjoint and can be exploited for a
retrieval task as used in [18–21], but it will be difficult to find an algorithm for
browsing the whole set of graphs through disjoint clusters.
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On the contrary, we propose a hypergraph-based model which allows the
overlapping of clusters. In fact, henceforth the clusters will be viewed as hyper-
edges of hypergraph and the graphs as the vertices. Firstly, for each selected
prototype pi a hyperedge hi is defined with a centroid pi. Secondly, every hy-
peredge is defined as follows : each graph g∈ S�P is added to the hyperedges
with the nearest prototypes to g (their distances to g is less than the threshold
T used in the previous algorithm). We denote this procedure by C-hypergraph
(connected hypergraph).

Figure 1(a) illustrates our motivation. In the leftmost part of the figure
di=d(pi, g1) and we suppose that d1 and d2 are less or equal than T, so the
graph g1 shares some informations with p1 and p2 (informations are illustrated
in colors). With the hypergraph model we will able to assign g1 to the both
hyperedges h1 and h2. The rightmost part of the figure 1(a) describes how two
hyperedges (clusters) can overlap with one graph in common. Here, ∆ϑ(g1)=2
and ∆ξ(h1)=∆ξ(h2)=2.

(a) (b)

Fig. 1. Illustration of the hypergraph-based representation

Once all the hyperedges are defined from the graphs, we recompute, for each
hyperedge, the generalized median graph which will be the new hyperedge cen-
troids. The aim of this step is to update the hyperedge centroid after the hy-
pergraph construction step and to maintain it including as much information
as possible of the graphs in the corresponding hyperedge. We have chosen to
use the generalized median graph to define the centroid of a cluster (unlike the
Minimum Common Supergraph [6]) because it is less expensive in a viewpoint
of computational time.

Interrogation and Navigation of hypergraph-based model of a set of

graphs. Classically, interrogation of a set of graphs consists in searching the
most similar graphs to a given query. This retrieval task ranks the graphs in
an increasing distance order from the query. As remarked by a few works in the
literature [18–21], this method do not exploit sophistically the distances, and the
authors propose a clustering-based retrieval technique to improve the retrieval
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results. Here, we introduce a procedure which involves the hypergraph-based
model presented previously. The main idea is to find the most similar hyperedge
centroid to a given graph query. Then, we look for the most similar graphs within
the hyperedge which it centroid is the most similar to the query. We can describe
the retrieval procedure into the hypergraph model as follows:

1. For a query graph gq, compute the set of distances between gq and each
hyperedge centroid.

2. Get the nearest hyperedge centroid pi to gq.
3. Retrieve the most similar graphs gj to gq, where gj ∈ hi and hi is the

hyperedge with the centroid pi.

This hypergraph-based model can be exploited to travel through the hyper-
graph. Once the previous retrieval procedure is performed, the user can browse
the set of graphs, through a graphical interface (see figure 1(b), where the clus-
ters (hyperedges) are represented by overlapped ellipses), by performing a walk
among the hyperedges.

3 Experiments

The clustering evaluation. In this first part of the experiments, our contri-
bution is evaluated in a graph clustering context. Here, our contribution is used
within two algorithms. The first one is the prototype-based clustering with-
out connection of the hyperedges in the hypergraph (denoted D-Hypergraph
as disconnected hypergraph). The second one allows the overlapping of the hy-
peredges (denoted C-Hypergraph as connected hypergraph). We drawn a com-
parison within a K-means algorithm. To this aim we have used three image
databases, the first one is the well-known COIL database [14] which contains
different views of 3D objects. The images in COIL are converted into graphs by
feature points extraction using the Harris interest points [9] and Delaunay tri-
angulation. The second is the well-known GREC [16, 7] database which consists
of graphs representing symbols from architectural and electronic drawings. Here
the ending points (ie corners, intersections and circles) are represented by nodes
which are connected by undirected edges and labeled as lines or arcs. Finally,
we have performed the clustering evaluation on an ornamental letters data set
which contains lettrine (graphical object) extracted from digitized ancient doc-
uments 1. Since one lettrine contains a lot of information (i.e. texture, decorated
background, letters), the graphs are extracted from a region-based segmentation
[8] of the lettrine. The nodes of the graph are represented by the regions and the
edges describe their adjacency relationships. The graph distance measure used
on the clustering is the graph matching measure based on the node signatures
[12]. The clustering results are evaluated by the Rand index, the Dunn index and
the Davies-Bouldin index. The Rand index measures how closely the clusters cre-
ated by the clustering algorithm match the ground truth. The Dunn index is a

