
HAL Id: hal-00407218
https://hal.archives-ouvertes.fr/hal-00407218

Submitted on 24 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Heuristic for the Construction of Intersection Graphs
Paolo Simonetto, David Auber

To cite this version:
Paolo Simonetto, David Auber. An Heuristic for the Construction of Intersection Graphs. 13th
International Conference on Information Visualisation (IV09), Jul 2009, Barcelona, Spain. pp.673-
678. �hal-00407218�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50152742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00407218
https://hal.archives-ouvertes.fr

An Heuristic for the Construction of Intersection Graphs

Paolo Simonetto, David Auber

LaBRI, Université Bordeaux I and Gravité, Inria Sud-Ouest

paolo.simonetto@labri.fr, auber@labri.fr

February, 2009

Abstract

Most methods for generating Euler diagrams describe

the detection of the general structure of the final drawing

as the first step. This information is generally encoded

using a graph, where nodes are the regions to be repre-

sented and edges represent adjacency. A planar drawing

of this graph will then indicate how to draw the sets in

order to depict all the set intersections.

In this paper we present an heuristic to construct

this structure, the intersection graph. The final Euler

diagram can be constructed by drawing the sets bound-

aries around the nodes of the intersection graph, either

manually or automatically.

Keywords—Euler diagrams, overlapping clustering

1 Introduction

Euler diagrams were introduced a long time ago [3]

and have been widely used in many fields, but their au-

tomatic generation is a quite recent topic. There may be

several explanations for this.

First of all, there is no universally accepted definition

of a Euler diagram. Euler diagrams were introduced

informally, and scientists and mathematicians have made

different interpretations of the characteristics they have.

Secondly, Euler diagrams are not always drawable.

All the existing definitions of Euler diagrams have sets

that can be supplied as input but cannot be represented.

The exact class of non-representable instances clearly

depends on the definition, but the set is never empty.

Thirdly, Euler diagrams are most useful when they

are clear and visually appealing. The definition of these

aspects is hard to quantify and it is even more difficult to

create these conditions on the final drawing.

Recent studies on automatically drawing Euler dia-

grams have been facing these problems. The lack of a

strict definition has initiated the analysis of several kinds

of Euler or Euler-like1 diagrams: Chow [2] dealt with

1Classes of diagrams that extend the most accepted definitions are

generally referred as Euler-like.

the most common definition, Flower and Howse [6] with

a restricted version, while Verroust and Viaud [11] and

Simonetto and Auber [9] with two extended versions.

Fish, Stapleton et al. [4, 5, 10], on the other hand,

studied the differences between the many definitions and

described how the characteristics enforced (for instance

admitting or denying multiple curve crossing points or

concurrent boundaries) influence the class of the repre-

sentable instances.

Moreover, Benoy and Rodgers [1] started their user

study on the comprehension of Euler diagrams, analysing

how easily people can understand a diagram under dif-

ferent aesthetic conditions.

It is finally interesting to notice how Euler diagrams

have not been studied only as an abstract concept, but as

a way to answer really concrete visualisation problems.

The previously cited contributions came from a variety

of fields spanning software engineering diagrams [4, 5,

10, 6], video database queries [11], and methods for

visualising overlapping clusters on graphs [9].

The intuitiveness of Euler diagrams and their wide

range of applications show how a general method, appli-

cable to all the possible input cases, would answer many

visualisation problems.

In this paper, we present an algorithm to construct

a graph that represents the skeleton of Euler represen-

tations, a class of always drawable Euler-like diagrams.

As for most of the other approaches to the generation of

Euler diagrams, this represent a first and crucial step for

the depiction of the final structure.

2 Related work and definitions

The generation of Euler diagrams has been studied

according to the different interpretations on Euler dia-

grams [2, 6, 11]. Unfortunately, all these methods suffer

of undrawable instances, which are set systems not rep-

resentable with the diagrams of the class.

