
HAL Id: inria-00408078
https://hal.inria.fr/inria-00408078

Submitted on 28 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P2P Storage Systems: How Much Locality Can They
Tolerate?

Frédéric Giroire, Julian Monteiro, Stéphane Pérennes

To cite this version:
Frédéric Giroire, Julian Monteiro, Stéphane Pérennes. P2P Storage Systems: How Much Locality Can
They Tolerate?. [Research Report] RR-7006, INRIA. 2009, pp.20. �inria-00408078�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50151977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00408078
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
0

0
6

--
F

R
+

E
N

G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

P2P Storage Systems: How Much Locality Can They

Tolerate?

Frédéric Giroire — Julian Monteiro — Stéphane Pérennes

N° 7006

Juillet 2009

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

P2P Storage Systems: How Much Locality Can They

Tolerate?

Frédéric Giroire∗ , Julian Monteiro∗ , Stéphane Pérennes∗

Thème COM — Systèmes communicants
Projets Mascotte

Rapport de recherche n° 7006 — Juillet 2009 — 20 pages

Abstract: Large scale peer-to-peer systems are foreseen as a way to provide highly reliable
data storage at low cost. To achieve high durability, such P2P systems encode the user data
in a set of redundant fragments and distribute them among the peers. We study here the
impact of different data placement strategies on the system performance when using erasure
codes redundancy schemes. Several practical factors (easier control, software reuse, latency)
tend to favor data placement strategies that preserve some degree of locality. In this paper,
we compare three policies: two of them local, in which the data are stored in logical neighbors,
and the other one, global, in which the data are spread randomly in the whole system. We
focus on the study of the probability to lose a data block and the bandwidth consumption to
maintain such redundancy. We use simulations to show that, without resource constraints,
the average values are the same no matter which placement policy is used. However, the
variations in the use of bandwidth are much more bursty under the local policies. When the
bandwidth is limited, these bursty variations induce longer maintenance time and henceforth
a higher risk of data loss. We then show that a suitable degree of locality could be introduced
in order to combine the efficiency of the global policy with the practical advantages of a local
placement. Finally, we propose a new external reconstruction strategy that greatly improves
the performance of local placement strategies.

Key-words: P2P storage system, data placement, performance evaluation, data durability

This work was partially funded by the European project ist fet Aeolus and the ANR projects

SPREADS and DIMAGREEN.

∗ MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia, Sophia Antipolis, France,
firstname.lastname@sophia.inria.fr

Systèmes de Stockage Pair-à-Pair : Quelle degré de

Localité Peuvent-ils Tolérer ?

Résumé : Les systèmes pair-à-pair à grande échelle ont été proposé comme un moyen fiable
d’assurer un stockage de données à faible coût. Pour assurer la pérennité des données sur
une période très longue, ces systèmes codent les données des utilisateurs comme un ensemble
de fragments redondants qui sont distribués entre les pairs. Nous étudions ici l’impact de
différentes stratégies de placement sur les performances de systèmes utilisant des codes cor-
recteurs comme méthode d’introduction de redondance. En pratique, les stratégies de place-
ment qui préservent un certain degré de localité sont souvent utilisées en raison de différents
avantages comme un contrôle plus facile, une latence plus faible ou la réutilisation de codes
écrits pour les DHTs (Distributed Hash Tables) par exemple. Dans ce papier, nous com-
parons trois politiques : pour deux d’entre locales les données sont stockées sur des voisins
logiques et pour la dernière globale les données sont réparties dans tout le système. Nous
nous intéressons à l’étude de la probabilité de perdre un bloc de données et à l’utilisation
en bande passante nécessaire pour maintenir la redondance. Nous montrons, à l’aide de
simulations, que si les ressources ne sont pas limitées, les valeurs moyennes sont les mêmes
pour les différentes politiques de placement. Cependant, les variations de l’utilisation de
bande passante sont beaucoup plus irrégulières pour les politiques locales. Quand la bande
passante est limitées, ces fortes variations induisent un temps de maintenance beaucoup plus
long et en conséquence un risque plus fort de perdre des données. Nous montrons ensuite
qu’un degré de localité approprié peut être introduit de faon à obtenir à la fois l’efficacité
de la politique globale et les avantages pratiques d’un placement local. Enfin, nous pro-
posons une stratégie de reconstruction extérieure qui améliore grandement les performances
des politiques de placement locales.

Mots-clés : système de stockage pair-à-pair, P2P, placement de donnés, évaluation de
performance, durabilité des données

P2P Storage Systems: How Much Locality Can They Tolerate? 3

1 Introduction

The key concept of Peer-to-Peer storage systems is to distribute redundant data among
peers to achieve high reliability and fault tolerance at low cost. The addition of redundant
data could be done by trivial Replication [22, 5, 3], in which identical copies of data are
sent to different nodes in the system; or be based on Erasure Codes [16, 25], such as Reed
Solomon and Tornado, as used by some RAID schemes [17]. When using Erasure Codes,
the original user data (e.g. files, raw data, etc.) is cut into data-blocks that are divided
into s initial fragments (or pieces). The encoding scheme produces s + r fragments that can
tolerate r failures. In other words, the original data-block can be recovered from any s of
the s + r encoded fragments. In a P2P storage system, these fragments are then placed on
s + r different peers of the network. In this work, we focus on the analysis of systems that
uses Erasure Codes as they are usually more efficient in terms of storage overhead (see [25]).