1 Provided by the CESR - University of Tours on the context of the ANR Navidomass
project http://l3iexp.univ-lr.fr/navidomass/



6 Salim Jouili and Salvatore Tabbone

measure of the compactness and separation of the clusters and unlike the Rand

index, the Dunn index is not normalized. The Davies-Bouldin index is a function
of intra-cluster compactness and inter-cluster separation. We note that a good
clustering provides a smaller Davies-Bouldin index and a higher Rand and Dunn

indexes. In this experiment the threshold T, used by our method, is defined as
the mean of distances between graphs in the same database. The number of
classes k used by the K-means is defined in accordance with the ground truth.

Table 1 shows the results of the three cluster validity indexes. From these
results, it is clear that our disconnected hypergraph produces clusters more com-
pact and well separated. We note that when the C-Hypergraph is performed the
Dunn index take the value 0, because some graphs share clusters and the mini-
mum between-class distance becomes 0. Moreover, in a viewpoint of similarity to
the ground truth, our model provides better results for the GREC and the Let-
trine database, and we can remark also that the Rand index of the C-Hypergraph
for the three databases are higher than the Rand index of the D-Hypergraph.
Therefore, the connected hypergraph fits better the ground truth and encourages
us to exploit the hypergraph-based structure for the graph retrieval problem.

K-means D-Hypergraph C-Hypergraph

COIL Database k=100 T=18.66, Nc=276 T=18.66

Rand Index 0.75 0.74 0.75

Dunn Index 0.03 0.04 0.00

DB Index 0.98 0.88 1.25

GREC Database k=22 T=6.20, Nc=21 T=6.20

Rand Index 0.86 0.88 0.91

Dunn Index 0.01 0.04 0.00

DB Index 0.83 0.76 0.94

Lettrine Database k=4 T=53.20, Nc=4 T=53.20

Rand Index 0.64 0.68 0.69

Dunn Index 0.10 0.13 0.00

DB Index 0.81 0.61 0.92

Table 1. Clustering evaluation and comparison with K-means (Nc: the number of detected
clusters)

Evaluation of the retrieval with the hypergraph-based model. In this
part of the experiments, we investigate the retrieval in the hypergraphs by per-
forming the algorithm detailed previously on the Ornamental letters database.
We provide a comparison with a classical retrieval task in which the graph query
is compared to all the graphs in the database and then the most similar (the
nearest ones) are retrieved. In the proposed approach, the hyperedges centroids
are the entries of the database. That is to say, firstly the query graph is com-
pared only to the hyperedge centroids. Then, the retrieval is performed among
the graphs which belong to the hyperedge with the nearest centroid to the query.
We used the receiver-operating curve (ROC) to measure retrieval performances.
The ROC curves are formed by Precision rate against Recall rate, and drawn
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in the figure 2. By analyzing the two curves, we can remark that the results are
better when the retrieval is performed only in one hyperedge. Furthermore, the
hypergraph-based model is less time-consuming than the classic technique since
it does not compare the query with all graphs in the set but only with graphs
in an appropriate clusters.
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Fig. 2. Precision-Recall curves: comparison between classical retrieval and hypergraph-
based retrieval

4 Conclusion

In this paper we have investigated how the hypergraph structure can be used for
the purpose of graph database representation. We have proposed a prototype-
based method to cluster graphs and to select automatically the prototypes which
collect as much information as possible from the graph set without a predefined
number of clusters. The major task of this work is to allow the multi-assignment
of one graph, i.e. one graph can be assigned to more than one cluster. We have
also shown that our hypergraph-based model improve the retrieval and can be
used to navigate into a graph database.
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