Undrawable instances exist because unrelated sets

should not overlap. In fact, it might be impossible to draw

a set without overlapping at least another unrelated one,

A B

C
(a)

A
B

C

(b)

Figure 1: Euler and Euler-like diagrams. (a) an Euler dia-

gram according to the most accepted definition, reported

in [2]. (b) the Euler representation described in [9]. We

can see that the set C is not formed by a single connected

region and that set A has a “hole”. When a set is discon-

nected, a link is put to connect the separate regions.

and so to create a proper Euler diagram. That conflicts

with the idea of providing an output for every possible

input.

To our knowledge, the only other approach able to

deal with every input is the one described by Rodgers,

Zhang and Fish [7] extending the methods proposed in

[6, 8]. However, the authors did not concentrate on the

construction of the structure graph, particularly when the

diagram cannot be represented in a planar way. For this

reason, we investigated the issue further.

Euler representations. In a previous paper [9], we

analysed the conditions necessary to avoid undrawable

instances in Euler-like diagrams. The study resulted in a

class of Euler-like diagrams that:

• might contain holes inside the main region of a

set. In other words, a set might not be bounded by

exactly one closed line.

• might have disconnected set regions. This means

that a set might be represented with two regions that

may be far from each other.

The ambiguities introduced by these two visual structures

could be overcome by colouring the actual set region

and by introducing links between the disconnected set

regions. This leads to diagrams similar to the one showed

in figure 1(b), called Euler representations.

Additional methods for improving the understanding

of complex Euler representations have also been sug-

gested. However, as these cases find a proper application

only in very rare and complex cases, they are not taken

into consideration in this paper.

Classes and zones. In the paper, the sets to be drawn

are called classes to avoid confusion with the more com-

mon word “set”. They are indicated with capital letters.

(a) (b) (c)

Figure 2: Transformations between Euler diagrams and

intersection graphs. (a) the original diagram. (b) detec-

tion of the diagram zones. (c) the resulting intersection

graph. The dashed line is not part of the graph, but shows

how to reverse the procedure. For drawing the boundary

of the class B we need to enclose the nodes b, ab, abc

and intersect the edges (a, ab), (ac, abc).

The regions that are shared by a subset S of classes

and are external to all the other existing classes are de-

fined as zone. They are indicated with lower case se-

quences of letters, corresponding to the elements of S.2

Examples of zones are graphically shown in figure 2(b):

there we can see how zone ab is formed by the intersec-

tion of the classes in the subset S = {A, B}, minus the

region that is also inside C.

When referring to zones, we indicate a generic se-

quence of lower case letters with a Greek letter. For

instance we might have that α = abd or β = ac. We use

the symbol ∗ to indicate all the zones sharing the same

letters. For instance, the notation ab∗ indicates the set of

all the zones which labels contain ab.

Finally, the function C returns the subset of classes

used to generated the zone. For instance C(ab) =
{A, B}.

Intersection graphs. In [9] we showed how Euler di-

agram can be generated starting from a graph that sum-

marises its structure, and vice versa. This graph, called

intersection graph, has nodes corresponding to the zones

of the final diagram and edges that link adjacent zones.

An example of intersection graph and of the transforma-

tions involved is shown in figure 2.

Intersection graph characterisation. The intersec-

tion graph describes the connectivity of the final dia-

gram. Thus, many characteristics of the resulting dia-

gram depend on the topology of the intersection graph.

We defined the following rules valid for well-formed

intersection graphs:

2As the letters in the labels derive by set elements, the actual order

in which they appear is not important.

1. The intersection graph must be planar.

2. Each class schema, that is the subgraph induced by

the nodes of a class (the set of zones a∗, b∗, . . .),

should be connected. This avoids the generation of

disconnected classes.

3. For each α, each subgraph induced by a set of

zones α∗ should be connected. This avoids the

same classes intersecting in disconnected regions

(in figure 3(b), let α = ab. The subgraph induced

by α∗ = {ab, abc} is not connected. Therefore, the

classes A and B intersect in two separate regions).

4. Each subgraph induced by the zones external to a

class (the set of zones a∗, b∗, . . .) should be con-

nected.3 This avoid holes.

