
HAL Id: inria-00406248
https://hal.inria.fr/inria-00406248

Submitted on 22 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A SIP-Based Home Automation Platform: An
Experimental Study

Benjamin Bertran, Charles Consel, Patrice Kadionik, Bastien Lamer

To cite this version:
Benjamin Bertran, Charles Consel, Patrice Kadionik, Bastien Lamer. A SIP-Based Home Automation
Platform: An Experimental Study. 13th International Conference on Intelligence in Next Generation
Networks, Oct 2009, Bordeaux, France. pp.1-6, �10.1109/ICIN.2009.5357075�. �inria-00406248�

https://hal.inria.fr/inria-00406248
https://hal.archives-ouvertes.fr

A SIP-based Home Automation Platform:
an Experimental Study

Benjamin Bertran, Charles Consel
INRIA / LaBRI

351, Cours de la Libération
F-33405 Talence Cedex, France

{benjamin.bertran, charles.consel}@inria.fr

Patrice Kadionik
IMS / University of Bordeaux
351, Cours de la Libération

F-33405 Talence Cedex, France
patrice.kadionik@enseirb.fr

Bastien Lamer
Orange Labs

bastien.lamer@orange-ftgroup.com

Abstract—SIP has demonstrated its effectiveness in enabling
distributed entities to exchange any media using various interac-
tion modes. In doing so, this protocol is showing great promise
to support much extended forms of telecommunication services.

This paper reports on the use of SIP as a communication
middleware to support home automation applications that consist
of heterogeneous, distributed entities. We describe how SIP fulfills
the requirements of home automation; we present the resulting
architecture of a home automation system; and, we validate our
approach with various scenarios.

Index Terms—Pervasive Computing, SIP, Communication Pro-
tocol, Middleware.

I. INTRODUCTION

Homes and buildings are being equipped with a growing
set of technologies to automate management tasks. Such tasks
span from light and heating handling to energy saving and
security. Although promising, the development of home au-
tomation systems raises a number of challenges. In particular,
it requires to deal with widely heterogeneous entities (whether
hardware or software), different modes of interaction (e.g.,
events and streams), various kinds of data exchanges (e.g.,
temperature measurements), and entities dynamically avail-
able. While existing software engineering approaches support
the developers for the most error-prone tasks, they still lack
a platform that relies on industrial standards to tackle the
challenges of the home automation domain.

In this paper we present an approach and a platform
that rely on the SIP protocol [1]. Commonly used in tele-
phony, multimedia streaming, and instant messaging, SIP is
a great candidate to also become a communication bus for
the constituent components of a home automation system.
Additionally, the open-ended nature of SIP provides a good
basis to address issues that are specific to the home automation
domain.

SIP is now widely deployed in both local and global
telecommunication infrastructures. To leverage these infras-
tructures, extensions required by home automation applica-
tions need to be introduced seamlessly, preserving compatibil-
ity with existing SIP equipments such as phones, proxies, IM-
agents, and video-cameras. To leverage non-SIP equipments

commonly used in a home automation environment, we uni-
formly view them as SIP entities by mapping their interfaces
into SIP communication modes.

Our approach is supported by a case study of home au-
tomation scenarios defined by Orange Labs. These scenarios
exhibit the key requirements of the home automation domain.
To fulfill these requirements, we developed a specific software
layer over SIP. This layer factorizes the common operations
needed to develop home automation applications. It has been
used to successfully implement Orange Labs’ scenarios.

This paper is structured as follows. Section II presents
the Orange Labs’ scenarios and a typical home automation
architecture; it also outlines the requirements they suggest.
Section III describes our approach. Section IV examines how
the requirements specific to the home automation domain can
either mapped directly into SIP features or expressed as SIP
extensions. Section V introduces a programming support to
develop home automation applications over SIP. Section VI re-
ports on the benefits of using our approach to develop Orange
Labs’ scenarios. Finally, Section VII gives some concluding
remarks.

II. REQUIREMENTS

This section presents our scenarios and identify their needs,
limitations, and risks. Additionally, these scenarios illustrate a
number of concerns specific to the home automation domain.
Finally, this section introduces a typical home automation
architecture from which we derive our SIP-based platform.

