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Abstract. In the pattern recognition context, objects can be repre-
sented as graphs with attributed nodes and edges involving their re-
lations. Consequently, matching attributed graphs plays an important
role in objects recognition. In this paper, a node signatures extraction is
combined with an optimal assignment method for matching attributed
graphs. In particular, we show how local descriptions are used to de-
fine a node-to-node cost in an assignment problem using the Hungarian
method. Moreover, we propose a distance formula to compute the dis-
tance between attributed graphs. The experiments demonstrate that the
newly presented algorithm is well-suited to pattern recognition appli-
cations. Compared with well-known methods, our algorithm gives good
results for retrieving images.

1 Introduction

Recently, graphs become commonly used as an adequate representations for
documents, and many recognition problems can be formulated as an attributed
graph matching problem, where nodes of the graphs correspond to local features
of the document and edges correspond to relational aspects between features.
Therefore, attributed graphs matching imply establishing correspondences be-
tween nodes of two graphs as consistently as possible. In the last decades, there
have been many researches on defining efficient and fast graph matching algo-
rithms [8]. The major approaches for matching attributed graphs include edit
distance minimization [10, 2, 3], spectral approach [7], Bayesian approaches [1],
probing technique [6], probabilistic relaxation [13]. According to [11], most of
these approaches, the attributed graph matching are implemented as a follow-
ing 2-steps procedure: Firstly, similarities between every pair of nodes in two
graphs, forming a distance matrix, are computed using a predefined measure.
Secondly, the matching between nodes is based on the distance matrix by using
an approximate algorithm such as the bipartite matching [3]. Therefore, the at-
tributed graph matching problem is mathematically formulated as an assignment
problem.

In this paper, we propose a new efficient algorithm for matching and com-
puting the distance between attributed graphs. We introduce a new vector-based

node signature as a local description in the attributed graph (AG). Each node
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is associated with a vector where components are a collection of degrees, the
attributes of the node and the incident edge attributes. To compute a distance
between two node signatures, we use the Heterogeneous Euclidean Overlap Met-
ric (HEOM) which handles numeric and symbolic attributes. Afterwards, using
the node signatures and the HEOM distance, a cost matrix is constructed. The
cost matrix describes the matching costs between nodes in two graphs, it is a
(n,m) matrix where n and m are the sizes of the two graphs. An element (i,j ) in
this matrix gives the distance between the ith node signature in the first graph
and the j th node signature in the second graph. To find the optimum matching,
we consider this problem as an instance of the assignment problem, which can
be solved by the Hungarian method [14]. We also introduce a new metric to
compute the distance between graphs.

The remainder of this paper is organized as follow: in the next section (§2),
local descriptions for graphs and the distance between these local descriptions
are described. In the Section 3, the proposed matching algorithm is described
and the distance between two graphs is also introduced. This algorithm is used to
find correct node-to-node correspondences between two graphs, and to retrieve
graphs in data-sets. We have compared our method with the Umeyama method
[12] and the Zass’s probabilistic method [13] for the matching task and with the
BGMEDG [3] for the retrieving task (section 4).

2 Local descriptions of AG

In this paper, we present an algorithm for reducing the problem of graph match-
ing to a bipartite graph matching problem by means of node signatures. We
have taken inspiration from literature, to use an assignment-based algorithm for
graph matching [3, 9, 18, 19] by making use of a new node signature. To compute
the distance between graphs, a framework is proposed in this section to extract
node signatures and compute distance between these signatures.

2.1 Node signatures

In the literature, the major part of proposed AG matching algorithms deal with
global-based representation of graphs. Then, the graph is handled as one entity
which can be only one vector[6], a matrix [7] or a string [15]. In few previous
work, the concept of node signature has been introduced in [20, 19, 17], here
the node signatures have been computed by making use of spectral approach,
decomposition approach and random walks approach. These methods using node
signatures descibe the graph locally.