5. The intersection graph should have a compact and

regular layout.

The first rule must always be respected. In order to

build a proper Euler diagram, we have to construct an

intersection graph that strictly satisfies also rule number

2 and 4. However, we have no other strict limitations

than rule 1 when building the intersection graph of a

Euler representation.

3 Method overview
When constructing an intersection graph, we have no

flexibility in the nodes to insert: each node corresponds

to a non-empty zone. The real problem is identifying

which edges to insert.

Even for Euler diagrams, there might be many selec-

tions of edges that lead to a correct output. Unfortunately,

their clarity might vary greatly, as shown in figure 3. The

same problem appears to a greater extent with Euler

representations, as we have more freedom in the con-

struction of their intersection graphs.

Thus, the construction of intersection graphs consists

of an optimisation procedure that aims to:

• identify a result as similar as possible to a proper

Euler diagram,

• choose intersection graph configurations that lead

to as clear diagrams as possible.

The approach. Our algorithm constructs the intersec-

tion graph inserting one edge at each step. Thus, the

main part of the algorithm is constituted by a procedure

that at each iteration selects one edge and inserts it. The

3At this step it might be necessary to add a node representing the

null zone, that is the area external to every class.

A B

c

abc

b
ab

a

C

(a)

A

B

Cc
abc

b

ab

a

(b)

A

B
c

abc

b

ab
a

C

(c)

Figure 3: Intersection graphs for three classes A, B, C

having the zones a, b, c, ab and abc non-empty. There

are many sets of edges that lead to valid intersection

graphs; here three of them are shown. The configuration

in subfigure (a) is clearer than the others, as in (b) classes

A and B intersect in two separate regions and in (c) it is

more difficult to distinguish the classes involved in each

zone.

selection of the edges is steered by a metric that encode

the edge contribution in respecting the rules enounced

before. The insertion procedure and the metric are de-

scribed in more detail in the following sections.

4 The insertion procedure

The algorithm we developed follows a procedure sim-

ilar to the classical Kruskal’s algorithm for minimum

spanning trees. We start with a graph that has no edges,

and at each step we insert the edge with higher metric

value. Once inserted it remains part of the resulting

intersection graph.

The metric encodes the rules that characterise a well-

formed intersection graph. However, there is a particular

condition we prefer to handle at this level, rather than

in the metric calculation: the planarity. In fact, as the

resultant graph must be planar, this condition should not

compete with other aesthetic aspects.

Initialisation We start with a graph that has a node for

each non-empty zone, and no edges.

During the computation, we keep a pool of candidate

edges for insertion. This collection is initialised with

all the possible edges, and it will contain only edges

that have not been inserted, discarted, or weighted with

negative or null values.

Iterations At each iteration, the following steps are

executed:

1. The best edge of the pool is selected.

2. A planarity test is executed to determine whether

the edge makes the graph unplanar.

c

abc

b

ab

a

0 1 0 1

1 2
0

1
0

1

c

abc

b

ab

a

0 1 0 1

1
0

1
0

1

c

abc

b

ab

a

0 1 0 1

1
0

0
0

c

abc

b

ab

a

0 0 0

1
0

0
0

c

abc

b

ab

a

0 0 0

0

0
0

c

abc

b

ab

a

Figure 4: Values of c for the edges of the intersection graph for several edge insertions. At the first step we suppose that

the edge (ab, abc) with value 2 (since it would merge components for the class schemas of A and B) is the one selected

to be inserted. At the second step, let us suppose we insert the edge (b, ab) with value 1 (it connects the connected

components {b} and {ab, abc} in the class schema B). Because of the insertion of this edge, the edge (b, abc) updated

its value to 0. The same happens to the edge (a, abc) after the insertion of (a, ab).

3. If the graph is no longer planar, the edge is dis-

carded.

4. If the graph is still planar, the edge is added and the

weights updated.

The algorithm terminates when there are no more

edges in the pool, that indicates no more useful edges are

available for the insertion.