A. Scenarios
Let us examine three scenarios involving the use of a

variety of devices including alarms, video cameras, phones and
televisions. These devices are connected by a home network
infrastructure. Besides devices, our working scenarios also
consist of external software services such as agendas and RSS
feeds.

a) Advanced intercom: In this scenario, when someone
uses the home intercom, it calls every phone in the house.
After a period of time, if the call has not been answered,
it is redirected to the mobile phone of one of the home

978-1-4244-4694-0/09/$25.00 c�2009 IEEE

Authorized licensed use limited to: CR Bordeaux. Downloaded on April 22,2010 at 10:55:57 UTC from IEEE Xplore. Restrictions apply.

owners. Whoever gets the call can talk to the visitor, as well
as remotely open the door using the keypad of his/her phone.

This application not only illustrates the use of existing SIP
features, such as audio streams and DTMF [2], but it also
exhibits the need to leverage the telephony infrastructure to
enable home equipments (e.g., doors, lights, alarms) to be
controlled remotely.

b) Anti-intrusion: This scenario is dedicated to house
security. When an intrusion is detected, the application sends
an SMS and an email to a house owner together with a video.
It also calls the police, providing specific information (e.g.,
number of detected intruders and area of intrusion) using a
text-to-speech component.

This scenario demonstrates the need for advanced event
mechanisms to bring rich information to applications (for
instance, the location of the intrusion). It also points out
the need to attach non-functional information to distinguish
and discover entities. For example, if each video camera
has an attribute specifying its location, then it is possible to
dynamically and selectively record a video of the intrusion
scene. Finally, this scenario shows home components interact
with external services (e.g., SMS).

c) Media content information: Given a user-provided set
of television preferences (genres, actors. . .), this application
sends him/her an SMS message, announcing every matching
TV program. Responding to this message triggers the record-
ing of the announced program.

This scenario underlines the need for combining home
equipments and external services to perform a number of tasks.
It also introduces the notion of user preferences, requiring
some applications to be parameterized by the user.

Requirements: Beyond the requirements directly entailed
by our working scenarios, other requirements are common to
most home automation scenarios.

Heterogeneity of entities requires an approach to abstracting
away entity features that are not relevant to applications
(e.g., protocol, model, and firmware version). This approach
would allow entities that share common functionalities to be
uniformly manipulated.

To do so, a key issue is to define a uniform model to interact
with entities. A study of a range of existing entities suggests
that three interaction modes are needed: commands, events,
and sessions. Commands are used to perform actions on
devices (e.g., operating a light or triggering an alarm). Events
enable entities to react to situations by pushing information
into the application (e.g., motion detection and temperature
change). A session mechanism allows to configure a commu-
nication channel to exchange data over a period of time.

Making entities remotely operable raises security issues. For
instance, video cameras represent a threat to the home owner’s
privacy. For another example, gaining control of equipments
may enable an intrusion (e.g., unlocking a door or opening
shutters). These issues need to be taken into account for the
design of our home automation platform.

B. Home Automation Architecture
Let us give an overview of our architecture and provide a

preliminary assessment of its capabilities.
1) Architecture overview: For convenience, we distinguish

the home environment from the rest of the world. In the home
automation architecture depicted in Figure 1, the residential
gateway makes a bridge between these two environments.
This component provides a complete infrastructure to share
Internet access (e.g., ADSL modem, router, and firewall). It
also contains an entire system with storage, and computing
capabilities (e.g., hard drive, general-purpose CPU, sizable
memory, USB ports, etc.). The gateway provides the user with
several services: telephony, TV (stream and recording), and
Internet access.

Fig. 1. Home automation architecture

The home automation platform has been designed to be
integrated as part of the residential gateway. In doing so,
the platform can leverage embedded components such as a
SIP proxy. As such, the gateway is the center of the home
infrastructure, and thus, is responsible for exposing home
services to the outside world and ensuring access to external
services like agendas or e-mail servers.

2) Home devices: The home environment is populated with
numerous devices. Each of them provides services accessible
through specific interaction modes and communication tech-
nologies (e.g., Web Services, CGI, CORBA). In our approach,
the constituents of the home automation environment are
uniformly viewed as SIP entities. Therefore, their interfaces
are mapped into our uniform interaction model, namely com-
mands, events, and sessions.