To keep a durable long-term storage despite disk failures, the system must be capable
to maintain a minimum number of fragments available in the network. This means that
the system continuously monitors the number of fragments of each data-block. This control
is done in a distributed way by the means of a Distributed Hash Table (DHT) [15]. If
this number of fragments drops below a certain level, the block is reconstructed. After
the reconstruction, the regenerated missing pieces are spread among different nodes. A
fundamental question for such systems is how much resource (bandwidth and storage space)
is necessary to maintain redundancy and to ensure a given level of reliability?

It has been shown that fragment (or replica) placement has a strong impact on the system
performance [7, 14]. In this paper, we study three different strategies of data placement. The
first, a global & random placement policy, spreads the fragments on peers taken randomly
among all the peers of the system (see [1, 23, 4]). The other two, namely Chain policy and
Buddy policy, distribute the fragments among a closed set of neighbor peers, and henceforth
are designated as local. The Chain policy corresponds to what is done in most distributed
systems implementing a DHT (see [22, 5, 8]). The Buddy policy roughly corresponds to
RAID systems.

The use of the Global strategy allows to distribute more uniformly the load among peers,
leading to a faster reconstruction and a smoother operation of the system [4]. However,
the use of local strategies brings practical advantages [6]. For instance, the DHT update
mechanisms of the leafset can be used to simplify the management of the system (e.g. to
know the states of the blocks stored locally). Also, the management traffic and the amount
of meta-information to be stored by the nodes are kept low. Basically, their complexities
(i.e. time, bandwidth, and space overhead) are all in O(s + r). Conversely, for the Global
placement, it is O(N), with N the number of peers in the system. Since routing is done
directly among known nodes of the leafset, there is no massive use of the slow routing
algorithms. Hence, the induced delay of the control traffic is kept low and this gives a better
latency to access the data.

We study these policies for two different scenarios. In the first one, provisioning scenario,
peers do not have bandwidth constraints. It allows to estimate the bandwidth use for

RR n° 7006

4 Giroire, Monteiro, Pérennes

different sets of parameters. The second scenario, where peers have resource constraints,
corresponds to the operation of practical systems.

Our contributions are the following:

• As far as we know, we present the first practical study of data placement for systems
using Erasure Codes. We show that, even for local policies, they experience less data
loss than replication schemes with the same resources.

• We show that, without bandwidth constraints, the distribution of the bandwidth usage
among peers is much more smoother for the Global policy, moreover, all policies have
the same average bandwidth consumption and probability to lose data. However, the
mean time between data loss events is much longer for the local policies.

• When limiting the maximum available bandwidth per peer, we exhibit that the Global
policy experiences a lot fewer data loss than the local policies for similar available
resource. In addition, the loss events for local policies are much more frequent when
compared to the provisioning scenario (in certain cases even more frequent than for
the Global).

• We then discuss the size of the leafset in the local policies. We show that these policies
can be adapted to achieve performances close to the Global placement, while keeping
the practical advantages of locality.

• Finally, we propose a new reconstruction scheme, namely external reconstruction,
which reduces by 40 to 50 percent the number of block losses when using the local
policies.

The remainder of this paper is organized as follows: after presenting the related work, we
describe the system characteristics in the next section. In Section 3.1 we study the behav-
ior of the system without resource constraints, and then under bandwidth constraints in
Section 3.2. Finally, we propose some improvements of the placement and reconstruction
architectures in Section 4, followed by our conclusions.

Related Work.
The majority of existing or proposed systems, e.g. Intermemory [10], CFS [5], Farsite [8],

Pastry [21], TotalRecall [2], Glacier [11], use a local placement policy. For example, in
PAST [22], the authors use the Pastry DHT to store replicas of data into logical neighbors.
In the opposite way, some systems use a Global policy, as OceanStore [13] or GFS [9]. GFS
spreads chunks of data on any server of the system using a pseudo-random placement.

Chun et al. in [4] also discuss the local placement (namely small scope) impacts. They
state that local placement is easy to maintain but induces higher reconstruction times.
Conversely, larger scope (Global policy) has lower reconstruction time and henceforth higher
durability. However, they do not address the impact of different bandwidth limits, neither
Erasure Codes redundancy.

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 5

Table 1: Summary of main notations and their default values in our experiments. See
Remarks 1 and 2 for the choice of the parameter values.

N # of peers 1, 005
F total of fragments in the system 1.5 · 106

s # of fragments in the initial block 9
r # of redundancy fragments 6
r0 reconstruction threshold value 2
τ time step of the model 1 hour

MTBF Peer mean time between failures 90 days
BWup Upload bandwidth per peer 6-18 kbit/s and Unlim.

In [14] the authors study the impact of data placement on the Mean Time to Data Loss
(MTTDL) metric. They show that the MTTDL is lower for the Global policy (called random
placement) when compared to the local policy (called sequence). But they do not discuss
other very important metrics: the probability to lose a block and the bandwidth usage.

There are also other studies that evaluate the replica placement, however with focus
on the lookup latency and/or throughput performance [24]. Others are focused on Content
Delivery Networks [12], which is not our case here. We aim at analyzing P2P storage systems
to achieve high durability and availability at low cost in bandwidth usage.

