
HAL Id: inria-00408162
https://hal.inria.fr/inria-00408162

Submitted on 29 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rewrite based Verification of XML Updates
Florent Jacquemard, Michael Rusinowitch

To cite this version:
Florent Jacquemard, Michael Rusinowitch. Rewrite based Verification of XML Updates. [Research
Report] RR-7007, INRIA. 2009, pp.39. �inria-00408162�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50151905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00408162
https://hal.archives-ouvertes.fr

appor t

de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
70

07
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Rewrite based Verification of XML Updates

Florent Jacquemard and Michael Rusinowitch

N° 7007

July 2009

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Rewrite based Verification of XML Updates

Florent Jacquemard and Michael Rusinowitch

Thème : Knowledge and Data Representation and Management
Équipes-Projets DAHU and CASSIS

Rapport de recherche n° 7007 — July 2009 — 36 pages

Abstract: We consider problems of access control for update of XML doc-
ument. In the context of XML programming, types can be viewed as hedge
automata, and static type checking amounts to verify that a program always
converts valid source documents into also valid output documents. Given a set
of update operations we are particularly interested by checking safety proper-
ties such as preservation of document types along any sequence of updates. We
are also interested by the related policy consistency problem, that is detecting
whether a sequence of authorized operations can simulate a forbidden one. We
reduce these questions to type checking problems, solved by computing variants
of hedge automata characterizing the set of ancestors and descendants of the
initial document type for the closure of parameterized rewrite rules.

Key-words: XML transformations, Typing, Software Verification, Tree Au-
tomata, Term Rewriting.

Rewrite based Verification of XML Updates

Résumé : We consider problems of access control for update of XML document.
In the context of XML programming, types can be viewed as hedge automata,
and static type checking amounts to verify that a program always converts
valid source documents into also valid output documents. Given a set of update
operations we are particularly interested by checking safety properties such as
preservation of document types along any sequence of updates. We are also
interested by the related policy consistency problem, that is detecting whether
a sequence of authorized operations can simulate a forbidden one. We reduce
these questions to type checking problems, solved by computing variants of
hedge automata characterizing the set of ancestors and descendants of the initial
document type for the closure of parameterized rewrite rules.

Mots-clés : XML transformations, Typing, Software Verification, Tree Auto-
mata, Term Rewriting.

Rewrite based Verification of XML Updates 3

1 Introduction

XML has developed into the de facto standard for the exchange and manip-
ulation of data on the Web [1]. XML documents are textual presentations of
data stored in a tree structure, and are commonly represented as finite labeled
unranked trees. In general, they are constrained by typing restrictions such
as XML schemas expressing structural constraints on the organisation of the
markups. Most of the typing formalisms currently used for XML are based on
finite tree automata. Several formalisms exist for the specification of transfor-
mation functions for XML documents, e.g. for converting data from one source
into a format suitable to a destination, for the automatic update of documents
or the deletion of confidential data, e.g. for the enforcement of an access con-
trol policy (wrapping or anonymization). Among these formalisms, the W3C
XQuery Update Facility [4] defines some operations for document updates.

Applying transformation functions in the context of documents following
type constraints defined by schemas raises several compatibility problems. Static
Type Checking in the context of XML document processing amounts to verify
at compile time that every XML document which is the result of a specified
query or transformation of a document with a valid input type produces an
output document with a valid output type. Static Type Checking decidability
is clearly dependant of the expressive power of the types and transformations
that are employed. A standard approach to XML type checking is forward (resp.
backward) type inference, that is the computation of an output (resp. input)
XML type from given input (resp. output) type and a tree transformation.
Then the type checking itself can be reduced to the verification of inclusion of
the computed type in the given output or input type.

In this paper, motivated by XML access control problems, we consider docu-
ment transformations that are arbitrary sequences of atomic update operations,
and we address the problem of their type inference. Since update operations,
beside relabeling document nodes, can create and delete entire XML fragments,
modifying document’s structure, it is not obvious to check whether they preserve
the types of documents.

We propose a redefinition in term of rewrite rules (Section 3.1) of the update
operations of XACU [8], a formal model for specifying access control on XML
data based on the W3C XQuery Update Facility draft [4]. For these operations,
and some proposed extensions, we derive type inference algorithms that can also
be employed to check access control policy local consistency (i.e. to determine
whether no sequence of allowed updates starting from a given document can
achieve an explicitly forbidden update). Such situations may lead to serious
security breaches and that are challenging to detect according to [8]. Our
results are obtained through the analysis of reachability sets of term rewriting
systems for unranked trees, parametrized by hedge automata, and through the
computation of an extension of hedge automata called context-free hedge au-
tomata. Therefore they may give more insight on these notions that have not
been investigated before.

Related work: When considering general purpose transformation languages
(e.g. XDuce, CDuce) for writing transformations, typechecking is generally
undecidable and approximations must be applied. In order to obtain exact
algorithms, several approaches define conveniently abstract formalisms for rep-

RR n° 7007

4 Jacquemard and Rusinowitch

resenting transformations. Let us cite for instance TL (the transformation lan-
guage) [15] whose programs can be translated in macro tree transducers [21],
and k-pebble tree transducers [17], a powerful model defined so as to cover rel-
evant fragments of XSLT [12] and other XML transformation languages. Some
restrictions on schema languages and on top down tree transducers (on which
transformations are based) have also been studied [16] in order to obtain PTIME
type checking procedures.

The results based on tree transducers are difficult to compare to ours. On
one hand, we consider a small class of atomic update operations whose expres-
siveness cannot be compared to general purpose transformation languages, on
the other hand, the application of updates is not restricted by strategies like e.g.
top-down transformations in [16]. One can note that the works on typecheck-
ing generally focus on the expressiveness of transformation languages, and are
restricted to XML types modeled as regular tree languages (languages of tree
automata) or DTDs (a strict subclass of regular tree languages). In our work
we need to consider XML types that generalize regular tree languages and are
recognized by context-free hedge automata [11].

The first access control model for XML was proposed by [6] and was extended
to secure updates in [3]. In [9], the authors propose a solution to secure XUpdate
queries. Static analysis has been applied to XML Access Control in [19] to
determine if a query expression is guaranteed not to access to elements that are
forbidden by the policy. In [8] the authors propose the XACU language. They
study policy consistency and show that it is undecidable in their setting. On
the positive side [2] consider policies defined in term of annotated non recursive
XML DTDs and give a polynomial algorithm for checking consistency.

Several recent works have considered the application of rewriting to reason
about access control policies. These works do not adress XML access control.

Organization of the paper: We introduce the needed formal background
about terms, hedge automata and rewriting systems in Section 2. Then we
present XML update as parameterized rewriting rules in Section 3. Finally we
give application to Access Control Policies in Section 4.

2 Definitions

2.1 Unranked Ordered Trees

Terms and Hedges. We consider a finite alphabet Σ and an infinite set of
variables X . The symbols of Σ are generally denoted a, b, c . . . and the variables
of X x, y. . . The set H(Σ,X) of hedges over Σ and X is the set of finite (possibly
empty) sequences of terms where the set of terms over Σ and X is T (Σ,X) :=
X ∪

{

a(h)
∣

∣ a ∈ Σ, h ∈ H(Σ,X)
}

. The empty sequence is denoted () and when h
is empty, the term a(h) will be simply denoted by a. We will sometimes consider
a term as a hedge of length one, i.e. consider that T (Σ,X) ⊂ H(Σ,X). A leaf
of a hedge (t1 . . . tn) is a leaf of one of the terms t1, ..., tn.

The sets of ground terms (terms without variables) and ground hedges are
respectively denoted T (Σ) and H(Σ). The set of variables occurring in a hedge
h ∈ H(Σ,X) is denoted var (h). A hedge h ∈ H(Σ,X) is called linear if every
variable of X occurs at most once in h.

INRIA

Rewrite based Verification of XML Updates 5

The root node of a term is denoted by Λ.

Substitutions. A substitution σ is a mapping of finite domain from X into
H(Σ,X). The application of a substitution σ to terms and hedges (written
with postfix notation) is defined recursively by xσ := σ(x) when x ∈ dom(σ),
yσ := σ(x) when y ∈ X \dom(σ), (t1 . . . tn)σ := (t1σ . . . tnσ) for n ≥ 0, f(h)σ :=
f(hσ).

Contexts. A context is a hedge u ∈ H(Σ,X) with a distinguished variable xu

linear (with exactly one occurrence) in u. The application of a context u to a
hedge h ∈ H(Σ,X) is defined by u[h] := u{xu 7→ h}: it consists in inserting h
into an hedge in u at the position of xu. Sometimes, we write t[s] in order to
emphasis that s is a subterm (or subhedge) of t.

2.2 Hedge Automata

We consider two typing formalisms for XML documents, defined as two classes
of unranked tree automata. The first class is the hedge-automata [18], denoted
HA. Most popular XML typing schemas like W3C XML Schemas or Relax NG
are equivalent in expressiveness to HA. The second and perhaps lesser known
class is the context-free hedge automata, denoted CF-HA and introduced in [20].
CF-HA are strictly more expressive than HA and we shall see that they are of
interest for the typing of certain update operations.

Definition 1 A hedge automaton (resp. context-free hedge automaton) is a
tuple A = (Σ, Q, Qf , ∆) where Σ is an finite unranked alphabet, Q is a finite
set of states disjoint from Σ, Qf ⊆ Q is a set of final states, and ∆ is a set of
transitions of the form a(L) → q where a ∈ Σ, q ∈ Q and L ⊆ Q∗ is a regular
word language (resp. a context-free word language).

When Σ is clear from the context it is omitted in the tuple specifying A. We
define the move relation between ground hedges in h, h′ ∈ H(Σ ∪Q) as follows:
h −−→

A
h′ iff there exists a context u ∈ H(Σ, {xC}) and a transition a(L)→ q ∈ ∆

such that h = u[a(q1 . . . qn)], with q1 . . . qn ∈ L and h′ = u[q]. The relation −−→
∗

A

is the transitive closure of −−→
A

.