When home automation devices use proprietary protocols,
their deployment in our architecture requires the development
of wrappers. This software layer translates proprietary proto-
cols into SIP. Figure 2 focuses on the internal structure of the
residential gateway and the devices. As can be noticed, wrap-
pers can be located either (1) inside the residential gateway
as a module, (2) in an adaptation gateway serving multiple
devices, or (3) directly in the device, whenever possible.

3) Applications: In our study, applications are hosted in the
home network (either in the residential gateway or in a dedi-
cated device) and provide various services to the user. These
applications control, manage, and coordinate devices and
software components (whether inside or outside the home);

Authorized licensed use limited to: CR Bordeaux. Downloaded on April 22,2010 at 10:55:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Device wrapping

they are seen as SIP agents. This configuration allows some
services to keep on running in case of network connection
failure (WAN side of the residential gateway), such as local
home automation ones (e.g., light control).

III. OUR APPROACH

Because SIP is HTTP-inspired, it is highly versatile and
extensible. These features make this protocol amenable to be
used in a range of extended forms of communications such as
instant messaging [3], [4], presence [5], as well as converged
applications combining telephony with software systems [6].
Furthermore, SIP enables to transport a range of data formats
by leveraging such protocols as SDP [7], PIDF [8], and SOAP.
More generally, SIP is widely used in ToIP infrastructures,
ranging from small domestic environments to country-wide
telephony networks.

Our approach aims to leverage a SIP-based infrastructure
and its key benefits to developing home automation applica-
tions. To do so, several adaptations are needed to fulfill the
home automation requirements. These adaptations must be in
conformance with the SIP protocol and reuse existing exten-
sions whenever possible. These two constraints are critical for
a seamless integration of our approach in already-deployed
SIP infrastructures. These adaptations are described in the next
section.

To facilitate the use of our approach by developers, we
provide them with a complete programming framework on top
of SIP and our adaptations. Thanks to this support, developers
manipulate high-level concepts (e.g., service discovery) in
Java. As well, a developer does not have to forge SIP messages
nor manage SIP transactions, preventing him from writing
boilerplate code.

Because this programming support is generated with respect
to a description of the home environment, it guides the devel-
opment of applications with typed operations and methods to
be implemented.

IV. SIP ADAPTATIONS

This section presents how some requirements can be directly
mapped into SIP and what adaptations are needed to address
the remaining ones. Our proposed adaptations revolve around
the use SOAP to transfer arbitrarily rich data. SOAP messages
are embedded in SIP message payloads. These adaptations are
designed to be in conformance with SIP platforms and SIP-
native agents.

A. Registration and discovery
Dynamicity is an inherent feature of home automation. SIP

provides a mechanism that deals with a form of dynamicity,
namely user mobility. To address this issue SIP relies on the
use of Uniform Resource Identifiers (URIs) to refer to agents,
abstracting over the terminal network address. We can use this
mechanism to identify an entity, whether hardware or software,
by its name expressed as a URI. Entities can thus be viewed as
SIP agents that can be found via their URI locally as well as
throughout the Internet. To achieve this, SIP agents register to
SIP proxies that store basic network information (IP address,
port) associated to their URI.

Fig. 3. Registration (a) and discovery (b) processes

Although rudimentary, this SIP mechanism can be used to
achieve entity discovery. We propose to extend the registration
process of SIP agents with a semantic description of entities
they correspond to. To do so, we decompose this process
in two steps. The first one is the normal registration proce-
dure and uses the REGISTER message. This allows native
SIP agents to register and provide their URIs and network
information, as mentioned earlier. Unfortunately, a URI does
not give any information about the nature of its associated
entity (e.g., device type and location). To obtain additional
information from an entity, we query the entity with the
OPTIONS message. If the entity belongs to our approach,
it returns an enriched response describing itself in terms of
attributes and its type name; this response is stored for later
use. An attribute is property-value pair characterizing the
entity. The type name denotes a set of entities that share
the same functionalities (e.g., a light, a fan, and an alarm),
allowing the application to manipulate them uniformly.

The type name of entities, together with their attributes, are
used by the application to discover entities in a given home
environment. A query for entity discovery takes the form of
a MESSAGE message including the search criteria. Then the
response message contains a list of matching entities. This
exchange is built as a command invocation, described below.
Figure 3 summarizes the registration process and the entity
discovery.