2 System Description

2.1 The System

The detailed characteristics of the studied P2P storage system are presented in this section.
Data Redundancy. Erasure Codes schemes [16] are used to introduce data redundancy in
the system. The user data is cut into data-blocks. Each data-block is divided into s initial
pieces, then r pieces of redundancy are added, in such a way that the initial block can be
reconstructed from any subset of s pieces among the s+ r. The pieces are then sent to s+ r
different peers according to one of the three data placement policies of study.
Failures. It is assumed that the nodes stay connected almost all the time into the system.
So, we model the case of peer failures, mainly caused by a disk crash or by a peer that
definitively leaves the system. In both cases, it is assumed that all the data on the peer’s
disk are lost. Following most works on P2P storage systems [1, 14, 19, 18], peers get faulty
independently according to a memoryless Poisson process. Given a peer failure rate λ, the
probability for a peer to be alive after a time T is given by e−λT . To avoid the problem of
transient failures and deal with churn, a peer is just considered lost if it has left the system
for a period longer than a given timeout [20] (set to θ = 12 hours in our simulations). As
failures happen continuously in a large system, it is essential to the system to monitor the
data-blocks’ state and maintain the redundancy by rebuilding the lost fragments.
Reconstruction Strategy. Different reconstruction strategies can be considered. Delay-
ing the reconstruction (i.e. waiting for the block to lose more than one fragment before
rebuilding it) amortizes the costs over several failures. Hence, we study a saddle based pol-

RR n° 7006

6 Giroire, Monteiro, Pérennes

b1 b2 b1 b2 b1 b2

Global Chain Buddy

Figure 1: Placement of two blocks b1 and b2 in the system. Global: s + r fragments are
placed at random among all peers; Chain: fragments are placed on s + r neighboring peers;
Buddy: many small subsystems of size s + r, in this case all peers inside each small group
contain the same data.

icy in this paper. When the number of fragments of a block drops to a threshold value r0,
the reconstruction starts. Note that, when r0 is set to r − 1, the reconstruction starts as
soon as a first piece is lost. This special case is called eager policy. Setting a low value for r0

decreases the number of reconstructions (as the reconstruction starts only after that r − r0

pieces are lost), but increases the probability to lose a block.
The reconstruction is done in three consecutive phases: the retrieval, the recoding and

the sending. First, the peer in charge of the reconstruction has to download s fragments
among the remaining block’s fragments (retrieval). It then recodes the block (decoding).
Last, it sends the reconstructed fragments to peers (sending). We consider here that the
CPU recoding time is negligible. Therefore the reconstruction time is the sum of the retrieval
and sending phases.
Control. Some sort of Distributed Hash Table substrate is assumed to be implemented,
so the management of the system is distributed. In this paradigm, the control traffic per
peer has order of Θ(log N). As an example, to monitor a peer, it is sufficient to have
log N other peers in charge of it, e.g. pinging it periodically: if it stops to answer, this
information is forwarded to all the peers, which could be done using the standard error
tolerant broadcasting. The factor log N is a classical redundancy factor to handle failures
in DHT, that allows to maintain the redundancy level of the data-blocks and peers’ state.
Since the traffic induced by the fragments transfers of the reconstructions is much bigger
than the control traffic, this later can be considered negligible here.

2.2 Data Placement Policies

The different placement policies studied in this paper are detailed in the following and
depicted in Figure 1.

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 7

• Global Policy: The s+r pieces of a block are sent to s+r peers chosen uniformly at
random among all the N peers present in the system. In this case, the peer in charge
of monitoring the state of a block and reconstructing it is also selected among all peers
in the system;

• Chain Policy: In this local policy, each block is managed by a given peer (e.g., the
peer with id in the DHT closest to the block id). Its fragments are stored on the
s + r “logically” closest (consecutive) neighbors. Note that these neighbors are also in
charge of monitoring and reconstructing these blocks.

• Buddy (or RAID) Policy: This is an extreme case of a local policy, in which the
system is composed of small independent subsystems with s + r peers each. It could
be seen as a collection of local RAID like storage. In this situation, each peer stores
pieces that belong to the s + r peers in the group. To simplify the analysis, we only
study system sizes multiple of s+ r. In this way, each Buddy group contains the same
number of peers (otherwise, one of the group has more peers). This does not change
the analysis as soon as N is large enough.

2.3 Simulations

To evaluate such a system, we developed a custom cycle-based simulator that implements
all the characteristics described in Section 2.1. The simulator models a detailed view of the
system, as it monitors the state and the localisation of each fragment individually.
Monitored metrics. The simulator keeps detailed traces of different performance metrics.
To be sure that we are studying a system in a steady state, the first part of the simulation
traces is thrown away. We focus our analysis on three main metrics:

• Bandwidth: Average bandwidth consumption per peer, i.e., estimated from the number
of pieces transmitted and received per hour due to the reconstruction process;

• FDLPY: Fraction of Data Loss Per Year, which gives the probability to lose a data-
block per year;

• MTTDL: Mean Time To Data Loss, i.e., the period of time between two occurrences
of data loss in the system.

Simulation parameters. We did a large number of simulations for different sets of the
parameters. The default parameter values used in the simulations are given in Table 1,
otherwise they are explicitly indicated. The amount of stored data and the number of peers
are kept constant during the simulation, this means that dead blocks are re-injected in the
system. Crashed disks reappear empty. The size of a user data block is 3.6MB. Thus, with
s = 9, the fragment size is 400KB. With redundancy r = 6, the system block size will be
6MB. Two remarks on the choice of the parameter values:

RR n° 7006

8 Giroire, Monteiro, Pérennes

Remark 1 (Size of the simulated system) In practice, peers have huge disks of tens
of Gigabytes, each one containing tens of thousands of blocks. Furthermore a real system
with 1000 peers would deal with tens of millions of fragments. As we want to be able to
simulate a storage system for several years in a reasonable time (for instance, our simulations
correspond to 20 simulated years and the time granularity is 1 hour), we chose a disk size
around 100 times smaller than the one expected in practice. Each peer stores only 1500
fragments in the system, which still corresponds to a total of 1.5 millions of fragments and
571GB of data. Note that the upload bandwidth (BWup spans from 6 to 18 kbit/s in our
experiments) directly derives from this choice: disks containing 100 times more data would
need a peer bandwidth 100 times larger to maintain the redundancy, that is already in order
of Mbits/s and close to the bandwidth limits encountered in practice.