Collapsing Transitions. We consider the extension of HA and CF-HA with
so called with collapsing transitions which are special transitions of the form
L → q where L ⊆ Q∗ is a CF language and q is a state. The move relation
for the extended set of transitions generalizes the above definition with the case
u[q1 . . . qn] −−→

A
u[q] if L → q is a collapsing transition of A and q1 . . . qn ∈ L.

Note that we do not exclude the case n = 0 in this definition, i.e. L may contain
the empty word in L → q. Collapsing transitions with a singleton language L
containing a length one word (i.e. transitions of the form q → q′, where q and
q′ are states) correspond to ε-transitions for tree automata.

Languages. The language of a HA or CF-HA A in one of its states q, denoted
by L(A, q), is the set of ground hedges h ∈ H(Σ) such that h −−→∗

A
q. We say

sometimes that an hedge of L(A, q) has type q (when A is clear from context).
A hedge is accepted by A if there exists q ∈ Qf such that h ∈ L(A, q). The
language of A, denoted by L(A) is the set of hedge accepted by A.

RR n° 7007

6 Jacquemard and Rusinowitch

Note that without collapsing transitions, all the hedges of L(A, q) are terms.
Indeed, by applying standard transitions of the form a(L) → a, one can only
reduce length-one hedges into states. But collapsing transitions permit to reduce
a ground hedge of length more than one into a single state.

The ε-transitions of the form q → q′ do not increase the expressiveness HA or
CF-HA (see [5] for HA and the proof for CF-HA is similar). But the situation is
not the same in general for collapsing transitions: collapsing transitions strictly
extend HA in expressiveness, and even collapsing transitions of the form L→ q
where the left member L is a finite (hence regular) word language.

Example 1 [11]. The extended HA A =
(

{q, qa, qb, qf}, {g, a, b}, {qf}, {a →

qa, b→ qb, g(q)→ qf , qaqb → q}
)

recognizes {g(anbn) |n ≥ 1} which is not a HA
language.

However, collapsing transitions can be eliminated from CF-HA, when restricting
to the recognition of terms.

Lemma 1 ([11]) For every extended CF-HA over Σ with collapsing transitions
A, there exists a CF-HA A′ without collapsing transitions such that L(A′) =
L(A) ∩ T (Σ).

Properties. It is known that for both classes of HA and CF-HA membership
and emptiness problems are decidable in PTIME [18, 20]. Moreover HA lan-
guages are closed under Boolean operations, but CF-HA are not closed under
intersection and complementation. The intersection of a CF-HA language and a
HA language is a CF-HA language. All these results are effective, with PTIME
constructions of automata of polynomial sizes for the closures under union and
intersection.

We call a HA or CF-HA A = (Σ, Q, Qf , ∆) normalized if for every a ∈ Σ
and every q ∈ Q, there is at most one transition rule a(La,q) → q in ∆. Every
HA (resp. CF-HA) can be transformed into a normalized HA (resp. CF-HA)
in polynomial time by replacing every two rules a(L1) → q and a(L2) → q by
a(L1 ∪ L2)→ q.

2.3 Infinite Term Rewrite Systems

We use term rewriting as a formalism for modeling XML update operations. For
this purpose, we propose a non-standard definition of term rewriting, extending
the classical one in two ways: the application of rewrite rules is extended from
ranked terms to unranked terms and second, the rules are parametrized by
HA languages (i.e. each parametrized rule can represent an infinite number of
unparametrized rules).

Term Rewriting Systems. A term rewriting system R over a finite unranked
alphabet Σ (TRS) is a set of rewrite rules of the form ℓ→ r where ℓ ∈ H(Σ,X)\
X and r ∈ H(Σ,X); ℓ and r are respectively called left- and right-hand-side (lhs
and rhs) of the rule. Note that we do note assume the cardinality of R to be
finite.

The rewrite relation −−→
R

of an TRS R is the smallest binary relation on
H(Σ,X) containing R and closed by application of substitutions and contexts.

INRIA

Rewrite based Verification of XML Updates 7

In other words, h −−→
R

h′ iff there exists a context u, a rule ℓ → r ∈ R and a
substitution σ such that h = u[ℓσ] and h′ = u[rσ]. The reflexive and transitive
closure of −−→

R
is denoted −−→

∗

R
.

Example 2 With R = {g(x) → x}, we have g(h) −−→
R

h for all h ∈ H(Σ,X)
(the term is reduced to the hedge h of its arguments). With R = {g(x) →
g(axb)}, g(c) −−→

∗

R
g(ancbn) for every n ≥ 0.

Parametrized Term Rewriting Systems. Let A = (Σ, Q, Qf , ∆) be a HA.
A term rewriting system over Σ and parametrized by A (PTRS) (see [10]is given
by a finite set, denoted R/A, of rewrite rules ℓ → r where ℓ ∈ H(Σ,X) and
r ∈ H(Σ ⊎Q,X) and symbols of Q can only label leaves of r. In this notation,
A may be omitted when it is clear from context or not necessary. The rewrite
relation −−−−→

R/A associated to a PTRS R/A is defined as the rewrite relation

−−−−→
R[A] where the TRS R[A] is the (possibly infinite) set of all rewrite rules

obtained from rules ℓ → r in R/A by replacing in r every state q ∈ Q by
a ground hedge of L(A, q). Several example of rewrite rules can be found in
Figure 1 below.

Properties. Given a set L ⊆ H(Σ,X) and a PTRS R/A, we denote by
post∗

R/A(L) = {h ∈ H(Σ,X) | ∃h′ ∈ L, h′ −−−−→
∗

R/A
h} and pre∗

R/A(L) = {h ∈

H(Σ,X) | ∃h′ ∈ L, h −−−−→
∗

R/A
h′}.

Ground reachability is the problem to decide, given two hedges h, h′ ∈ H(Σ)
and a PTRS R/A whether h −−−−→

∗

R/A h′. Reachability problems for ground

ranked tree rewriting have been investigated in e.g. [10]. C. Löding [13] has
obtained results in a more general setting where rules of type L→ R specify the
replacement of any element of a regular language L by any element of a regular
language R. Then [14] has extended some of these works to unranked tree
rewriting for the case of subtree and flat prefix rewriting which is a combination
of standard ground tree rewriting and prefix word rewriting on the ordered
leaves of subtrees of height 1.
Typechecking is the problem to decide, given two sets of terms τin and τout called
input and output types (generally presented as HA) and a PTRS R/A whether
post∗(τin) ⊆ τout or equivalently τin ⊆ pre∗(τout) [17].

Note that reachability is a special case of model checking, when both τin and
τout are singleton sets. Hence typechecking is undecidable as soon as reachability
is.
One related problem, called type inference, is, given a of PTRS R/A and a HA
or CF-HA language L, to construct a HA or CF-HA recognizing post∗R(L) or
pre∗

R(L).

3 Type Inference for Update Operations

In this section, we address the problem of type inference for arbitrary finite
sequence of update operations. More precisely, we propose a redefinition in
term of PTRS rules (Section 3.1) of the update operations of XACU [8] and
some extensions. Then, we show how to construct HA and CF-HA recognizing
respectively post∗R(L) and pre∗

R(L) given a HA or CF-HA language L and a

RR n° 7007

8 Jacquemard and Rusinowitch

XACU XACU+
a(x) → b(x) REN

a(x) → a(p x) INSfirst a(x) → b(p x) INS′
first

a(x) → a(x p) INSlast a(x) → b(x p) INS′
last

a(xy) → a(x p y) INSinto

a(x) → p a(x) INSleft

a(x) → a(x) p INSright

a(x) → p RPL a(x) → p1 . . . pn RPL′

a(x) → () DEL a(x) → x DELs

Figure 1: PTRS rules for XACU and extension

PTRS R representing XACU operations (Sections 3.2) or extended updates
(Section 3.3).

The motivation for showing these results are twofold. First, these construc-
tions permit to address the problems of reachability and typechecking. Second,
they also permit the synthesis of missing input or output types. Imagine that a
PTRS R is given, as well as an input type τin , defined as an HA, but that the
output type (for the application of rules of R to terms of τin) is not known. The
result of Theorem 1 ensures that we can build a CF-HA recognizing post∗R(τin)
and which can be use as a definition of a synthesized output type for R. Sim-
ilarly, the result of Theorem 3 can be used to synthesis an input type, defined
by the HA constructed for pre∗

R(τout), given an output type τout and a PTRS
R/A.

3.1 Update Operations

Figure 1 displays PTRS rules corresponding to the rules of XACU as defined
in [8] (in the first column) and to some extensions (in the second column). We
call XACU the class of all PTRS containing rules of the kind presented in the
first column of Figure 1, and XACU+ the class of all PTRS containing any rule
presented in Figure 1.

In this section we assume given an unranked alphabet Σ and a HA A =
(Σ, Q, Qf , ∆). The rewrite rules are parametrized by states p, p1,..,pn of A.

XACU rules. Let us first describe the update operations of XACU (see also [8]).
REN renames a node: it changes it label from a into b. Such a rule leaves the
structure of the term unchanged. INSfirst inserts a term of type p at the first
position below a node labeled by a. INSlast inserts at the last position and INSinto

at an arbitrary position below a node labeled by a. INSleft (resp. INSright) insert
a term of type p at the left (resp. right) sibling position to a node labeled by a.
DEL deletes a whole subterm whose root node is labeled by a and RPL replaces
such a subterm by a term of type p.

INRIA

Rewrite based Verification of XML Updates 9

Example 3 The patient data in a hospital are stored in an XML document
whose DTD type can be recognized by an HA A with rules:

hospital(p∗p) → ph

patient(pn pt) → ppa

patient(pn) → pepa

treatment(pdr pdia pda) → pt

name(p∗c) → pn

drug(p∗c) → pdr

diagnosis(p∗c) → pdia

date(p∗c) → pda

a → pc

b → pc

c → pc

...

For instance we can use a DEL rule patient(x) → () for deleting a patient,
and a INSlast rule hospital(x) → hospital(x ppa) to insert a new patient, at the
last position below the root node hospital. We can ensure that the patient
newly added has an empty treatments list (to be completed later) using the rule
hospital(x) → hospital(x pepa). The INSright rule name(x) → name(x) pt can be
used to insert later a treatment next to the patient’s name.