B. Commands
Home automation devices often make their functionalities

accessible via an RPC-like command, which is a one-to-
one operation between two services. A command invocation
consists of a name and argument values; it produces a return
value. We implement this mechanism in SIP using extensions
for instant messaging [3], [4]. A command invocation is
encoded using SOAP. The caller builds a MESSAGE message
with a SOAP payload. The targeted service decodes the
SOAP message and executes the command code. When the

Authorized licensed use limited to: CR Bordeaux. Downloaded on April 22,2010 at 10:55:57 UTC from IEEE Xplore. Restrictions apply.

execution completes successfully, the result is encoded into
a 200 MESSAGE response. Otherwise, an error message is
returned.

C. Events
Events are based on the publish/subscribe paradigm [9],

[10]. In this model, an entity publishes its events to an
event notifier, which in turn notifies the subscribing entities.
This is a one-to-many interaction, where the publisher does
not know subscribers (illustrated in Figure 4). A subscriber
targets a particular event coming from a specific entity (i.e., a
URI). Several existing SIP extensions address this interaction
mode [1], [11] but none allows arbitrary payloads for event
subscription and publication.

Fig. 4. Event interaction mode: (a) subscription (b) publication

We lift this limitation by introducing SOAP over SIP event
messages. PUBLISH request body consists of the SOAP-
encoded event name and event value. Similarly, SUBSCRIBE
message consists of the SOAP-encoded URI of the publisher
and the event name. In addition to the contents of a PUBLISH
payload, a NOTIFY payload includes the URI of the event
publisher to pass this information to the event subscribers.

D. Sessions
Sessions, combined with SDP, are essential to exchange

streamed data such as audio and video. They represent a
flexible interaction mode because they allow parameters of
the streamed data to be negotiated between the parties. We
generalized the negotiation process, again by using SOAP-
encoded payloads. This generalization allows, for example,
to negotiate the rate at which a temperature sensor sends its
measurements.

V. THE DIASPEC APPROACH

DiaSpec [12], [13], [14] is a lightweight Architecture De-
scription Language [15] (ADL) dedicated to the pervasive
computing domain. From a DiaSpec specification, the Dia-
Spec compiler generates a dedicated programming framework.
The generated support provides the developer with high-level
programming mechanisms, abstracting over the underlying
communication layer, namely SIP. This makes it possible to
write applications and device wrappers, without knowing about
this protocol. Figure 5 illustrates the DiaSpec approach.

A. The DiaSpec Language
A DiaSpec specification defines a taxonomy of entities

dedicated to the target application area. It consists of decla-
rations of classes of entities, each declaration gathers entities

Fig. 5. The DiaSpec software structure

that share commonalities; their differences are expressed by
attribute declarations; and, three connector declarations are
used to define their interactions with other devices, namely,
events, commands, and sessions. Attributes can represent a
constant property (e.g., a color or a range) or a dynamic state,
such as the current location of a mobile object.

Figure 6 describes the architecture of a light regulation
application. The environment is composed of lights, light
sensors, and a controller able to receive information from
sensors and to trigger operations on lights. This architecture
illustrates both the command and event interaction modes. As
can be noticed, each declared connector is optionally refined
with the class of entities it may interact with. For example, the
LightSensor component provides the Luminosity event
to LightController entities. The LightController
component requires the Variation command from the
Light entities.
component Device(String building, String room) { }

component Light extends Device {
provides command Variation to LightController;

}

component LightSensor extends Device {
provides event Luminosity to LightController;

}

component LightController {
requires command Variation from Light;
requires event Luminosity from LightSensor;

}

icommand Variation {
void increase();
void decrease();
void setLevel(int value);

}

Fig. 6. A DiaSpec specification

B. Programming Support
From a DiaSpec description, the DiaSpec compiler gen-

erates a dedicated programming framework. Conforming to
the specified environment, it provides the developer with a
Java programming support, facilitating creation of applications
and wrappers. The generated support is independent of a

Authorized licensed use limited to: CR Bordeaux. Downloaded on April 22,2010 at 10:55:57 UTC from IEEE Xplore. Restrictions apply.

given communication technology. Developers only manipulate
high-level distributed programming concepts (e.g., registration,
discovery and remote calls).