Remark 2 (Measuring block losses) The parameters of real systems are set in such way
that the occurrence of a data loss is a very rare event. As it is impossible to simulate in
a reasonable time events of very low probability, for example 10−15, we chose non realistic
values for some parameters (in particular, the reconstruction saddle r0 = 2 and the disk
MTBF = 90 days are set very low). In this way, we experience data loss in our simulations.
Of course, real systems would have a completely different probability to lose blocks than the
one reported here for the sake of comparison.

Peer bandwidth. We model the bandwidth as a resource constraint per peer, and not
as a global shared link constraint as is done in [14, 19]. Each peer has a maximum upload
and download bandwidth, resp. BWup and BWdown. We assume asymmetric capacities, as
often encountered in practice, e.g. ADSL lines (in our experiments BWdown = 5BWup). So
the limiting resource is the upload bandwidth and it is the one presented in our results.

When the peer’s bandwidth is limited, not all blocks can be reconstructed at the same
time. To model a peer’s bandwidth, we implemented a non blocking FIFO queue with one
server: when there is a peer failure, the blocks to be reconstructed are put in the queues of
the peers in charge of the reconstruction.

3 Simulation Results

In this section, we evaluate the three data placement policies for the three following metrics:
use of bandwidth, number of dead blocks, and mean time to data loss. First, we study the
provisioning scenario (unlimited bandwidth) in Section 3.1, which is important to measure
the required bandwidth to maintain the system. In the following, we use these values to
analyse scenarios with constrained resources, in Section 3.2.

3.1 Without Resource Constraints

Briefly, the results shown here are: (1) the three placement strategies have the same value of
average bandwidth demand; (2) however local policies exhibit strong variations in resource

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 9

Table 2: Summary of results (without bandwidth constraints).

Policy Bandwidth (kbit/s) FDLPY (blocks) MTTDL (years)
Global 1.99 (± 1.34) 4.1 · 10−4 (± 0.6 · 10−4) 0.02 (± 0.02)
Chain 1.99 (± 12.83) 4.1 · 10−4 (± 8.6 · 10−4) 4.0 (± 3.0)
Buddy 1.99 (± 15.92) 4.4 · 10−4 (± 25.4 · 10−4) 25.8 (± 21.7)

usage across peers; (3) they have the same probability to lose a data-block, (4) but the
MTTDLs of the Buddy and the Chain policies are longer.

3.1.1 Average Bandwidth Usage

The left column of Table 2 shows the average value of upload bandwidth usage across peers
during time (i.e., at each time step we measure the average number of fragments transmitted
by each peer), along with the experimental standard deviation (in parenthesis).

First, as expected, the average bandwidth use across peers is roughly the same for all
policies, 1.99 kbit/s. The reason is that the different placement policies do not change the
number of pieces that have to be reconstructed, but they change the repartition of these
pieces among peers.

●●●

0 200 400 600 800 1000

0
10

00
20

00

U
pl

oa
d

(k
bi

t/s
) Mean = 1.99

StdDev = 1.34

Global

●●●
●●●●
●●●●
●
●●●●
●●●
●●●
●●

●●●
●●
●●●●●
●

●

●

●

●

●●●
●●●
●●●
●
●●
●●

●●
●
●
●
●

●
●
●●●

●

●

●

●

●
●●●●

●

●●

●●
●
●
●●●

0 200 400 600 800 1000

0
10

00
20

00

U
pl

oa
d

(k
bi

t/s
) Mean = 1.99

StdDev = 12.83

Chain

●●●

●●

●●●

●

●●●●
●

●

●
●●

●●

●

●

●

●

●

●●●●●●●●

●

●

●●

●●

●

●

●

●●
●
●●

●

●●

●
●

●●●

0 200 400 600 800 1000

0
10

00
20

00

U
pl

oa
d

(k
bi

t/s
) Mean = 1.99

StdDev = 15.92

Buddy

Node ID

Figure 2: Variations of bandwidth usage across users for the three different strategies for a
typical timestep and under the same fault scenario.

However, the variations are not the same. The Chain policy and Buddy policy variations
are significantly higher, respectively, 9.5 and 11.8 times more than the Global policy. Figure 2

RR n° 7006

10 Giroire, Monteiro, Pérennes

gives an explanation of this behavior. It depicts the bandwidth usage of the 1005 users of
the system at a typical instant of time for the three different policies under the same fault
scenario. We see that the load is around 2 kbit/s for all the users and all strategies. However,
we see that the distributions of the bandwidth are not the same at all.

In the case of the Global policy (top graph), the pieces of the blocks are placed among
all the peers in the system. Consequently the load of the retrieval phase of the reconstruc-
tion is uniformly distributed among all peers. Furthermore, the peers in charge of a block
reconstruction are also randomly chosen among all peers. So the sending phase of the re-
construction is also evenly distributed. In the example, the std. deviation of the bandwidth
to the Global is 1.34 kbit/s.

On the opposite (bottom graph), in the Buddy setting, some groups of s + r users have
a very high bandwidth demand, e.g. around 1500 kbit/s. We can identify three groups
that correspond to three different sets of peer crashes that triggered reconstructions. In
the Buddy policy (similarly to RAID systems), when a failure happens, only the immediate
neighbors possess the remaining pieces of the blocks. Moreover, these neighbors are also in
charge of the reconstructions, leading to a very high bandwidth load on these peers, while
the others peers in the system are spared1.