The output When the algorithm terminates, we obtain

the final intersection graph. Once layed out, the graph

will allow us to draw the boundaries of the sets to be

represented in order to generate the Euler representation.

The final intersection graph might encode a repre-

sentation where classes are disconnected regions. This

happens when it is impossible to connect zones of the

same class without breaking the planarity. This result

is perfectly normal since non-planar intersection graphs

are the main cause of undrawable Euler diagrams. This

is also the reason why Euler representations sometimes

use links (a link is shown in figure 1(b), even if in that

case it was not necessary).

5 The metric

The weight assigned to the edges encodes how much

their insertion in the current intersection graph would

contribute in the optimisation procedure. In other words,

how much the insertion of an edge would contribute in

obtaining a well-formed and readable Euler diagram.

Promote class connections. In order to avoid the in-

sertion of links, we need to insert edges between all the

nodes of the same class to make their induced subgraph

connected. Hence, this property will be the highest prior-

ity in weighting the edges.

Reducing the number of edges is a good idea, since the

more edges we need to insert, the more likely the graph

violates planarity. We will favour edges that connect

components in many class schemas at the same time,

rather than edges that connect few of them.

For this reason, we define the function c(e). The

function counts the number of class schemas in which the

insertion of e would connect disconnected components.

It is worth noting that this function depends on the edges

previously inserted. An example of what the function

c means and how it works when updating a graph, is

shown in figure 4.

Promote aesthetic. In order to obtain connected set

intersections and avoid unclear configurations (such as

shown in figure 3), we will promote a structure where

the zones connected do not differ too much from each

other. This is obtained using two functions:

u(e) = min(|C(se)|, |C(te)|) − |C(se) ∩ C(te)|

v(e) = max(|C(se)|, |C(te)|) − |C(se) ∩ C(te)| − 1

where e is a candidate edge, and se and te are the zones

corresponding to the two incident nodes.

The first function aims to detect the number of unre-

lated classes that are forced to be adjacent through this

edge. For instance, the edge (ab, ac) forces classes B

and C to share a boundary even when it is not neces-

sary. This is not the case for the edge (a, abc), since no

unwanted boundaries would overlap. The function u re-

turns 1 in the first case, but 0 in the second. An example

of why it is important to penalise these edges is shown

in figure 5.

The second function penalises edges between nodes

that differ for more than one class. For instance, the

edge (a, abc) connects two zones where the second is

included in two classes, B and C, more than the first.

When choosing between (a, ab) or (ab, abc) there is just

one class more for one of the two nodes. The function v

returns 1 in the first case and 0 in the second. Figure 6

shows why this penalty is helpful.

A B

C

b

c

a

ac

ab

b

c
a ac

ab

b

ca ac

ab
B

C
A

Figure 5: Unwanted proximity. At the current stage of

the intersection graph we need to insert the edge (a, ab)
or the edge (ab, ac). The picture shows the result of the

two choices. The diagram below is much less clear, as it

makes two unrelated classes to share their boundaries.

Concerning holes. The metric does not explicitly pro-

mote a final diagram without holes. In fact, the problem

can be handled at a different level.

The insertion of a node relative to the null zone, as

explained in [9], has two main aims: defining the outer

face of an intersection graph embedding and forcing the

zones linked to it to stay on the outer face.

In our automatic approach for the generation of Euler

representations we answer these issues working directly

on the graph embedding. In fact, being able to operate

on the embedding and choose the external face in order

to maximise the number of outer nodes allowed us to

extend the limits of our method.

The final metric. The metric value for each edge e is

obtained combining the previous functions:

w(e) = c(e) − p1u(e) − p2v(e)

where the p1 and p2 are parameters that define the penalty

weights.

When choosing the parameter values, we recommend

that they are a small fraction of unity, in order to preserve

the central importance of c. In fact, u and v have been

developed with the idea that they should almost only

influence the rank of edges with the same value of c.

Finally, we suggest p1 ≥ p2, as the condition related

to v is less confusing than the one associated to u.