Extended rules. In XACU+ we introduce several extensions of the rules of
XACU. We shall see in Section 3.3 that the typing of these extended operations
is different from the typing of the operation of XACU: while the type of terms
obtained by XACU operations can be described by HA, CF-HA must be used
in order to describe the type of terms obtained by XACU+. A restriction of
the insertion rules of XACU (the rules called INS∗), following the definitions
in [8], is that the label of the node at the top of the lhs of the rules is left
unchanged. Only the rule REN permits to change the label of a node in a term,
while preserving the other nodes. The rules INS′

∗ combine the application of the
corresponding insert operation INS∗ and of a node renaming REN. We will see
in Section 3.3 that allowing such combinations has important consequences wrt
type inference.
The rule DELs deletes a single node n whose arguments inherit the position. It
can be employed to build a user view as in [7].

Example 4 Assume that some patients of the hospital of Example 3 are
grouped into one category like in hospital(. . . priority(p∗pa) . . .), and that we want
to delete the category priority while keeping the patients information. This can
be done with the DELs rule priority(x)→ x.

Finally, with RPL′ we slightly generalize the rule RPL by allowing a subterm
whose root node is labeled by a to be replaced by a sequence of n terms of
respective types p1,. . . , pn.
Note that RPL and DEL are special cases of RPL, with n = 1 and n = 0
respectively.

3.2 Forward Type Inference for XACU Rules

In this section and the following, we want to characterize the sets of terms which
can be obtained, from terms of a given type, by arbitrary application of updates
operations as PTRS rules. For this purpose, we shall study the recognizability
(by HA and CF-HA), of the forward closure (post∗) of automata languages
under the above rewrite rules.

RR n° 7007

10 Jacquemard and Rusinowitch

Theorem 1 Given a HA A on Σ and a PTRS R/A ∈ XACU, for all HA
language L, post∗

R/A(L) is the language of an HA of size polynomial and which
can be constructed in PTIME on the size of R, A and an HA of language L.

Proof. (sketch, see Appendix B for a complete proof). We consider a normalised
HA AL recognizing L and add transitions (but no states) to the NFAs defining
its horizontal languages in transitions a(La,q) → q. For instance, if a(x) →
a(p x) ∈ R/A we add one transition (ia,q, p, ia,q) looping on the initial state ia,q

of the NFA for La,q. If a(x) → a(x) p ∈ R/A, and there exists a transition
(s, q, s′)′ in some NFA, we add one transition (s′, p, s′). 2

Let us come back to our motivations. A first consequence of Theorem 1
concerns to the typechecking problem.

Corollary 1 The typechecking is decidable in PTIME for XACU.

Proof. Let τin and τout be two HA languages (resp. input and output types), and
let R/A by a PTRS. We want to know whether post∗R/A(τin) ⊆ τout . Following

Theorem 1, post∗
R/A(τin) is a HA language. Hence post∗

R/A(τin) ∩ τout is a HA
language, and testing its emptiness solves the problem. 2

Regarding the problem of type synthesis, if we are given R/A and an input
type τin , Theorem 1 provides an output type presented as a HA.

3.3 Forward and Backward Type Inference for XACU+

Rules

Theorem 1 is no longer true for the rules of the extension XACU+: the examples
below show that the rules of XACU+ \ XACU do not preserve HA languages in
general. However, we prove in Theorem 2 that the rules of XACU+ preserve the
larger class of CF-HA language.

Example 5 Let Σ = {a, b, c, c′} and let R be the finite TRS containing the
two INS′

first and INS′
last rules c(x)→ c′(ax), c′(x)→ c(xb). We have post∗R

(

{c}
)

∩
H(Σ) = {c(anbn) | n ≥ 0}, and this set is not a HA language. It follows that
post∗R

(

{c}
)

is not a HA language. 3

Example 6 Let Σ = {a, b, c}, let R be the finite TRS with one DELs

rule c(x)→ x and let L be the HA language containing exactly the terms
c(ac(a . . . c . . . b)b); it is recognized by the HA with the set of transition rules
{

a → qa, b → qb, c
(

{(), qa q qb}
)

→ q
}

. We have post∗R(L) ∩ c
(

{a, b}∗
)

=
{c(anbn) | n ≥ 0}, hence post∗R(L) is not a HA language. 3

Theorem 2 Given a HA A on Σ and a PTRS R/A ∈ XACU+, for all CF-HA
term language L, post∗R/A(L) is the language of an CF-HA of size polynomial
and which can be constructed in PTIME on the size of R, A and an CF-HA
recognizing L.

Proof. (sketch, see Appendix C for a complete proof). We consider a nor-
malised HA AL recognizing L and, very roughly, we define new CFG Ga,q for
the horizontal languages as the union of CFG of transitions of AL with a new
initial non-terminal I ′a,q and new production rules according to R/A. For in-
stance, if a(x) → b(x) ∈ R/A, we add a production rule I ′b,q := I ′a,q and for

INRIA

Rewrite based Verification of XML Updates 11

a(x)→ b(p x), we add I ′b,q := pI ′a,q. Moreover, we also add collapsing transitions
like p1 . . . pn → q if a(x)→ p1 . . . pn ∈ R/A. 2

Corollary 2 The typechecking is decidable in PTIME for XACU+.

Proof. The proof is the same as for Corollary 1, because the intersection of
a CF-HA and a HA language is a CF-HA language (and there is an effective
PTIME construction of an CF-HA of polynomial size) and emptiness of CF-HA
is decidable in PTIME. 2

Theorem 3 Given a HA A on Σ and a PTRS R/A ∈ XACU+, for all HA
language L, pre∗

R/A(L) is a HA the language.

Regarding the problem of type synthesis for a R/A ∈ XACU+, if only an
output type τout is given, then Theorem 2 provides an input type for R/A
presented as a HA, and if only an input type τin is given, then Theorem 2
provides an output type presented as a CF-HA. Unlike HA, CF-HA are not
popular type schemas, but HA solely do not permit to extend the results of
Theorem 1 as shown by the above examples.

4 Access Control Policies for Updates

In this last section we study some models of Access Control Policies (ACP) for
the update operations defined in Section 3, and verification problems for these
ACP.

4.1 Term Rewrite Systems with Global Membership Con-

straints

The ACP language XACUannot introduced in [8] follows the approach of DTD
with security annotations of [7] to specify the read and write access authoriza-
tions for XML documents in the presence of a DTD. Annotated DTDs offer an
elegant formalism for ACP specification, which is especially convenient for de-
veloping techniques of type analysis. However, it imposes the strong restriction
that every document t to which we want to apply an update operation (under
the given ACP) must comply to the DTD D used for the ACP specification.

In our rewrite based formalism, this condition may be expressed by adding
global constraints to the parametrized rewrite rules of Section 2.3. These global
constraints restrict the whole term to be rewritten (not only the redex) to belong
to a given regular language. Theorem 4 below shows that, unfortunately, adding
such constraints to ground rules (which are a very special kind of RPL rules)
makes the reachability undecidable.

Given a HA A = (Σ, Q, Qf , ∆), a term rewriting system over Σ, parametrized
byA and with global constraints (PGTRS) is given by a finite set, denotedR/A,
of constrained rewrite rules L :: ℓ → r where ℓ and r satisfy the conditions of
the rewrite rules of Section 2.3 and L ⊆ T (Σ) is a HA language. A PGTRS is
called uniform if the language L is the same for every rule. The rewrite relation
for PGTRS is defined as the restriction of the relation defined in Section 2.3 to
ground terms: for the application of a rule L :: ℓ → r to a term t, we require
that t ∈ L.

RR n° 7007

12 Jacquemard and Rusinowitch

XACU2 XACU2+
b(y a(x) z) → b(y p a(x) z) INS2,left

b(y a(x) z) → b(y a(x) p z) INS2,right

b(y a(x) z) → b(y p z) RPL2 b(y a(x) z) → b(y p1 . . . pn z) RPL′
2

b(y a(x) z) → b(y z) DEL2 b(y a(x) z) → b(y x z) DEL2,s

Figure 2: PTRS rules for XACU with context control

Theorem 4 Reachability is undecidable for uniform PGTRS without variables
and parameters.

The result can be contrasted with some decidability results on ground rewriting
[10]. It is also a refinement of [8] where XPath queries are used filter out nodes
where the updates apply. As a corollary, reachability, hence inconsistency (see
Section 4.3), are undecidable for XACUannot ACP based on annotated recursive
DTDs.

4.2 XACU2+: Rewrite Rules with Context Control

The PTRS rewrite rules of Section 3 permit to define a minimal control for
the application of the updates operations. Indeed, all the lhs of rules have the
form a(x) (or a(xy) for INSinto), meaning that the application to such rules is
restricted to nodes labeled with a (i.e. to nodes of DTD element type a if the
document conforms to a given fixed DTD).

For the rules with an hedge at rhs (like INSleft, INSright, RPL, DEL, DELs...)
we can extend this idea by furthermore constraining the label of the node at
the parent node of the performed update. The generalized rules are defined in
Figure 2.

Example 7 The DEL2 rule hospital(y patient(x) z)→ hospital(y z) can be used
to delete a patient only if it is located under a hospital node.

This approach can be compared to the annotated DTD of [7]. The security
annotations of [7] are indeed mappings ann from pairs of DTD elements types
(b, a) into values of Y , N or [q] (for resp. read access allowed, denied or condi-
tionally allowed, where q is an XPath qualifier). An annotation ann(b, a) = Y
or N or [q] indicates that the a children of b elements (in an instantiation of
the given DTD D) are accessible, inaccessible or conditionally accessible respec-
tively. This approach is limited to the case of unambiguous DTDs, where the
element type a can have at most one element b as parent.

Let us call XACU2+ the class of all PTRS containing rules of XACU+ or rules
of the kind described in Figure 2. The construction of Theorem 3 for backward
type inference can be straightforwardly extended from XACU+ to XACU2+.

Theorem 5 Given a HA A on Σ and a PTRS R/A ∈ XACU2+, for all HA
language L, pre∗

R/A(L) is a HA language.