The situation for the Chain policy (middle graph) is similar to the Buddy. We also
observe three spikes for certain subsets of users. But, differently, these spikes (1) involve
more peers and (2) have shapes of pyramids. It is explained as follows. (1) A peer stores
fragments of blocks that are managed by peers at distance s + r (chain size). In addition,
a block reconstruction affects peers at distance s + r. Hence, when a peer crashes, peers at
distance 2(s+r)−1 contribute to the reconstruction. (2) The spikes corresponds to multiple
disk failures. In this scenario, peers close to several failed peers contribute more than peers
close to a single failed peer. Hence, the pyramid shaped spikes. To conclude, we see that a
peer failure is a quite big local event for the two local policies.

3.1.2 Probability to Lose a Block

We then compare the probability to lose a block in the three different policies. The results
are shown in the middle column of the Table 2, normalized as the Fraction of Data Loss Per
Year (FDLPY).

When there is no bandwidth limit, the expected number of dead blocks is the same for the
three policies (roughly 0.04% of blocks lost per year). As a matter of fact, the probability for
a block to die does not depend on where its fragments are placed. It can be easily calculated
using a Markov Chain Model, see for example [1]. But, we note that the deviations during

1There are two groups of peers in each spike of the Buddy. A bigger one around 1500 kbit/s, that
corresponds to peers doing the retrieval and sending phases of the reconstruction (i.e., s + r − r0 uploads
for each block). The smaller one, with an upload bandwidth around 400 kbit/s, correspond to peers that
have failed and were replaced with empty disks. As they are empty, they do not send fragments to the
reconstructors (no retrieval upload), but they are in charge of some reconstructions, so we see their sending
upload (i.e. r − r0 pieces for each block).

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 11

time of the number of dead blocks is higher for local policies. To explain that, we look at
the MTTDL.

3.1.3 Mean Time To Data Loss (MTTDL)

The measure of the time between two occurrences of data loss shows that the three policies
have very distinct behaviors, as depicted in the right column of Table 2. In our simulations,
the Global policy loses a data-block every 9 days, the Chain policy every 4 years and Buddy
every 25.8 years. However, as we have seen before, the three policies have in average the
same number of dead blocks per year. In other words, the average quantity of data loss per
year is the same, but the distribution across time of these losses is very different.

Figure 3: Illustrative example of the cumulative number of dead blocks for a period of three
years.

The Figure 3 illustrates an example of the cumulative number of dead blocks for a period
of 3 years for the three placement policies under the same fault scenario. We see that the
loss occurs regularly for the Global policy. Conversely, they occur very rarely for the Buddy
placement, but, when they occur, they affect a large batch of data. Basically, all the blocks
of a small buddy subsystem of size s + r peers lose all their blocks at the same time. The
behavior of the Chain policy is somewhere in the middle of both.

It has also to be noticed that, due to its very large variations of behavior, the buddy
policy has the drawback of being not very predictable. We see in Figure 3 that the Global
and the Chain policies experienced around 2,000 block losses after 6 years, when the Buddy
policy experienced almost 4,000. Even if they have the same probability to lose data.

RR n° 7006

12 Giroire, Monteiro, Pérennes

6 7 9 10 12 14 15 17 18

U
nl

im
.

Global
Chain
Buddy

Max. Available Upload Bandwidth (kbit/s)

T
im

e
(h

ou
rs

)

0
20

40
60

80

 2 2 2 2 1 1 1 1 1 1

 4
9

 4
0

 2
9

 2
5

 2
0

 1
7

 1
6

 1
4

 1
3

 1

 8
2

 7
1

 5
6

 5
1

 4
3

 3
8

 3
6

 3
2

 3
0

 1

Figure 4: Average reconstruction time for different bandwidth limits for the three strategies.
The values for the local policies (Chain and Buddy) are higher, and decrease gradually with
the increase of the available bandwidth. The unlimited value of 1 is the granularity of our
simulator (one hour).

3.2 Results under Resource Constraints

In this section, we study the behavior of the system with bandwidth limitation per peer
(meaning that now each peer has a maximum upload and download bandwidth). In this
context we show that, using similar available resources, the amount of data loss is no more
the same for the three data placement policies. The Global policy behaves considerably
better in comparison to the Chain and Buddy policy. Furthermore, the local policies now
experience more loss events (smaller MTTDL).

3.2.1 Reconstruction Time versus Bandwidth

Figure 4 gives the average reconstruction time for different upload bandwidth limits BWup,
ranging from 6 kbit/s to 18 kbit/s. The unlimited bandwidth value is given for the sake of
comparison.

We see that the average reconstruction time is a lot longer for the Chain policy and
even more for the Buddy policy when compared to the Global one. As an example, for a
maintenance bandwidth of 6 kbit/s, the reconstruction time is around 49 hours for the Chain
policy and 82 hours for the Buddy, but only 2 hours for the Global policy. This bandwidth
limit corresponds to three times the average bandwidth usage of the system (as computed
without resource constraints). Hence, we see that the irregularity of the reconstruction load
among peers has a very strong impact on the reconstruction time, even if each policy has
the same average bandwidth demand. For a bandwidth limit of 18 kbit/s, which represents
9 times the average bandwidth needed, the difference is still very large: 1, 14, and 30 times

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 13

6 7 9 10 12 14 15 17 18

U
nl

im
.