In this paper, we propose local-based descriptions instead of global-based
description of graphs. Henceforth, each graph is represented by a set of local
descriptions which are related to the node features and used to compute the
node-to-node distance. In the following, we denote the local descriptions as node
signatures. Contrary to the previous works in the literature, our node signature
is a simple vector and computed straightforwardly from the adjacency matrix.
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In order to construct a signature for a node in an attributed graph, we use all
available information into the graph and related to this node. These information
are the node attribute(s), the node degree and the attributes of the incident
edges to this node. The collection of these informations should be refined into
an adequate structure which can provides distances between different node sig-
natures. In this perspective, we define the node signature as a set composed by
three subsets which represent the node attribute, the node degree and the at-
tributes of the incident edges to this node. Given a graph G = (V, E, A) where
V is the vertex set, E is the edge set, and A is the attribute set that contains
unary attribute ai (linked to each node ni) and binary attribute aij (linked to
each edge ek=(ni,nj) ∈E), the node signature is formulated as follows:

Ns(ni)={{ai},d
o(ni),{aij}∀nj∈E}

Where ni ∈ V, {ai} is the attribute of the node ni, do(ni) gives the degree of ni,
and {aij} is the set of the attributes of the incident edges to ni.

The set of these node signatures (vectors) describing nodes in an attributed
graph is a collection of local descriptions. So, local changes of the graph will
modify only a subset of vectors while leaving the rest unchanged.

2.2 Distance metric between node signatures

Classically, to determine the similarity between two entities in multidimensional
feature space, a distance metric is required. Although several distance metrics
have been proposed [22], the most commonly used metrics are suitable only for
either symbolic or numeric attributes. These include the Euclidean and Manhat-

tan distance metrics for numeric attributes, and the Overlap distance for sym-
bolic attributes. In our case, the node signature can be expected to encounter
a spectrum of different types of attributes including numeric and symbolic data
that require more complex metrics. Wilson and al. [22] review a list of well-
known metrics based on heterogenous distance function which handle multiple
data type. We can classify these metrics into two family. On the one hand,
the distances based on the value difference metric (e.g. Heterogeneous Value

Difference Metric) and on the other hand the Euclidean-based distance (e.g.
Heterogeneous Euclidean Overlap Metric). The metrics in the first family are
only used in the classification context, by introducing class information into the
distance formula. Therefore, we use the Heterogeneous Euclidean Overlap Met-

ric (HEOM) to compute the distance between two node signatures. The HEOM
uses the overlap metric for symbolic attributes and the normalized Euclidean
distance for numeric attributes. The overall distance between two heterogeneous
node signatures i and j is given by the function HEOM(i,j ):

HEOM(i, j) =

√

√

√

√

A
∑

a=0

δ(ia, ja)2 (1)

Here a refers to one attributes of A. And δ(ia,ja) is defined as:
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δ(ia,ja)=











1 if ia or ja are missing

Overlap(ia,ja) if a is symbolic

rn diffa(ia,ja) if a is numeric

Missing attribute values are handled by returning an attribute distance of 1
(a maximal distance) if either of the attribute values is missed. The function
Overlap and the rang-normalized difference rn diffa are defined as:

Overlap(ia,ja)=

{

0 if ia =ja

1 otherwise

rn diffa(ia,ja)= |ia−ja|
rangea

The value rangea is used to normalize the attributes. This normalization
scales the attributes down to the point where differences are almost less than
one [22]. Therefore, we can remark that the definition of δ guarantees a value in
the interval [0 1].

3 Proposed AG matching algorithm

3.1 Algorithm

As described in Section 1, two attributed graphs can be matched by using the
2-steps procedure [11]. In the proposed algorithm, we adopt the use of node
signatures and an assignment problem. Note that, the distances between node
signatures and the Hungarian method [14] (for solving the assignment problem)
correspond to the first and the second steps of the 2-steps procedure, respectively.
We improve this 2-steps procedure, by adding a new step which consists in
computing the distance between the attributed graphs in a metric framework.