INRIA

Rewrite based Verification of XML Updates 13

4.3 Local Inconsistency of ACP

Following e.g. [2], an ACP for XML updates can be defined by a pair
(Ra/A,Rf/A) of PTRS, where Ra contains allowed operations and Rf con-
tains forbidden operations. Such an ACP is called inconsistent [8, 2] if some
forbidden operation can be simulated through a sequence of allowed operations.

Example 8 Assume that in the hospital document of example 3, it is forbid-
den to rename a patient, that is the following update of RPL2 is forbidden:
patient(y name(x) z)→ patient(y pn z).
If the following updates are allowed: patient(x)→ () for deleting a patient, and
hospital(x) → hospital(x ppa) to insert a patient, then we have an inconsistency
in the sense of [2] since the effect of the forbidden update can be obtained by
a combination of allowed updates.

Using the results of Section 3, we can decide the above problems individually
for terms of D. More precisely, we solve the following problem called local
inconsistency: given a HA A over Σ, an ACP (Ra/A,Rf/A) and a term t ∈
T (Σ), does there exists u ∈ T (Σ) such that t −−−−→

Rf /A
u and t −−−−→

∗

Ra/A
u?

Theorem 6 Local inconsistency is decidable in PTIME for XACU+.

Proof. It can be easily shown that the set {u ∈ T (Σ) | t −−−−→
Rf /A u} is the

language of a HA of size polynomial and constructed in PTIME on the sizes
of A, Rf and t. By Theorem 2, post∗Ra/A({t}) is the language of a CF-HA of
polynomial size and constructed in polynomial time on the sizes of A, Ra and
t. The ACP is locally inconsistent wrt t iff the intersection of the two above
language is non empty, and this property can be tested in polynomial time. 2

Conclusion

We have proposed a model for XML updates based on term rewriting, and shown
that type inference is possible and the problems of reachability and typecheking
are decidable for the arbitrary application of XACU update rules, as well as some
extensions, when the application is only controlled by the label of the node at
the update position and also at its parent node. We have also shown that
these problems become undecidable when restricting the application of update
operations to documents conforming to a fixed given DTD.

As further works, we could study restrictions on the regular tree languages
in the constraints of PGTRS enabling the decidability of typechecking for XACU

rules with global constraints. Another interesting topic, w.r.t. the verification
ACP for updates based on annotated DTDs is the access conditioned with XPath
queries. We could model this with rewrite rules constrained by XPath qualifiers.
Reachability is undecidable for such a formalism, even when the rules are ground
(a consequence of a result of [8]1). However, the construction of [8] involves
upward navigation; some fragments of downward Core XPath could permit to
obtain decidability.

1Actually in [8], the undecidability of the inconsistency problem is stated but the construc-
tion in this paper proves the undecidability of reachability as well.

RR n° 7007

14 Jacquemard and Rusinowitch

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann, 1999.

[2] L. Bravo, J. Cheney, and I. Fundulaki. ACCOn: checking consistency of
XML write-access control policies. In Proceedings of 11th Int. Conf. on
Extending Database Technology (EDBT), volume 261 of ACM Int. Conf.
Proceeding Series, pages 715–719. ACM, 2008.

[3] S. C. Lim and S. H. Son. Access control of XML documents considering
update operations. In Proc. of ACM Workshop on XML Security, 2003.

[4] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie, and J. Siméon.
Xquery update facility. W3C, 2009.

[5] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available
on: http://www.grappa.univ-lille3.fr/tata, 1997. release October,
12th 2007.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. Secur-
ing XML Documents. In Proceedings of the 7th Int. Conf. on Extending
Database Technology (EDBT), volume 1777 of Lecture Notes in Computer
Science, pages 121–135. Springer, 2000.

[7] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML querying with
security views. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data (SIGMOD’04), pages 587–598, ACM,
2004.

[8] I. Fundulaki and S. Maneth. Formalizing xml access control for update
operations. In Proceedings of the 12th ACM symposium on Access control
models and technologies (SACMAT), pages 169–174, ACM, 2007.

[9] A. Gabillon. A formal access control model for XML databases. In Proceed-
ings Second VLDB Workshop on Secure Data Management (SDM), volume
3674 of Lecture Notes in Computer Science, pages 86–103. Springer, 2005.

[10] R. Gilleron. Decision problems for term rewrite systems and recognizable
tree languages. In 8th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), volume 480 of Lecture Notes in Computer Science,
pages 148–159, Springer, 1991.

[11] F. Jacquemard and M. Rusinowitch. Closure of Hedge-automata languages
by Hedge rewriting. In Proceedings of the 19th Int. Conf. on Rewriting
Techniques and Applications (RTA), volume 5117 of Lecture Notes in Com-
puter Science, pages 157–171, Springer, 2008.

[12] M. Kay. Xsl transformations (xslt) 2.0. W3c working draft, World Wide
Web Consortium, 2003. Available at http://www.w3.org/TR/xslt20.

INRIA

http://www.grappa.univ-lille3.fr/tata
http://www.w3.org/TR/xslt20

Rewrite based Verification of XML Updates 15

[13] C. Löding. Ground tree rewriting graphs of bounded tree width. In Pro-
ceedings of the 19th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), volume 2285 of Lecture Notes in Computer Sci-
ence, pages 559–570, Springer, 2002.

[14] C. Löding and A. Spelten. Transition graphs of rewriting systems over
unranked trees. In Proceedings 32nd International Symposium on Mathe-
matical Foundations of Computer Science 2007 (MFCS), volume 4708 of
LNCS, pages 67–77, Springer, 2007.

[15] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with
macro tree transducers. In 24th ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems (PODS), pages 283–294, 2005.

[16] W. Martens and F. Neven. Frontiers of tractability for typechecking
simple xml transformations. In Proceedings of the Twenty-third ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 23–34. ACM, 2004.

[17] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.
J. Comput. Syst. Sci., 66(1):66–97, 2003.

[18] M. Murata. “Hedge Automata: a Formal Model for XML Schemata”. Web
page, 2000.

[19] M. Murata, A. Tozawa, M. Kudo, and S. Hada. Xml access control using
static analysis. ACM Trans. Inf. Syst. Secur., 9(3):292–324, 2006.

[20] H. Ohsaki, H. Seki, and T. Takai. Recognizing boolean closed a-tree lan-
guages with membership conditional rewriting mechanism. In Proc. of the
14th Int. Conf. on Rewriting Techniques and Applications (RTA), volume
2706 of LNCS, pages 483–498, Springer, 2003.

[21] T. Perst and H. Seidl. Macro forest transducers. Information Processing
Letters, 89:141–149, 2004.

RR n° 7007

16 Jacquemard and Rusinowitch

A Appendix: proof of Lemma 1

In this proof and the following, we describe the CF grammars used for defining
the horizontal languages of CF-HA transitions as tuples G = (Σ,N , I, Γ), where
Σ is a finite alphabet (set of terminal symbols), N is a set of non terminal
symbols, I ∈ N is the initial non-terminal, and Γ ∈ N × (N ∪ Σ)∗ is a set of
production rules.

Lemma 1 [11]. For every extended CF-HA over Σ with collapsing transitions
A, there exists a CF-HA A′ without collapsing transitions such that L(A′) ∩
T (Σ) = L(A) ∩ T (Σ).

Proof. Let G = (Q, N, I, Γ) and G1 = (Q, N1, I1, Γ1) be two CF grammars over
the same finite alphabet Q. Below, G and G1 are respectively meant to generate
the languages L and L1 of CF HA transitions L → q and a(L1) → p. We
assume wlog that the sets of non terminals N and N1 of G and G1 respectively
are disjoint. Let q ∈ Q be a terminal symbol and let Xq be a fresh non terminal
symbol. We consider below the CF grammar

G1↓
G
q :=

(

Q, N1 ⊎N ⊎ {Xq}, I1, Γ1[q ← Xq] ∪ Γ[q ← Xq] ∪ {Xq := q, Xq := I}
)

where Γ[q ← Xq] denotes the set of production rules of Γ where every occur-
rence of the terminal symbol q is replaced by the non-terminal Xq. Using this
construction, we can get rid of collapsing transitions in CF HA.

We assume that A is normalized with state set Q and for each a ∈ Σ and
p ∈ Q, we let Ga,p by the CF grammar generating the language La,p in the
transition (assumed unique) a(La,p)→ p of A. In order to construct A′ out of
A, we perform the following operation for every collapsing transition L → q of
A: (i.) delete L → q (ii.) for each a ∈ Σ and p ∈ Q, replace Ga,p by Ga,p↓

G
q

where G is a CF grammar generating L. 2

B Appendix: proof of Theorem 1

In this proof and the following, we describe finite automata for the horizontal
languages of HA transitions as tuples B = (Σ, S, i, F, Γ), where Σ is the finite
input alphabet, S is a finite set of states, i is the initial state, F ⊆ S is the set of
final states and Γ ⊆ S× (Σ∪{ε})×S is the set of transitions and ε-transitions.
For s, s′ ∈ S, we write s −−→

ε
B s′ to express that s′ can be reached from s by

a sequence of ε-transitions of B, and s −−−−−→a1...an s′, for a1, . . . , an ∈ Σ, if there
exists 2(n+1) states s0, s

′
0, . . . , sn, s′n ∈ S with s0 = s, sn −−→

ε
B s′ and 0 ≤ i < n,

si −−→
ε
B s′i and (s′i, σi+1, si+1) ∈ Γ.

Theorem 1. Given a HA A on Σ and a PTRS R/A ∈ XACU, for all HA
language L, post∗R/A(L) is the language of an HA of size polynomial and which
can be constructed in PTIME on the size of R, A and an HA of language L.