Global
Chain
Buddy

Max. Available Upload Bandwidth (kbit/s)

F
ra

ct
io

n
D

ea
d

bl
oc

ks
 p

er
 y

ea
r

(%
)

0
5

10
15

20
25

30

 0
.0

5

 0
.0

5

 0
.0

5

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 1
0.

60

 6
.7

8

 3
.4

9

 2
.7

1

 1
.7

6

 1
.2

7

 1
.1

0

 0
.8

7

 0
.7

8

 0
.0

4

 2
5.

98

 1
9.

41

 1
2.

47

 1
0.

24

 7
.0

8

 5
.2

3

 4
.6

2

 3
.6

1

 3
.2

0

 0
.0

4

Figure 5: Fraction of block losses per year (see Remark 2) for different bandwidth limits for
the three strategies. The differences between policies are stronger than for the reconstruction
times of Fig 4, as explained in Section 4.2.

for the Global, Chain and Buddy, respectively. Thus, under resource constraints, the big
local events constituted by peer failures induce longer reconstruction time and henceforth
an increase of data loss when using the local policies, as shown in the following.

3.2.2 FDLPY versus Bandwidth

A critical performance measure of a P2P storage architecture is the probability to lose a
block for a given amount of bandwidth. Figure 5 compares the trade-offs of the three policies
for different values of BWup. We see that the Global policy behaves a lot better for any
bandwidth limit than the Chain policy, which itself is more efficient than the Buddy policy.
For example, for a bandwidth limit of 18 kbit/s (which represents 9 times the average
bandwidth need of the system), the Global experiences 0.04% of data loss per year, to
compare with 0.78% and 3.2% for the Chain and the Buddy, respectively.

3.2.3 MTTDL versus Bandwidth

Opposed to what was showed without bandwidth constraints, the Global policy behaves
better than the others with low bandwidth limitations. The following table shows the
MTTDL for the three policies under resource constraints.

RR n° 7006

14 Giroire, Monteiro, Pérennes

MTTDL (hours)
Max.BW (kbit/s) = 6 9 12 15
Global 166 180 193 219
Chain 53 160 323 565
Buddy 75 178 341 550

For instance, without resource constraints, the time between data loss were 0.02, 4.0,
and 25.8 years respectively for the Global, Chain and Buddy. Conversely, with an available
bandwidth of 6 kbit/s, these values are 166, 53, and 75 (in hours), many orders of magnitude
less. These results show that the impact of the bandwidth limits per peer needs to be taken
into account when analysing such systems.

4 Proposition for P2P Storage System Architectures

In this section, we suggest some modifications of the architecture of systems implementing
local policies. We also discuss the best choice of their parameters. First, we propose an ex-
ternal reconstruction strategy for the local policies, and show that it can lower the duration of
the sending phase of reconstructions, and thus improve the probability to lose data. Second,
we show that having a larger neighborhood is sufficient to greatly improve the Chain policy
performance. Hence, an architecture with the advantage of locality and performance close
to the ones of a Global strategy can be obtained. Finally, we carry out some comparisons
between Replication and Erasure Code schemes. We show by simulations that, for the same
amount of bandwidth and space overhead, the Erasure Codes are better even for the Chain
policy.

4.1 External Reconstruction Strategy

We propose here a new reconstruction architecture for the Chain policy, namely external
reconstruction. The idea is to use peers outside the Chain group to carry out the recon-
struction process. In this way, the bandwidth usage is more uniformly spread among peers.
More precisely, only the upload bandwidth of the retrieval phase of the reconstruction is
needed locally, while the bandwidth for the sending phase is provided by all the peers of the
system. Hence, the External Reconstruction has two main advantages:

• a local control for discovering failed peers and updating the data-blocks’ states;

• a more uniform distribution of resources among peers, which lowers the reconstruction
time.

However, a small cost is paid: in the internal reconstruction, the peer in charge may be
chosen in such a way that it possesses a piece of the block to be reconstructed. It reduces
by a factor of (s − 1)/s the bandwidth needed for the retrieval phase of the reconstruction.
Conversely, in the external reconstruction, the reconstructor does not contain any piece.

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 15

6 7 9 10 12 14 15 17 18

Chain
Chain w/ External Repair

Max. Available Upload Bandwidth (kbit/s)

F
ra

ct
io

n
of

 d
ea

d
bl

oc
ks

 p
er

 y
ea

r
(%

)

0
2

4
6

8
10

12

 1
0.

60

 6
.7

8

 3
.4

9

 2
.7

1

 1
.7

6

 1
.2

7

 1
.1

0

 0
.8

7

 0
.7

8

 0
.0

4

 4
.3

9

 2
.8

8

 1
.4

8

 1
.1

8

 0
.8

0

 0
.5

9

 0
.5

1

 0
.3

9

 0
.3

5

 0
.0

4

Figure 6: Comparison between the Chain policy with internal reconstruction and with
external reconstruction. The fraction of block losses (see Remark 2) for different bandwidth
limits is presented. There is an improvement of about 50% on the fraction of data losses.

A rough estimate of the gain in terms of reconstruction time can be given. In the internal
reconstruction, local peers have to support s+r−r0 uploads of pieces. However, when using
the external reconstruction, they only have to support s uploads of pieces. As the local peers
basically are the bottleneck of the reconstruction, the gains in terms of bandwidth and hence
of reconstruction time are roughly 1 − s/(s − 1 + r − r0). With the parameters chosen in
our experiments, this factor would be 0.25. Note that the gains in terms of data loss will be
significantly higher (see Section 4.2).