6 Examples
We report some intersection graphs generated with

this method. Figure 7 shows two set configurations in-

volving several overlaps and inclusions. The relative

Euler diagram can be easily detected by drawing lines

that enclose the nodes of each class.

b

a

ab

B

C

A

abc

b

a

ab abc

b

a

ababc

B

A

C

Figure 6: Multiple class difference. We can now decide

either to insert the edges (a, ab) and (b, ab), or the edges

(a, abc) and (b, abc). The figure shows the intersection

graphs and the resulting diagrams for both the choices.

The first diagram shows more clearly the way the classes

overlap.

Figure 8(a) shows the intersection graph obtained

on a real world case. We extracted film data from the

Internet Movie Database4 and we defined 17 classes

composed by actors who take part to the same film. We

obtained a Euler representation by manually enclosing

the nodes with lines and inserting nodes to represent the

class elements. The resulting diagram (see figure 8(b))

shows, in an appealing way, the overlaps created by

actors who took part in more than one film.

We can also note how the methods detected a proper

Euler diagram, as there were no planarity problems.

Moreover, that the metric proposed contributed in de-

tecting a clear structure of the intersection graph, as the

unclear configuration of figure 3 are avoided.

4www.imdb.com

(a) (b)

Figure 7: Two intersection graphs generated with our

method. The elements of the graph allowed to detect the

class boundaries, which have been manually drawn.

(a) (b)

Figure 8: Application of the method to real world data. (a) the intersection graph generated and drawn in a planar way.

(b) the Euler diagram manually generated from the intersection graph. The zones have been filled with the elements

they contain.

7 Conclusions

We presented an heuristic for the construction of in-

tersection graphs as described in [9]. The algorithm

presented attempts to optimise the rules that characterise

a good intersection graph, obtaining satisfactory results

in terms of the quality of the output.

This algorithm represents the first step of a completely

automatic method for the generation of Euler representa-

tions. We are currently developing a method where the

constructed intersection graph is drawn along with the

class boundaries, in order to obtain drawings similar to

the one manually generated in figure 8(b).

References

[1] Florence Benoy and Peter Rodgers. Evaluating the

comprehension of euler diagrams. In IV, pages

771–780. IEEE Computer Society, 2007.

[2] Stirling Christopher Chow. Generating and draw-

ing area-proportional Euler and Venn diagrams.

PhD thesis, 2007.

[3] Leonhard Euler. Lettres à une princesse

d’allemagne, letters no. 102-108, 1761.

[4] Andrew Fish and Gem Stapleton. Defining euler

diagrams: choices and consequences. Euler Dia-

grams 2005.

[5] Andrew Fish and Gem Stapleton. Formal issues in

languages based on closed curves. In Distributed

Multimedia Systems, pages 161–167, 2006.

[6] Jean Flower and John Howse. Generating euler di-

agrams. Lecture Notes in Computer Science, 2317,

2002.

[7] Peter Rodgers, Leishi Zhang, and Andrew Fish.

General euler diagram generation. volume 5223,

pages 13–27. Springer, September 2008.

[8] Peter Rodgers, Leishi Zhang, Gem Stapleton, and

Andrew Fish. Embedding wellformed euler dia-

grams. 12th International Conference on Informa-

tion Visualisation, 2008.

[9] Paolo Simonetto and David Auber. Visualise un-

drawable euler diagrams. In IV08. IEEE Computer

Society, July 2008.

[10] Gem Stapleton, Peter Rodgers, John Howse, and

John Taylor. Properties of euler diagrams. Elec-

tronic Communications of the EASST.

[11] Anne Verroust and Marie-Luce Viaud. Ensuring

the drawability of extended euler diagrams for up to

8 sets. In Diagrammatic Representation and Infer-

ence, volume 2980 of Lecture Notes in Computer

Science, pages 128–141. Springer, 2004.

	Introduction
	Related work and definitions
	Method overview
	The insertion procedure
	The metric
	Examples
	Conclusions