Proof. Let A = (Σ, P, P f , Θ) and let AL = (Σ, QL, Qf
L, ∆L) recognize L. We

assume that both A and AL are normalized and that their state sets P and QL

are disjoint. We construct a HA A′ = (P ⊎QL, Qf
L, ∆′) recognizing post∗

R/A(L).
For each a ∈ Σ, q ∈ QL, let La,q be the regular language in the transition

INRIA

Rewrite based Verification of XML Updates 17

(assumed unique) a(La,q)→ q ∈ ∆L, and let Ba,q =
(

QL, Sa,q, ia,q, {fa,q}, Γa,q

)

be finite automaton recognizing La,q. It has input alphabet QL, set of states
Sa,q, initial state ia,q ∈ Sa,q, final state fa,q ∈ Sa,q (that we assume unique
wlog) and set of transition rules Γa,q ⊆ Sa,q × QL × Sa,q. The sets of states
Sa,q are assumed pairwise disjoint. Let S be the disjoint union of all Sa,q for all
a ∈ Σ and q ∈ QL.

For the construction of ∆′, we develop a set of transition rules Γ′ ⊆ S× (P ∪
QL)× S. Initially, we let Γ′ be the union Γ0 of all Γa,q for a ∈ Σ, q ∈ QL, and
we complete Γ′ iteratively by analyzing the different cases of update rules of
R/A. At each step, for each a ∈ Σ and q ∈ QL, we let B′

a,q be the automaton
(P ∪QL, S, ia,q, {fa,q}, Γ′). For the sake of conciseness we make no distinction
between an automaton B′

a,q and its language L(B′
a,q).

REN: for every a(x) → b(x) ∈ R/A and q ∈ QL, we add two ε-transitions
(ib,q, ε, ia,q) and (fa,q, ε, fb,q) to Γ′.

INSfirst: for every a(x) → a(p x) ∈ R/A and q ∈ QL, we add one looping
transition (ia,q, p, ia,q) to Γ′.

INSlast: for every a(x) → a(x p) ∈ R/A and q ∈ QL, we add one looping
transition rule (fa,q, p, fa,q) to Γ′.

INSinto: for every a(xy) → a(x p y) ∈ R/A, q ∈ QL and s ∈ S reachable from
ia,q using the transitions of Γ′, we add one looping transition rule (s, p, s)
to Γ′.

INSleft: for every a(x) → p a(x) ∈ R/A, q ∈ QL and state s ∈ S such that
L(B′

a,q) 6= ∅ and there exists a transition (s, q, s′) ∈ Γ′, we add one looping
transition (s, p, s) to Γ′.

INSright: for every a(x) → a(x) p ∈ R/A, q ∈ QL and s′ ∈ S such that
L(B′

a,q) 6= ∅ and there exists a transition (s, q, s′) ∈ Γ′, we add one looping
transition (s′, p, s′) to Γ′.

RPL: for every a(x)→ p ∈ R/A, q ∈ QL, and s, s′ ∈ S such that L(B′
a,q) 6= ∅,

and there exists a transition (s, q, s′) ∈ Γ′, we add one transition (s, p, s′)
to Γ′.

DEL: for every a(x)→ () ∈ R/A, q ∈ QL, and s, s′ ∈ S such that L(B′
a,q) 6= ∅,

and there exists a transition (s, q, s′) ∈ Γ′, we add one ε-transition (s, ε, s′)
to Γ′.

We iterate the above operations until a fixpoint is reached (only a finite
number of transition can be added to Γ′ this way). Finally, we let ∆′ := Θ ∪
{

a
(

B′
a,q

)

→ q
∣

∣ a ∈ Σ, q ∈ Q, L(B′
a,q) 6= ∅

}

. Let us show now that L(A′) =
post∗R/A(L).

Lemma 2 L(A′) ⊆ post∗R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q), q ∈ QL, there exists
u ∈ L(AL, q) such that u −−→

∗

R
t. The proof is by induction on the multiset M

of the applications of horizontal transitions of Γ′ not in Γ0 in a run of A′ on t
leading to state q.

RR n° 7007

18 Jacquemard and Rusinowitch

Base case. If all the horizontal transitions are in Γ0, then by construction
t ∈ L(AL, q) and we are done.

Induction step. We analyse the cases causing the addition of a transition of
Γ′ \ Γ0.

REN : let t ∈ L(A′, q) (q ∈ QL), and assume that an ε-transition (ib,q, ε, ia,q)
is used in a run of A′ on t, and that this ε-transition was added to Γ′ because
a(x)→ b(x) ∈ R/A. Let

t = t[b(h)] −−→
∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

be a reduction of A′ such that the above ε-transition is involved in the step
t[b(q1 . . . qn)] −−→

A′ t[q0], where the the transition b(Bb,q0
)→ q0 is applied. Hence

q1 . . . qn ∈ L(Bb,q0
), with ib,q −−−−−→Bb,q0

q1...qn fb,q, and the first step in this computation

is (ib,q, ε, ia,q). The last step must be (fa,q, ε, fb,q), using an ε-transition added
to Γ′ in the same step as (ib,q, ε, ia,q). By deleting these first and last steps, we
get ia,q −−−−−→Ba,q0

q1...qn fa,q, hence q1 . . . qn ∈ L(Ba,q0
). Therefore, we have a reduction

t′ = t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ q (hence t′ ∈ L(A′, q)) with a
measure M strictly smaller than the above reduction for the recognition of t.
By induction hypothesis, it follows that there exists u ∈ L(AL, q) such that
u −−−−→

∗

R/A
t′. Since t′ = t[a(h)] −−−−→

R/A
t[b(h)] = t, with a(x)→ b(x), we conclude

that u −−−−→
∗

R/A
t.

INSfirst : let t ∈ L(A′, q) (q ∈ QL), and assume that an transition (ia,q, p, ia,q)
is used in a run of A′ on t, and that this transition was added to Γ′ because
a(x)→ a(p x) ∈ R/A. Let

t = t[a(tph)] −−→
∗

A′
t[a(p q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

be a reduction ofA′, with tp ∈ L(A, p), such that the above transition is involved
in the step t[a(p q1 . . . qn)] −−→

A′ t[q0], where the the transition b(Ba,q0
) → q0 is

applied. Hence p q1 . . . qn ∈ L(Ba,q0
), with ia,q −−−−−−→Ba,q0

p q1...qn fa,q, and the first

step in this computation is (ia,q, p, ia,q). By deleting this first step, we get
ia,q −−−−−→Ba,q0

q1...qn fa,q, hence q1 . . . qn ∈ L(Ba,q0
). Therefore, we have a reduction

t′ = t[a(h)] −−→
∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ q (hence t′ ∈ L(A′, q)) with a
measure M strictly smaller than the above reduction for the recognition of t.
By induction hypothesis, it follows that there exists u ∈ L(AL, q) such that
u −−→

∗

R
t′. Since t′ = t[a(h)] −−−−→

R/A t[a(tph)] = t, with a(x) → b(x), we conclude

u −−→
∗

R
t.

INSlast : this case is similar to the previous one.

INSinto : let t ∈ L(A′, q) (q ∈ QL), and assume that an transition (s, p, s)
is used in a run of A′ on t, and that this transition was added to Γ′ because
a(xy)→ a(xpy) ∈ R/A. Let

t = t[a(h tp ℓ)] −−→
∗

A′
t[a(q1 . . . qn p q′1 . . . q′m)] −−→

A′
t[q0] −−→

∗

A′
q

INRIA

Rewrite based Verification of XML Updates 19

be a reduction of A′, with tp ∈ L(A, p), such that the above transition (s, p, s)
is involved in the step t[a(q1 . . . qn p q′1 . . . q′m)] −−→

A′ t[q0], where the transition
b(Ba,q0

) → q0 is applied. More precisely, assume that q1 . . . qn p q′1 . . . q′m ∈

L(Ba,q0
), because ia,q −−−−−→Ba,q0

q1...qn s −−−−→
p

Ba,q0

s −−−−−→Ba,q0

q′

1
...q′

m fa,q. By deleting the middle

step (s, p, s), we get ia,q −−−−−−−−−→Ba,q0

q1...qn q′

1
...q′

m fa,q, hence q1 . . . qn q′1 . . . q′m ∈ L(Ba,q0
).

Therefore, we have a reduction t′ = t[a(hℓ)] −−→
∗

A′ t[a(q1 . . . qn q′1 . . . q′m)] −−→
A′

t[q0] −−→
∗

A′ q (hence t′ ∈ L(A′, q)) with a measure M strictly smaller than the
above reduction for the recognition of t. By induction hypothesis, it follows
that there exists u ∈ L(AL, q) such that u −−−−→∗

R/A
t′. Since t′ = t[a(hℓ)] −−−−→

R/A

t[a(h tp ℓ)] = t, with a(xy)→ b(xpy), we conclude that u −−−−→
∗

R/A t.

INSleft : let t ∈ L(A′, q) (q ∈ QL), and assume that an transition (s, p, s)
is used in a run of A′ on t, and that this transition was added to Γ′ because
a(x)→ p a(x) ∈ R/A and because there exists (s, q0, s

′) ∈ Γ′ for some q0 ∈ QL

with L(Ba,q0
) 6= ∅. Let

t = t[tp a(h)] −−→
∗

A′
t[pq0] −−→

∗

A′
q

be a reduction of A′, with tp ∈ L(A, p), involving the transition (s, p, s) in
s −−−−→

pq0

Bb,q′
s′, for some b. Removing the transition (s, p, s), we have s −−−−→

q0

Bb,q′
s′

and a reduction t′ = t[a(h)] −−→
∗

A′ t[q0] −−→
∗

A′ q (meaning t′ ∈ L(A′, q)) with a
measure M strictly smaller than the above reduction for the recognition of t.
By induction hypothesis, it follows that there exists u ∈ L(AL, q) such that
u −−−−→∗

R/A
t′. Since t′ = t[a(h)] −−−−→

R/A
t[tp a(h)] = t, with a(x) → p, a(x), we

conclude that u −−−−→
∗

R/A t.

INSright : this case is similar to the previous one.