The generated programming framework is highly cus-
tomized with respect to a given DiaSpec description. Fig-
ure 7 shows the use of this generated support. Imple-
mentation of MyLightController constructor looks for
LightSensors in the building A29, then subscribes to
the Luminosity event. The notify method is called
if the LightController receives a notification of a
Luminosity event. In this implementation, lights of the
room are dimmed or brightened depending on the luminosity
event value.
public class MyLightController extends

LightController {

public MyLightController() {
LightSensorComposite sensors =

select(lightSensorsWhere().building("A29"));
sensors.subscribeLuminosity();

}

@Override
public void notify(Proxy servicePublisher,

Luminosity event) {
LightComposite lights =

select(lightsWhere().
building(event.building).room(event.room));

if (event.luminosityValue < 5000)
lights.increase();

else if (event.luminosityValue > 6000)
lights.decrease();

}
}

Fig. 7. A LightController implementation using supplied framework

This code fragment illustrates discoveries, subscriptions
and commands. Every object used in this implementation
comes from the dedicated support, generated from the DiaSpec
description shown earlier (Figure 6). This support hides the
underlying communication technology, here SIP. Each tech-
nology is addressed by its own back-end.

C. SIP Back-End

We have implemented a SIP back-end for DiaSpec. It is
responsible for mapping DiaSpec concepts into the ones of
SIP. To do so, our back-end makes use of the SIP adaptations
described earlier. We describe this phase by giving an example
of its output.
MESSAGE sip:Light.Kitchen@home.com SIP/2.0
From: <sip:MyLightController@home.com>;tag=cefd113d
To: <sip:Light.Kitchen@home.com>
Call-ID: 2ad17cb28971a961a669411c6acc2c64@home.com
CSeq: 11 MESSAGE
[...]
User-Agent: DiaSpec v1.1
Content-Type: application/soap+xml
Content-Length: 327

<v:Envelope
xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:d="http://www.w3.org/2001/XMLSchema"
xmlns:c="http://www.w3.org/2001/12/soap-encoding"
xmlns:v="http://www.w3.org/2001/12/soap-envelope">

<v:Header />
<v:Body>
<n0:increase id="o0" c:root="1" />
</v:Body>
</v:Envelope>

Fig. 8. A SIP message generated by the back-end

Figure 8 shows a SIP message, generated by the instruction
lights.increase(); included in Figure 7. For each
light, the SIP back-end generates and sends a message con-
taining the call to the increase() method.

VI. DISCUSSIONS

Several scenarios, including the ones previously described,
were successfully implemented and deployed. These exper-
iments allowed us to validate our SIP-based platform in
practice. We now discuss the main lessons learned doing this
work.

a) Service discovery: The discovery mechanism has
proved its effectiveness in dealing with highly-dynamic en-
vironments where appliances are frequently introduced/turned
on and removed/turned off.

Due to class-based definitions, the discovery mechanism
allows applications to dynamically and transparently integrate
new kinds of devices. This capability enables the home au-
tomation system to evolve and grow without requiring a new
support to be generated.

b) Interaction modes: Our proposed interaction modes
covered all the encountered situations. Choosing the appro-
priate interaction mode is simple in practice. Commands are
naturally used for simple one-to-one interaction to operate
devices or software components. Events are particularly well-
suited to push values into all interested entities when some
situation occurs. Last, in our set of working scenarios, sessions
are not used beyond audio streams.

c) Programming abstractions: As mentioned earlier, the
SIP adaptations are introduced by a back-end. It factorizes the
boiler-plate code to map our programming support to a SIP
platform (e.g., message construction). The generated program-
ming framework allows the logic for both the application and
the wrapping of devices to be developed, without requiring
SIP knowledge.

Code generated by our back-end mainly sends and receives
SIP messages, including creating and parsing these messages.
This processing critically relies on Jain SIP [16], [17]. In
addition, kSOAP [18] is used to encode and decode SOAP
messages.

d) Application creation: Relying on a programming
framework allowed us to quickly develop, adapt, and check
our applications. As well, it facilitates the creation of new
applications. For example, the home architecture described in
Section II gives a structured basis to integrate new applications
into the residential gateway.

e) Proprietary protocol integration: Our experiments
were made using real devices. To do so, we wrapped several
proprietary protocols into SIP, including X10, to control binary
and dimming devices, ZigBee, to take advantage of various

Authorized licensed use limited to: CR Bordeaux. Downloaded on April 22,2010 at 10:55:57 UTC from IEEE Xplore. Restrictions apply.

sensors (e.g., temperature, light), HTTP, to control video
cameras (e.g., motion, zoom, snapshot), and Web Services,
to get agenda information or TV programs.