So, in a first step, distances between every pair of nodes in two attributed
graphs are computed using the distance defined in the previous section. These
distances form a cost matrix which defines a node-to-node assignment for a pair
of graphs. This task can be seen as an instance of the assignment problem which
is the second step in our algorithm. The assignment problem can be solved by
the Hungarian method, running in O(n3) time[14] where n is the size of the
biggest graph. The permutation matrix P, obtained by applying the Hungarian
method to the cost matrix, defines the optimum matching between two given
graphs. As third step, based on the permutation matrix P, we define a matching
function M as follow :

M(xi) =

{

yj , if Pi,j=1 (2a)

0, else (2b)

where xi and yj are the nodes, respectively, in the first and the second graph.
Using this matching function we compute the distance between two attributed
graphs. But before introducing the distance formula we denote by:
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– |M |: the size of the matching function M which is the number of matching
operations. In any case, when two attributed graphs are matched the number
of the matching operations is the size of the smaller one.

– M̂ =
∑

Dn(Ns(x), Ns(M(x))) : the matching cost which is the sum of the
matching operation costs, for two attributed graphs matched by M.

We define the distance between two attributed graphs gi and gj as follows:

D(gi, gj) =
M̂

|M |
+ ||gi| − |gj || (3)

This distance represents the matching cost normalized by the matching size,
and is increased by the difference of sizes of the two graphs (|gi| is the size
(number of nodes) of the graph gi). We can demonstrate that this distance is a
metric satisfying non-negativity, identity of indiscernible, and symmetry triangle
inequality conditions.

3.2 Attributed graph matching example
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Fig. 1. Two attributed graphs.

Here, we present an example of attributed graph matching in order to clarify
the proposed algorithm. Figure 1 shows two attributed graphs to be matched,
g1 with four nodes and g2 with five nodes, and each node in the two graphs
is attributed by two symbolic attributes and each edge by a numeric attribute.
First, The node signatures in the two graphs must be computed. Using the
previous definition, the graph g1 has the following node signatures:

g1:{ Ns(n11
)={{a,b},2, {0.5, 0.3}},

Ns(n12
)={{b,b},2, {0.5, 0.1}},

Ns(n13
)={{c,d},2, {0.9, 0.1}},

Ns(n14
)={{d,e},2, {0.9, 0.3}}}

and the graph g2 has the following node signatures:
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g2:{ Ns(n21
)={{t,y},3, {0.5, 0.3, 0.3}},

Ns(n22
)={{x,x},3, {0.5, 0.3, 0.2}},

Ns(n23
)={{y,z},3, {1.3, 0.7, 0.2}},

Ns(n24
)={{z,z},3, {1.5, 0.7, 0.3} }

Ns(n25
)={{s,r},4, {1.5, 1.3, 0.3, 0.3}}}

Next, we compute the cost matrix between nodes in the two graphs g1 and
g2 making use of the distance described in §2. For example, the distance between
the node signatures of n11

and n21
is given by:

HEOM(n11
,n21

) =

√

5
∑

a=0

δ(n11a,n21a)2 = 1.7578

The computed cost matrix C between all the node signatures in g1 and g2 is:

n21
n22

n23
n24

n25

n11
1.7578 1.7578 2.0221 2.0320 2.2764

n12
2.0011 2.0011 2.0276 2.0374 2.2959

n13
2.0055 2.0055 2.0144 2.0199 2.2804

n14
2.0044 2.0055 2.0189 2.0144 2.2696

and then the permutation matrix P, obtained by applying the hungarian algo-
rithm to the cost matrix is:

n21
n22

n23
n24

n25

n11
1 0 0 0 0

n12
0 1 0 0 0

n13
0 0 1 0 0

n14
0 0 0 1 0

Therefore, the correspondences between nodes in g1 and g2 can be established
from P, and the distance between g1 and g2 is:

D(g1,g2)=
1.7578+2.0011+2.0144+2.0144

4
+|5 − 4| = 2.9469.