RPL : let t ∈ L(A′, q) (q ∈ QL), and assume that a horizontal transition
(s, p, s′) is used in a run of A′ on t, and that this transition was added to Γ′

because a(x) → p ∈ R/A and because there exists (s, q0, s
′) ∈ Γ′ for some

q0 ∈ QL such that L(B′
a,q0

) 6= ∅. Let

t = t[tp] −−→
∗

A′
t[p] −−→

∗

A′
q

be a reduction ofA′, with tp ∈ L(A, p), involving the added transition (s, p, s′) in
s −−−−→

p
Bb,q′

s′, for some b and some q′ ∈ QL. Replacing the transition (s, p, s′) with

(s, q0, s
′), we obtain s −−−−→

q0

Bb,q′
s′ and a reduction t′ = t[a(h)] −−→

∗

A′ t[q0] −−→
∗

A′ q

(meaning t′ ∈ L(A′, q)). The measure M of this later reduction is strictly
smaller than the above reduction for the recognition of t, because the transition
(s, q0, s

′) belongs to Γ0 (no such transition can be added by the above proce-
dure). By induction hypothesis, it follows that there exists u ∈ L(AL, q) such
that u −−−−→

∗

R/A t′. Since t′ = t[a(h)] −−−−→
R/A t[tp] = t, with a(x)→ p, we conclude

that u −−−−→
∗

R/A t.

DEL : let t ∈ L(A′, q) (q ∈ QL), and assume that a horizontal transition
(s, ε, s′) is used in a run of A′ on t, and that this transition was added to Γ′

RR n° 7007

20 Jacquemard and Rusinowitch

because a(x) → () ∈ R/A and because there exists (s, q0, s
′) ∈ Γ′ for some

q0 ∈ QL such that L(B′
a,q0

) 6= ∅. Let us replace this ε-transition (s, ε, s′) with

(s, q0, s
′) in a reduction t −−→

∗

A′ q, we obtain a reduction

t′ = t[a(h)] −−→
∗

A′
t[q0] −−→

∗

A′
q.

It means that t′ ∈ L(A′, q). The measure M of this later reduction is strictly
smaller than the above reduction for the recognition of t, because the transition
(s, q0, s

′) belongs to Γ0 (no such transition can be added by the above proce-
dure). By induction hypothesis, it follows that there exists u ∈ L(AL, q) such
that u −−−−→

∗

R/A t′. Since t′ = t[a(h)] −−−−→
R/A t, with a(x) → (), we conclude that

u −−−−→
∗

R/A t.

(end Lemma direction ⊆) 2

Lemma 3 L(A′) ⊇ post∗R/A(L).

Proof. We show that for all t ∈ L, if t −−−−→
∗

R/A
u, then u ∈ L(A′), by induction

on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L and we are done since
L = L(AL) ⊆ L(A′) by construction.

Induction step. Assume that t −−−−→
+

R/A u with t ∈ L. We analyse the type of

rewrite rule used in the last rewrite step.

REN. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ b(x) ∈ R/A:

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[b(h)] = t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists a reduc-
tion sequence: t[a(h)] −−→∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L with

q1 . . . qn ∈ L(B′
a,q0

), i.e. ia,q0
−−−−−→B′

a,q0

q1...qn fa,q0
. By construction, the ε-transitions

(ib,q0
, ε, ia,q0

) and (fa,q0
, ε, fb,q0

) have been added to Γ′. Hence ib,q0
−−−−−→B′

b,q0

q1...qn

fb,q0
and q1 . . . qn ∈ L(B′

b,q0
). Therefore there exists a reduction sequence:

t = t[b(h)] −−→
∗

A′ t[b(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L and t ∈ L(A′).

INSfirst. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ a(p x) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[a(tph)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists
a reduction sequence: t[a(h)] −−→

∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L with

q1 . . . qn ∈ L(B′
a,q0

), i.e. ia,q0
−−−−−→B′

a,q0

q1...qn fa,q0
. By construction, the transition

(ia,q0
, p, ia,q0

) has been added to Γ′. Hence ia,q0
−−−−→

p

B′

a,q0

ia,q0
−−−−−→

B′

a,q0

q1...qn fb,q0
, i.e.

p q1 . . . qn ∈ L(B′
a,q0

) and there exists a reduction sequence

t = t[a(tp h)] −−→
∗

A′
t[a(p q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
qf ∈ Qf

L.

It follows that t ∈ L(A′).

INRIA

Rewrite based Verification of XML Updates 21

INSlast. The case where the last rewrite step of the sequence involves a rewrite
rule of the form a(x) → a(x p) ∈ R/A, with p ∈ P is similar to the previous
one.

INSinto. The last rewrite step of the sequence involves a rewrite rule of the form
a(xy)→ a(x p y) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
t[a(hℓ)] −−−−→

R/A
t[a(h tp ℓ)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(hℓ)] ∈ L(A′). Hence there exists
a reduction sequence: t[a(hℓ)] −−→

∗

A′ t[a(q1 . . . qn q′1 . . . q′m)] −−→
A′ t[q0] −−→

∗

A′ qf ∈

Qf
L with q1 . . . qn q′1 . . . q′m ∈ L(B′

a,q0
), i.e. ia,q0

−−−−−→B′

a,q0

q1...qn s −−−−−→B′

a,q0

q′

1
...q′

m fa,q0
for some

state s ∈ S. By construction, the looping transition (s, p, s) has been added

to Γ′. Hence ia,q0
−−−−−→B′

a,q0

q1...qn s −−−−→
p

B′

a,q0

s −−−−−→B′

a,q0

q′

1
...q′

m fa,q0
, i.e. q1 . . . qn p q′1 . . . q′m ∈

L(B′
a,q0

) and there exists a reduction sequence

t = t[a(h tp ℓ)] −−→
∗

A′
t[a(q1 . . . qn p q′1 . . . q′m)] −−→

A′
t[q0] −−→

∗

A′
qf ∈ Qf

L.

It follows that t ∈ L(A′).

INSleft. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ p a(x) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[tp a(h)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists
a reduction sequence: t[a(h)] −−→

∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L. Hence

L(B′
a,q0

) 6= ∅ and at some point of the reduction, a transition (s, q0, s
′) ∈ Γ′ is

involved. By construction, the transition (s, p, s) has been added to Γ′. Hence
there exists a reduction sequence t = t[tp a(h)] −−→

∗

A′ t[p q0] −−→
∗

A′ qf ∈ Qf
L. It

follows that t ∈ L(A′).

INSright. The case where the last rewrite step of the sequence involves a rewrite
rule of the form a(x) → a(x) p ∈ R/A, with p ∈ P is similar to the previous
one.

RPL. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ p ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[tp] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists
a reduction sequence: t[a(h)] −−→

∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L. Hence

L(B′
a,q0

) 6= ∅ and at some point of the reduction, a transition (s, q0, s
′) ∈ Γ′

is applied. By construction, the transition (s, p, s′) has been added to Γ′, and
there exists a reduction sequence t = t[tp] −−→

∗

A′ t[p] −−→
∗

A′ qf ∈ Qf
L. It follows that

t ∈ L(A′).

RR n° 7007

22 Jacquemard and Rusinowitch

DEL. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ () ∈ R/A:

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[()] = t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence: t[a(h)] −−→

∗

A′ t[a(q1 . . . qn)] −−→
A′ t[q0] −−→

∗

A′ qf ∈ Qf
L. Hence L(B′

a,q0
) 6= ∅

and at some point of the reduction, a transition (s, q0, s
′) ∈ Γ′ is applied. By

construction, the ε-transition (s, ε, s′) has been added to Γ′, and there exists a
reduction sequence t −−→

∗

A′ qf ∈ Qf
L, hence t ∈ L(A′).

(end Lemma direction ⊇) 2

(end of the proof of Theorem 1) 2

C Appendix: proof of Theorem 2

Theorem 2. Given a HA A on Σ and a PTRS R/A ∈ XACU+, for all CF-HA
term language L, post∗R/A(L) is the language of an CF-HA of size polynomial
and which can be constructed in PTIME on the size of R, A and an CF-HA
recognizing L.

Proof. Let A = (P, P f , Θ) and let us assumed that it is normalized. Let AL =
(QL, Qf

L, ∆L) be a CF-HA recognizing L, normalized and without collapsing
transitions (this can be assumed thanks to Lemma 1) The state sets P and
QL are assumed disjoint. We shall construct a CF-HA extended with collapsing
transitionsA′ = (P⊎QL, Qf

L, ∆′) recognizing post∗
R/A(L). The set of transitions

∆′ is constructed starting from ∆L ∪ Θ and analysing the different cases of
update rules.

For each a ∈ Σ, q ∈ QL, let La,q be the context-free language in the transition
(assumed unique) a(La,q) → q ∈ ∆L, and let Ga,q = (QL, Na,q, Ia,q, Γa,q) be a
CF grammar in Chomski normal form generating La,q. It has alphabet (set of
terminal symbols) QL, set of non terminal symbols Na,q, initial non-terminal
Ia,q ∈ Na,q, and set of production rules Γa,q. The sets of non-terminals Na,q are
assumed pairwise disjoint.

Let us consider one new non-terminal I ′a,q for each a ∈ Σ and q ∈ QL. Each
of these non terminals aims at becoming the initial non terminal of the CF
grammar in the transition associated to a and q in ∆′. For technical convenience,
we also add one new non terminal Xp for each p ∈ P . For the construction of
∆′, we shall construct below a set C′ of collapsing transitions, initially empty,
and a set Γ′ of production rules of CF grammar over the set of terminal symbols
in P ∪QL and the set of non terminals

N =
⋃

a∈Σ,q∈Q

(

Na,q ∪ {I
′
a,q}

)

∪ {Xp | p ∈ P}.

Initially, we let Γ′ = Γ′
0 :=

⋃

a∈Σ,q∈Q

(

Pa,q ∪ {I
′
a,q := Ia,q}

)

∪ {Xp := p | p ∈ P}.

We now proceed by analysis of the rewrite rules of R/A for the completion
of Γ′ and C′. At each step, for each a ∈ Σ and q ∈ QL, we let G′a,q be the CF
grammar (P ∪QL,N , I ′a,q, Γ

′), and let L′
a,q = L(G′a,q). The production rules of

Γ′ remain in Chomski normal form after each completion step.

INRIA

Rewrite based Verification of XML Updates 23

REN: for every a(x) → b(x) ∈ R/A, q ∈ QL, we add one production rule
I ′b,q := I ′a,q to Γ′.