In terms of performance, we noticed that resource consump-
tion induced by SIP is often very low compared with the driver
itself. In most cases, performance is bounded by the wrapped
technology. For example, the ZigBee latency is about fifty
times higher than processing SIP messages.

The most difficult part during technology wrapping is the
adaptation of our SIP concepts into the target technology. For
example, a ZigBee sensor has to be solicited to give its current
value. This requires to introduce a polling process to check
the sensor value. This situation often requires extra code and
introduces an overhead.

VII. CONCLUSION

We have presented a home automation platform based on
SIP and other industrial standards. Our platform not only ful-
fills the requirements of home automation, but it also leverages
the infrastructure of a telecommunication carrier. It enables the
coordination of heterogeneous entities, whether or not SIP-
based. The programming of home automation applications is
greatly facilitated by a customized programming framework.
Our approach has been successfully used to develop and test
home automation scenarios from Orange Labs.

REFERENCES

[1] Rosenberg, J. et al. SIP : Session Initiation Protocol. RFC 3261, IETF,
June 2002.

[2] ITU-T. Recommendation Q.23: Technical features of push-button
telephone sets, http://www.itu.int/rec/T-REC-Q.23/.

[3] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle.
Session initiation protocol (SIP) extension for instant messaging. RFC
3428, IETF, 2002.

[4] G. Klyne and D. Atkins. Common Presence and Instant Messaging
(CPIM): Message format. RFC 3862, IETF, 2004.

[5] J. Rosenberg. A presence event package for the session initiation
protocol SIP : Session Initiation Protocol. RFC 3856, IETF, 2004.

[6] W. Jouve, N. Palix, C. Consel, and P. Kadionik. A SIP-based program-
ming framework for advanced telephony applications. In Proceedings of
The 2nd LNCS Conference on Principles, Systems and Applications of
IP Telecommunications (IPTComm’08), Heidelberg, Germany, jul 2008.
Best Student Paper Award.

[7] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC
2327, IETF, 1998.

[8] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, and J. Peterson.
Presence Information Data Format (PIDF). RFC 3863, IETF, 2004.

[9] A. B. Roach. Session Initiation Protocol (SIP)-Specific Event Notifica-
tion. RFC 3265, IETF, June 2002.

[10] J. Rosenberg, H. Schulzrinne, and O. Levin. A session initiation protocol
(SIP) event package for conference state. RFC 4575, IETF, 2006.

[11] A. Niemi and D. Atkins. Session initiation protocol (SIP) extension for
event state publication. RFC 3903, IETF, 2004.

[12] W. Jouve, J. Lancia, N. Palix, C. Consel, and J. Lawall. High-level
programming support for robust pervasive computing applications. In
Proceedings of the 6th IEEE Conference on Pervasive Computing and
Communications (PERCOM’08), pages 252–255, Hong Kong, China,
mar 2008.

[13] D. Cassou, B. Bertran, N. Loriant, and C. Consel. A generative
programming approach to developing pervasive computing systems. In
To appear in Proceedings of the 8th International Conference on Gen-
erative Programming and Component Engineering (GPCE’09), Denver,
Colorado, USA, october 2009.

[14] DiaSpec, http://diaspec.bordeaux.inria.fr.

[15] Nenad Medvidovic and Richard N. Taylor. A classification and compar-
ison framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000.

[16] JAIN-SIP, JAVA API for SIP Signaling, https://jain-sip.dev.java.net.
[17] Sun Microsystems. The JAIN SIP API specification v1.1. Technical

report, Sun Microsystems, June 2003.
[18] kSOAP 2, http://ksoap2.sourceforge.net.

Authorized licensed use limited to: CR Bordeaux. Downloaded on April 22,2010 at 10:55:57 UTC from IEEE Xplore. Restrictions apply.