4 Experimental results

In this section, we provide some experimental results of the new attributed graph
matching method. We check our method with two kinds of graphs attributes :
graphs with only numeric attributes(weighted graphs) and graphs with symbolic
and numeric attributes. We start with a matching problem using real world data
and numeric attributes. The aim here is to evaluate how the new algorithm
recovers the node-to-node matching under structural changes and to compare it
with the well-known Umeyama method [12]. Afterward, we evaluate our graph
distance by performing a graph retrieval task. Here, we provide a comparison
with the method published by Riesen and al. [3] for two different data sets
(images and molecules).
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4.1 Node-to-node matching

We provide a comparison between our algorithm, the Umeyama method for
inexact graph matching [12] and the Zass’s probabilistic method [13] because
both methods provide a explicit correspondence between nodes in two graphs
using Hungarian Method [14].

The Umeyama [12] method matches nodes between two graphs by performing
eigendecomposition of their adjacency matrices, and then computes the permu-
tation matrix that brings the nodes of the graph into correspondence by applying
the Hungarian Method [14] on the outer-product of the left singular vectors of
the adjacency matrices. This method works only for graphs with same numbers
of nodes.

Zass and al. [13] derived the graph matching problem in a probabilistic set-
ting, which is solved via convex optimization and based on an algebraic relation
between the hyperedges, the global optimum of the matching is found via an
iterative successive projection algorithm.

Firstly, to provide a comparison with the Umeyama’s algorithm, we have
selected 23 images from the same class in the COIL-100 database [21] which
contains the same number of corner points. Here, we are concerned with match-
ing the Delaunay triangulations of corner-features, where each edge is weighted
by a numeric attribute representing the Euclidean distance between two points.
We use the Harris corner detector [16] to extract point features. Figure 2 (im-
age of 50th object rotated in 320o and image of 50th object rotated in 325o)
shows the correspondences between the corners as lines between the two images
using our algorithm (Fig.2(a)) and the Umeyama algorithm (Fig.2(b)). The re-
sults are summarized in Table 1. From these results, our new method provides
higher correct correspondence rate from the compared algorithms. Contrary to
the Umeyama method our algorithm deals with graphs with different sizes and
take into account both numeric and symbolic attributes. In the next section, we
repeat this set of experiments using graphs with different sizes.

(a) (b)

Fig. 2. (a) Correspondences with our algorithm. (b) Correspondences with the
Umeyama algorithm. (green lines correspond to correct correspondences and red lines
to false ones)

Secondly, we use the CMU/VASC model-house sequence database which con-
tains 9 images corresponding to different camera viewing directions. The graphs
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Algorithms Correct correspondences False correspondences CCR

Umeyama 2120 916 69.83%

Zass 2222 814 73.19%

Our method 2525 511 83.17%

Table 1. Comparison of the two Matching Algorithms.

are obtained by the Delaunay triangulations of the detected corner points by the
Harris [16]. Figure 3 shows an example of the results obtained when we match
two images using our method and the Zass method. The results are given in
Table 2. From these results, it is clear that the new method returns considerably
better matches.

From the two previous set of experiments, our method has shown good flex-
ibility and robustness among different data sets. In fact, in the model-house se-
quence database there are clearly significant structural differences in the graphs
in comparison to the selected subset from the COIL-100 database. For these two
graph sets our new method provides good results.