INS′
first: for every a(x) → b(p x) ∈ R/A, q ∈ QL, we add one production rule
I ′b,q := XpI

′
a,q to Γ′.

INS′
last: for every a(x) → b(x p) ∈ R/A, q ∈ QL, we add one production rule
I ′b,q := I ′a,qXp to Γ′.

INSinto: for every a(xy)→ a(x p y) ∈ R/A, q ∈ QL and every N ∈ N reachable
from I ′a,q using the rules of Γ′, we add two production rules N := NXp

and N := XpN .

INSleft: for every a(x) → p a(x) ∈ R/A, and q ∈ QL such that L′
a,q 6= ∅, we

add one collapsing transition p q → q to C′.

INSright: for every a(x) → a(x) p ∈ R/A, and q ∈ QL such that L′
a,q 6= ∅, we

add one collapsing transition q p→ q to C′.

RPL′: for every a(x) → p1 . . . pn ∈ R/A, with n ≥ 0, and q ∈ QL such that
L′

a,q 6= ∅, we add one collapsing transition p1 . . . pn → q to C′.

DEL: for every a(x) → () ∈ R/A and q ∈ QL such that L′
a,q 6= ∅, we add one

collapsing transition ()→ q to C′.

Note that INSfirst, INSlast, RPL are special cases of respectively INS′
first, INS′

last,
RPL′.

We iterate the above operations until a fixpoint is reached. Indeed, only a
finite number of production and collapsing rules can be added. Finally, we let

∆′ := Θ∪
{

a(L′
a,q)→ q

∣

∣ a ∈ Σ, q ∈ Q, L′
a,q 6= ∅

}

∪C′∪{L′
a,q → q | a(x)→ x ∈ R/A, L′

a,q 6= ∅}.

We show that L(A′) = post∗
R/A(L). It follows that post∗

R/A(L) is a CF-HA
language by Lemma 1.

Lemma 4 L(A′) ⊆ post∗R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q), q ∈ QL, there exists
u ∈ L(AL, q) such that u −−−−→

∗

R/A t. The proof is by induction on the number of

applications of collapsing transitions in the reduction t −−→
∗

A′ q.

Base case. For the base case (no collapsing transition applied), we make a
second induction on the number of application of production rules of Γ′ \ Γ0

in the derivations, by the grammars G′a,q0
, for the generations of the sequences

of states q1 . . . qn ∈ Q∗ used in moves of A′ of the form u[a(q1 . . . qn)] → u[q0]
in the reduction t −−→

∗

A′ q. Let us note ⊢ the relation of derivation using the
production rules of Γ′, and ⊢∗ its transitive closure.

Intuitively every application of a production rule of Γ′ \ Γ0 corresponds to
a rewrite step with a rule of R/A in the rewrite sequence u −−−−→

∗

R/A t, according

to the above construction cases.

RR n° 7007

24 Jacquemard and Rusinowitch

Base case (second induction). For the base case, no production rule of
Γ′ \ Γ0 is applied. It means that t −−−→

∗

AL
q (every CF grammar derivation in the

reduction t −−→
∗

A′ q starts with I ′a,q ⊢ Ia,q) and we let u = t.

Induction step (second induction). Assume that the reduction t −−→
∗

A′ q
has the form

t = t[a(t1 . . . tn)] −−→
∗

A′
t[a(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

where t[a(q1 . . . qn)] −−→
A′ t[q0] is one transition such that the derivation of

I ′a,q0
⊢∗ q1 . . . qn by G′a,q0

involves one production rule of Γ′ \ Γ0. We shall
analyse below the different cases of rewrite rules of R/A (rules of type XACU1)
which permitted the addition of this production rule of Γ′ \Γ0. Let us first note
before that we can assume that for every i ≤ n, ti −−→

∗

A′ qi because no collapsing
transition are used, by hypothesis. Hence, together with the above hypothesis,
it follows that ti ∈ L(A, qi) for all i ≤ n.

Case REN. We have I ′a,q0
⊢ I ′b,q0

⊢∗ q1 . . . qn, and the first production rule
used in this derivation, I ′a,q0

:= I ′b,q0
, was added because there exists a rule

b(x)→ a(x) ∈ R/A. It follows that I ′b,q0
⊢∗ q1 . . . qn and then that

s = t[b(t1 . . . tn)] −−→
∗

A′
t
[

b(q1 . . . qn)
]

−−→
A′

t[q0] −−→
∗

A′
q.

Hence, by induction hypothesis, there exists u ∈ L(A, q) such that u −−−−→
∗

R/A s.

Moreover, s = t[b(t1 . . . tn)] −−−−→
R/A t = t[a(t1 . . . tn)] using b(x) → a(x) ∈ R/A.

Hence u −−−−→
∗

R/A t.

Case INS′
first. We have I ′b,q0

⊢ XpI
′
a,q0
⊢∗ q1 . . . qn, and the first production

rule used in this derivation, I ′b,q0
:= XpI

′
a,q0

was added because there exists
a rule a(x) → b(px) ∈ R/A. By construction, it follows that q1 = p and
I ′a,q0

⊢∗ q2 . . . qn, and

s = t[a(t2 . . . tn)] −−→∗
A′

t
[

a(q2 . . . qn)
]

−−→
A′

t[q0] −−→
∗

A′
q.

By induction hypothesis, applied to the above reduction, there exists u ∈ L(A, q)
such that u −−−−→

∗

R/A s. Moreover, s = t[a(t2 . . . tn)] −−−−→
R/A t = t[b(t1 . . . tn)] using

a(x)→ a(px) ∈ R/A, because t1 ∈ L(A, p). Hence u −−−−→
∗

R/A t.

Case INS′
last. This case is similar to the previous one.

Case INSinto. We have I ′a,q0
⊢∗ αNβ ⊢ αNXp β ⊢ αN pβ ⊢∗ q1 . . . qn, and the

production N := NXp was added because there exists a rule a(xy)→ a(xpy) ∈
R/A, and N is reachable from I ′a,q using Γ′. It follows that there exists two
integers k < ℓ ≤ n such that α ⊢∗ q1 . . . qk and NXp ⊢∗ qk+1 . . . qℓ (hence
qℓ = p) and β ⊢∗ qℓ+1 . . . qn (if ℓ = n then this latter sequence is empty), and

s = t[a(t1 . . . tℓ−1 tℓ+1 . . . tn)] −−→
∗

A′
t
[

a(q1 . . . qℓ−1 qℓ+1 . . . qn)
]

−−→
A′

t[q0] −−→
∗

A′
q.

INRIA

Rewrite based Verification of XML Updates 25

By induction hypothesis, applied to the above reduction, there exists u ∈ L(A, q)
such that u −−−−→

∗

R/A
s. Moreover, s = t[a(t1 . . . tℓ−1 tℓ+1 . . . tn)] −−−−→

R/A
t =

t[a(t1 . . . tn)] using the rewrite rule a(xy) → a(xpy), because tn ∈ L(A, p).
Hence u −−−−→

∗

R/A
t.

Induction step (first induction). Assume that the reduction t −−→
∗

A′ q has
the form

t = t[t1 . . . tn] −−→
∗

A′
t[q1 . . . qn] −−→

A′
t[q0] −−→

∗

A′
q (1)

such that there exists a collapsing transition L′ → q ∈ ∆′ with q1 . . . qn ∈ L′

and the first part of the reduction, t −−→
∗

A′ t[q1 . . . qn], involves no collapsing
transition. It implies in particular that ti ∈ L(A′, qi) for all i ≤ n.

The collapsing transition L′ → q belongs to C′ (by hypothesis AL and A do
not contain collapsing transitions) and was added because of a rewrite rule of
R/A in XACU+. We consider below the different possible cases for this addition.

Case INSleft. We have n = 2, q1 = p ∈ P , q2 = q0 and the collapsing transition
pq0 → q0 has been added because there exists a rule a(x) → pa(x) ∈ R/A. In
this case, the reduction (1) is

t = t[t1t2] −−→
∗

A′
t[pq0] −−→

A′
t[q0] −−→

∗

A′
q

and we have s = t[t2] −−→
∗

A′ t[q0] −−→
∗

A′ q because the first part of the reduction
uses no collapsing transition. By induction hypothesis, there exists u ∈ L(A, q)
such that u −−−−→

∗

R/A
s. Moreover, s −−−−→

R/A
t using the rewrite rule a(x)→ pa(x),

because t1 ∈ L(A, p). Hence u −−−−→
∗

R/A
t.

Case INSright. This case is similar to the previous one.

Case RPL′. In this case, for all i ≤ n, qi = pi ∈ P and the collapsing transition
p1 . . . pn → q0 was added because there exists a rewrite rule a(x) → p1 . . . pn ∈
R/A and L′

a,q0
6= ∅. Hence there exists a term a(h) ∈ L(A′, q0), and

s = t[a(h)] −−→∗
A′

t[q0] −−→
∗

A′
q

By induction hypothesis, there exists u ∈ L(A, q) such that u −−−−→
∗

R/A s. More-

over, using the rewrite rule a(x)→ p1 . . . pn, s −−−−→
R/A

t because ti ∈ L(A, pi) for

all i ≤ n. Hence u −−−−→
∗

R/A t.

Case DEL. In this case, n = 0 and the collapsing transition ()→ q0 was added
to C′ because there exists a rewrite rule a(x) → () ∈ R/A and L′

a,q0
6= ∅. Let

a(h) ∈ L(A′, q0), we have s = t[a(h)] −−→
∗

A′ t[q0] −−→
∗

A′ q. By induction hypothesis,
there exists u ∈ L(A, q) such that u −−−−→∗

R/A
s. Moreover, s −−−−→

R/A
t using the

rewrite rule a(x)→ (), and u −−−−→∗
R/A

t.