Figure 6 compares the internal and external policies. It gives the trade-off between
the average number of dead blocks per year and the available bandwidth. For the same
bandwidth, the fraction of data loss decreases by a factor between 0.5 and 0.6 for this set of
parameters. We see that, by choosing to carry out the reconstructions externally, the chain
policy behaves substantially better.

4.2 What Should Be the Size of the Neighborhood?

We showed above that the Global policy in practice (under tight resource constraints) be-
haves significantly better than the local policies. Nevertheless, as already stated in the
introduction, there exist important practical considerations that explain the choice of local
placement. Would it be possible to obtain the same practical advantages of the local policies

RR n° 7006

16 Giroire, Monteiro, Pérennes

(a small sub-network to monitor) without paying the high cost of the Chain and Buddy in
terms of probability of data loss?

In this section, we study the impact of the size of the block neighborhood on the system
performance. The block neighborhood is defined as the peers that can receive pieces of this
block (of size s + r for Buddy and Chain, and of size N for Global).

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Chain size (number of nodes)

F
ra

ct
io

n
of

 d
ea

d
bl

oc
ks

 p
er

 y
ea

r
(%

)

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0
2

4
6

8
10

●

Blocks per disk

40
80
120
160
200

Figure 7: Study of the size of the block neighborhood. Fraction of block losses (see Remark 2)
per year for different sizes of neighborhood and different number of fragments per disks.

Figure 7 shows the average number of dead blocks per year for different sizes of the
neighborhood. The sizes range from s + r = 15 (corresponding to the size of the neigh-
borhood for the Chain policy) to 90. The experiment was done for different amounts of
data per disk (i.e., number of blocks per disk), from 40 to 200, which is, as we will see, an
important parameter when choosing the neighborhood size. We see that barely increasing
the neighborhood from 15 to 20 has a striking impact on the data loss: with 120 blocks per
disk, the fraction of data loss drops from 4.1% to 1.6%, representing a decrease of almost
61 percent. Thus, increasing the size even by few units leads to strong improvements of the
system performance. However, the number of dead blocks decreases from 0.17% to 0.16%
for neighborhoods of sizes 85 and 90 nodes. The marginal improvement strongly decreases.

The shapes of the curves may be explained as follows. When there is a peer failure,
its neighbors are in charge of reconstructing the lost fragments. Hence the reconstruction
time (minus the discovery time) depends almost linearly on the neighborhood size. This
dependence can be directly translated to the probability to lose data:

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 17

Table 3: Comparison of Replication and Erasure Codes when using the Chain placement.
Number of dead blocks per year and avg. bandwidth usage for different values of redundancy
k.

Estimated Fraction of Data Loss per Year (%)

k = 1 2 3 4

Repl. 2.2 · 101 3.0 · 10−1 3.8 · 10−4 1.9 · 10−4

Erasure 6.9 · 101 2.5 · 10−6 3.2 · 10−17 4.3 · 10−29

Upload Bandwidth usage (kbit/s)

k = 1 2 3 4

Repl. 1.08 3.24 4.34 5.40

Erasure 1.45 2.47 3.42 4.37

In the case of Erasure Codes s = 4 and r = s ∗ k

Exponential relation between the probability to die and the reconstruction time.
During a reconstruction, a block dies if it loses r0 +1 fragments before it finishes. The prob-
ability for a peer to be alive after a time T is exp(−λT), where λ is the peer failure rate.
Hence a good approximation of the probability to die during a reconstruction lasting a time
T is given by

Pr[die|Rtime = T] =

(

s + r0

r0 + 1

)

(1 − e−λT)r0+1(e−λT)s−1.

Hence we have an exponential relationship between the number of block losses and the
neighborhood size.

The neighborhood size should mainly be chosen in function of two parameters: the
disk size (or the number of fragments per disk) and the peer bandwidth. Note that a size
of D

(r−r0)BWup

allows to reconstruct the blocks in one time step and is sufficient to get the

benefits of Global (with D the number of fragments per disk, BWup expressed in blocks/time
step and 1/(r − r0) the fraction of blocks of the lost disk that go beyond the saddle value).

Concluding, to implement a local policy, the neighborhood should at least be a little bit
larger than s+r, as the marginal utility of increasing the block neighborhood is tremendous
for very small sizes. In addition, the neighborhood size should be chosen in function of the
disk size: The larger the number of fragments per disk, the larger the block neighborhood
should be.

4.3 Replication versus Erasure Codes

Other experimental studies on data placement analyze the case of replication instead of
Erasure Codes, see e.g. [23, 8, 5, 14]. It is shown in [25] that Erasure Codes could be used
to achieve a high availability of data storage with low space overhead, but these studies
assume a Global and random placement strategy. Rodrigues and Liskov, in [20], state that
in high-churn systems, Erasure Codes may demand high bandwidth usage, which could be

RR n° 7006

18 Giroire, Monteiro, Pérennes

impractical. This is not relevant to our study since we assume the use of storage “bricks”
that stay turned on almost all the time. We show here that, even for local policies, the
Erasure Codes scheme is more efficient, meaning that it has less probability to lose data for
the same storage and bandwidth usage. Hence, we confirm the pertinence to carry out an
analysis of data placement when using Erasure Codes.

Note first that replication is a special case of Erasure Codes, but with only one initial
fragment (s = 1). Hence, we used exactly the same simulator to carry out the experiments.
We evaluated the system for different number of replicas k, with values varying from 1 to 4.
To have the same storage overhead factor, we compare the scenarios using k replicas with a
system with r = k ∗ s erasure coded fragments. Then we choose the reconstruction saddle
value equals to r0 = r − s (k0 = k − 1 to the case of replication), so that we experience the
same number of reconstructions, that is, roughly the same bandwidth usage. We present in
Table 3 the average bandwidth use and fraction of data loss per year for both techniques.
In the case of Erasure Codes, the number of initial pieces is s = 4. For instance, for a value
of replication k = 3 (this means r = 12 to the case of Erasure Codes), the reconstruction
starts when k = k0 = 2 (and when r = r0 = 8 for the Erasure Codes).