(a) (b)

Fig. 3. (a) Correspondences with our algorithm. (b) Correspondences with the Zass
algorithm. (green lines correspond to correct correspondences and red lines to false
ones)

Algorithms Correct correspondences False correspondences CCR

Zass 1474 1162 55.92%

Our method 1658 978 62.90%

Table 2. Comparison of the two Matching Algorithms.(CCR: correct correspondence
rate)

4.2 Graph retrieval

Here, the retrieval performance is evaluated on four databases from the IAM
graph database repository [4]:
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– The COIL-RAG database (7200 images, 72 classes) consists of COIL-100
database where images are transformed into region adjacency graphs. Each
region corresponds to a node linked with attributes specifying the color his-
togram, and adjacent regions correspond to the edges which are attributed
with the length of the common border.

– The Mutagenicity database consists of 4337 graphs (2 classes) represent-
ing molecular compounds, the nodes represent the atoms labeled with the
corresponding chemical symbol and edges by valence of linkage.

– The Letter database (3000 graphs, 15 classes) involves graphs that represent
distorted letter drawings. Each distorted letter correspond to a graph by
representing lines by edges and ending points of lines by nodes. The nodes
are labeled by two-dimensional attribute giving its position.

– The GREC database [5](1100 images, 22 classes) which consists of graphs
representing symbols from architectural and electronic drawings. Here the
ending points (ie corners, intersections and circles) are represented by nodes
which are connected by undirected edges and labeled as lines or arcs.

In Table 3, we synthesize the types of the attributes (symbolic or numeric)
present in the edges and the nodes of the graphs in each database.

COIL-RAG Mutagenicity Letter GREC

Symbolic X (N) X (E,N)

Numeric X (E,N) X (E) X (N) X (E,N)

Table 3. Synthesis of attributes types in the used databases.(E: Edge, N: Node)

In these experiments, the receiver-operating curve (ROC) is used to mea-
sure retrieval performances. The ROC curve is formed by Precision rate against
Recall rate. Precision rate is the ratio of the number of correct images to the
number of retrieved images. Recall is the ratio of the number of correct images
to the total number of correct images in the database. We provide a comparison
between our method and the Riesen and al. method [3] which consider (as our
approach) the graph matching as an instance of an assignment problem. How-
ever, in their method (called BGMEDG) a bipartite graph matching is proposed
to compute the edit distance of graphs. More precisely, the method computes
the edit distance between two graphs based on a bipartite graph matching by
means of the Hungarian algorithm and provides only sub-optimal edit distance
results. Therefore, this algorithm requires a predefined cost function to define
the node-to-node costs. Then, the Hungarian algorithm is applied to this matrix
to find an edit path which consists in the minimum-cost node assignment.

Figure 4 shows the Precision-Recall curves obtained by applying the new
method and the BGMEDG method on the different databases. The cost func-
tions of the BGMEDG method have been defined empirically. These results note
that our method outperforms the BGMEDG on three databases among four.
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Fig. 4. Precision-Recall curves on databases :(a) Mutagenicity. (b) Letter. (c) COIL-
RAG (d) GREC.

Especially, the results on the GREC database, when nodes and edges contain
combined symbolic and numeric attributes, demonstrate that our node signa-
tures are flexible and robust against the different type of attributes. However,
our method fails on the Mutagenicity database, but the performance is quite
similar to the other approaches

From this set of experiments, we can note that the extracted node signatures
provide good structural local descriptions of the graphs. In addition, when both
nodes and edges are labeled by combined symbolic and numeric attributes, the
concept of node signature becomes more significant and its stored information
becomes more discriminant.

5 Conclusion

In this work, we propose a new attributed graph matching technique based on
node signatures describing local information in the graphs. We construct a cost
matrix based on the distance between each pair of nodes in two graphs. To
compute the distance between two graphs defined with symbolic and numeric
attributes we have used the Heterogeneous Euclidean Overlap Metric. The opti-
mum matching is computed using the Hungarian algorithm and based on a pro-
posed metric graph distance. Experimentally, we have proved that our method
performs node-to-node correspondences between two graphs, and provides good
results to retrieve different kind of images represented by attributed graphs.
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