We see that, for k = 1, the system with replicas behaves better than Erasure Codes,
while using less bandwidth. But, as soon as k ≥ 2, systems with Erasure Codes behave
strikingly better: they experience a lot fewer block losses while using a little less bandwidth.
In practice, to have a very low probability to lose data, real systems use values of k larger
than 4, see e.g. [23]. Thus, systems with Erasure Codes have less probability to lose data
for the same amount of resources and realistic levels of redundancy.

5 Conclusion

In this paper, we show that placement policies strongly impact the performance of P2P
storage systems. We study three different policies, a Global and two local, and show that
under resource constraints, the Global policy behaves better in terms of probability to lose
data and MTTDL than the local policies.

We suggest architectural choices to improve the performances of local policies. We show
that, by using a new reconstruction strategy, namely external reconstruction, and by increas-
ing the size of the neighborhood, local policies can have performances almost equivalent to
the ones of the Global, while keeping their practical advantages.

References

[1] S. Alouf, A. Dandoush, and P. Nain. Performance analysis of peer-to-peer storage
systems. Internation Teletraffic Congress (ITC), LNCS 4516, 4516:642, 2007.

[2] R. Bhagwan, K. Tati, Y. chung Cheng, S. Savage, and G. M. Voelker. Total recall:
System support for automated availability management. In Proc. of NSDI, pages 337–
350, 2004.

INRIA

P2P Storage Systems: How Much Locality Can They Tolerate? 19

[3] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless
distributed file system deployed on an existing set of desktop pcs. SIGMETRICS
Perform. Eval. Rev., 28(1):34–43, 2000.

[4] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F. Kaashoek, J. Ku-
biatowicz, and R. Morris. Efficient replica maintenance for distributed storage systems.
In Proc. of NSDI, pages 45–58, 2006.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. In Proc. of ACM SOSP, 2001.

[6] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing a
DHT for low latency and high throughput. In Proc. NSDI, pages 85–98, San Francisco,
California, 2004.

[7] J. R. Douceur and R. Wattenhofer. Competitive hill-climbing strategies for replica
placement in a distributed file system. In Proc. of DISC, pages 48–62, 2001.

[8] J. R. Douceur and R. P. Wattenhofer. Large-scale simulation of replica placement
algorithms for a serverless distributed file system. In Proc. of MASCOTS, pages 311–
319, 2001.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. SIGOPS Oper.
Syst. Rev., 37:29–43, 2003.

[10] A. V. Goldberg and P. N. Yianilos. Towards an archival intermemory. In Proc. of ADL
Conf., page 147, USA, 1998.

[11] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: highly durable, decentralized
storage despite massive correlated failures. In Proc. of NSDI, pages 143–158, 2005.

[12] M. Karlsson, M. Mahalingam, M. Karlsson, and M. Mahalingam. Do we need replica
placement algorithms in content delivery networks. In Proc. of Workshop on Web
Content Caching and Dist., 2002.

[13] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, C. Wells, et al. OceanStore: an architecture for global-scale
persistent storage. ACM SIGARCH Computer Architecture News, 28(5):190–201, 2000.

[14] Q. Lian, W. Chen, and Z. Zhang. On the impact of replica placement to the reliability
of distributed brick storage systems. In Proc. of ICDCS’05, volume 0, pages 187–196,
2005.

[15] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of peer-
to-peer systems. In Proc. of PODC, 2002.

[16] M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spielman, and V. Stemann. Practical
loss-resilient codes. In Proc. ACM Symp. on Theory of computing, pages 150–159, 1997.

RR n° 7006

20 Giroire, Monteiro, Pérennes

[17] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive
disks (raid). In Proc. of ACM SIGMOD, 1988.

[18] F. Picconi, B. Baynat, and P. Sens. Predicting durability in dhts using markov chains.
In Proc. of ICDIM, volume 2, pages 532–538, Oct. 2007.

[19] S. Ramabhadran and J. Pasquale. Analysis of long-running replicated systems. In Proc.
of INFOCOM, pages 1–9, 2006.

[20] R. Rodrigues and B. Liskov. High availability in dhts: Erasure coding vs. replication.
In Peer-to-Peer Systems IV, pages 226–239. LNCS, 2005.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. volume 2218, pages 329–350, 2001.

[22] A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility. In Proc. ACM SOSP, pages 188–201, 2001.

[23] R. van Renesse. Efficient reliable internet storage. In Workshop on Dependable Dis-
tributed Data Management, October 2004.

[24] R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput
and availability. In Proc. of OSDI, pages 7–7, 2004.

[25] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative
comparison. In Proc. of IPTPS, volume 2, pages 328–338, 2002.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	System Description
	The System
	Data Placement Policies
	Simulations

	Simulation Results
	Without Resource Constraints
	Average Bandwidth Usage
	Probability to Lose a Block
	Mean Time To Data Loss (MTTDL)

	Results under Resource Constraints
	Reconstruction Time versus Bandwidth
	FDLPY versus Bandwidth
	MTTDL versus Bandwidth

	Proposition for P2P Storage System Architectures
	External Reconstruction Strategy
	What Should Be the Size of the Neighborhood?
	Replication versus Erasure Codes

	Conclusion