RR n° 7007

26 Jacquemard and Rusinowitch

Case DELs. In this last case, the collapsing transition L′
a,q0
→ q0 was added

to ∆′ because there exists a rewrite rule a(x) → x ∈ R/A and L′
a,q0
6= ∅. We

have
s = t[a(t1 . . . tn)] −−→∗

A′
t[a(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

because q1 . . . qn ∈ L′
a,q0

. By induction hypothesis, there exists u ∈ L(A, q)

such that u −−−−→
∗

R/A
s. Moreover, s −−−−→

R/A
t using the rewrite rule a(x)→ x, and

u −−−−→∗
R/A

t.

(end Lemma direction ⊆) 2

Lemma 5 L(A′) ⊇ post∗R/A(L).

Proof. We show that for all u ∈ L, if u −−−−→
∗

R/A t, then t ∈ L(A′), by induction

on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L. We can note that
L ⊆ L(A′) because Γ′ contains the production rule I ′a,q := Ia,q for all a ∈ Σ,
q ∈ QL. Hence, t ∈ L(A′).

Induction step (k + 1 rewrite steps). We analyse the type of rewrite rule
used in the last rewrite step of u −−−−→

∗

R/A t.

REN. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ b(x) ∈ R/A:

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[b(h)] = t.

By induction hypothesis, u[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence: u[a(h)] −−→

∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L with q1 . . . qn ∈

L′
a,q0

, i.e. q1 . . . qn can be generated by G′a,q0
, starting from I ′a,q0

and using the
production rules of Γ′.
By construction, Γ′ contains the production rule I ′b,q0

:= I ′a,q0
. Hence q1 . . . qn ∈

L′
b,q0

: it can be generated by G′b,q0
, starting from I ′b,q0

and using the production
rules of Γ′.

Hence t = u[b(h)] −−→
∗

A′ u[b(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L, i.e. t ∈ L(A′).

INS′
first. The last rewrite step of the sequence involves a rewrite rule of the form

a(x)→ b(p x) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[b(tph)] = t

with tp ∈ L(A, p). By induction hypothesis, u[a(h)] ∈ L(A′). Hence there exists
a reduction sequence: u[a(h)] −−→∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L with

q1 . . . qn ∈ L′
a,q0

, i.e. q1 . . . qn can be generated by G′a,q0
, starting from I ′a,q0

and
using the production rules of Γ′.
By construction, Γ′ contains the production rule I ′b,q0

:= XpI
′
a,q0

. Hence

pq1 . . . qn is in L′
b,q0

. Hence t = u[b(tph)] −−→
∗

A′ u[b(pq1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′

qf ∈ Qf
L, i.e. t ∈ L(A′).

INRIA

Rewrite based Verification of XML Updates 27

INS′
last. This case is similar to the above one.

INSinto. The last rewrite step of the sequence involves a rewrite rule of the form
a(xy)→ a(xpy) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
u[a(hℓ)] −−−−→

R/A
u[a(h tp ℓ)] = t

with tp ∈ L(A, p). By induction hypothesis, u[a(hℓ)] ∈ L(A′). Hence there
exists a reduction sequence: u[a(hℓ)] −−→

∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L

with q1 . . . qn ∈ L′
a,q0

, i.e. q1 . . . qn can be generated by G′a,q0
, starting from I ′a,q0

and using the production rules of Γ′.
By construction, Γ′ contains the production rules N := NXp and N := XpN for
all non terminal N reachable from I ′q,q0

using Γ′. Using one of these production
rules, it is possible to generate q1 . . . qj p qj+1 . . . qn with G′a,q0

, starting from
I ′a,q0

and using the production rules of Γ′, where j is the length of h. Hence

t = u[a(h tp ℓ)] −−→
∗

A′ u[b(q1 . . . qj p qj+1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L, and

t ∈ L(A′).

INSleft. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ pa(x) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[tp a(h)] = t.

with tp ∈ L(A, p). By induction hypothesis, u[a(h)] ∈ L(A′). Hence there exists
a reduction sequence: u[a(h)] −−→

∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L with

q1 . . . qn ∈ L′
a,q0

.
By construction, A′ contains a collapsing transition rule pq0 → q0. Hence
t = u[tpa(h)] −−→∗

A′ u[pq0] −−→A′ u[q0] −−→
∗

A′ qf ∈ Qf
L, i.e. t ∈ L(A′).

INSright. This case is similar to the above one.

RPL′. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ p1 . . . pn ∈ R/A, with p1, . . . , pn ∈ P :

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[t1 . . . tn] = t.

with ti ∈ L(A, pi) for all i ≤ n. By induction hypothesis, u[a(h)] ∈ L(A′).
Hence there exists a reduction sequence: u[a(h)] −−→∗

A′ u[a(q1 . . . qn)] −−→
A′

u[q0] −−→
∗

A′ qf ∈ Qf
L with q1 . . . qn ∈ L′

a,q0
.

Therefore, by construction, A′ contains a collapsing transition rule p1 . . . pn →
q0. Hence t = u[t1 . . . tn] −−→

∗

A′ u[p1 . . . pn] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L, i.e. t ∈

L(A′).

DELs. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ () ∈ R/A:

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[()] = t.

By induction hypothesis, u[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence: u[a(h)] −−→∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L with q1 . . . qn ∈

L′
a,q0

.
By construction, A′ contains a collapsing transition rule () → q0. Hence t =
u[()] −−→

A′ u[q0] −−→
∗

A′ qf ∈ Qf
L, i.e. t ∈ L(A′).

RR n° 7007

28 Jacquemard and Rusinowitch

DELs. The last rewrite step of the sequence involves a rewrite rule of the form
a(x)→ x ∈ R/A:

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[h] = t.

By induction hypothesis, u[a(h)] ∈ L(A′). Hence there exists a reduction se-
quence: u[a(h)] −−→

∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L with q1 . . . qn ∈

L′
a,q0

.
By construction, A′ contains a collapsing transition rule L′

a,q0
→ q0. Hence

t = u[h] −−→
∗

A′ u[q1 . . . qn] −−→
A′ u[q0] −−→

∗

A′ qf ∈ Qf
L, i.e. t ∈ L(A′).

(end Lemma direction ⊇) 2

(end of the proof of Theorem 1) 2

D Appendix: proof of Theorem 3

Theorem 3. Given a HA A on Σ and a PTRS R/A ∈ XACU+, for all HA
language L, pre∗

R/A(L) is a HA the language.

Proof. Let A = (P, P f , Θ), and let AL = (QL, Qf
L, ∆L) be a HA recognizing

L; both are assumed normalized. We also assume wlog that AL is complete:
for all term t, there exists a state q such that t ∈ L(A′, q). Like in the proof
of Theorem 1, we assume given, for each a ∈ Σ, q ∈ QL, a finite automaton
Ba,q = (QL, Sa,q, ia,q, {fa,q}, Γa,q) recognizing the regular language La,q in the
transition a(La,q)→ q ∈ ∆L (assumed unique).

We shall construct a finite sequence sequence of HA A0,A1, . . . ,Ak whose
final element’s language is pre∗

R/A(L), where for all i ≤ n, Ai = (Σ, QL, Qf
L, ∆i).

For the construction of the transition sets ∆i, we consider a set C of finite
automata over QL defined as the smallest set such that:� C contains every Ba,q for a ∈ Σ, q ∈ QL,� for all B ∈ C, B = (QL, S, i, F, Γ) ∈ C and all states s, s′ ∈ S, the

automaton Bs,s′ := (QL, S, s, {s′}, Γ) is in C,� for all B ∈ C, B = (QL, S, i, F, Γ) ∈ C, q ∈ QL and all states s, s′ ∈ S,
the automata (QL, S, i, F, Γ ∪ {〈s, q, s′〉}) and (QL, S, i, F, Γ ∪ {〈s, ε, s′〉}),
respectively denoted by B + 〈s, q, s′〉 and B + 〈s, ε, s′〉 also belong to C.

Note that C is finite with this definition. For the sake of conciseness, we make
no distinction below between a NFA B ∈ C and the language L(B) recognized
by B. Moreover, we assume that every B ∈ C has a unique final state denoted
fB and an initial state denoted iB .

First, we let ∆0 = ∆L. The other ∆i are constructed recursively by iteration
of the following case analysis until a fixpoint is reached (only a finite number
of transition can be added in the construction). In the construction we use an
extension of the move relation of HA, from states to set of states (single states
are considered as singleton sets): a(L1, . . . , Ln) →֒∆i

q (where L1, . . . , Ln ⊆ QL

and q ∈ QL) iff there exists a transition a(L)→ q ∈ ∆i such that L1 . . . Ln ⊆ L.

REN: if a(x)→ b(x) ∈ R/A, B ∈ C and q ∈ QL, such that b(B) →֒ q, then let
∆i+1 := ∆i ∪ {a(B)→ q}.

INRIA

Rewrite based Verification of XML Updates 29

INS′
first: if a(x) → b(p x) ∈ R/A, B ∈ C and q, qp ∈ QL, such that L(Ai, qp) ∩
L(A, p) 6= ∅ and b(qpB) →֒∆i

q, then ∆i+1 := ∆i ∪ {a(B)→ q}.

INS′
last: if a(x) → b(x p) ∈ R/A, B ∈ C and q, qp ∈ QL, such that L(Ai, qp) ∩
L(A, p) 6= ∅ and b(B qp) →֒∆i

q, then ∆i+1 := ∆i ∪ {a(B)→ q}.

INSinto: if a(xy) → a(x p y) ∈ R/A, B ∈ C, s, s′ are states of B, and q, qp ∈
QL, such that L(Ai, qp) ∩ L(A, p) 6= ∅, s −−→B

qp s′, and a(B) →֒∆i
q then

∆i+1 := ∆i ∪
{

a(B + 〈s, ε, s′〉)→ q
}

.

INSleft: if a(x) → p a(x) ∈ R/A, b ∈ Σ, B, B′ ∈ C, s, s′ are states of B,
and q, qp, q

′ ∈ QL such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, L(Ai, qp) ∩

L(A, p) 6= ∅, s −−−→
B

qpq′

s′, then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

INSright: if a(x) → a(x) p ∈ R/A, b ∈ Σ, B, B′ ∈ C, s, s′ are states of B,
and q, qp, q

′ ∈ QL such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, L(Ai, qp) ∩

L(A, p) 6= ∅, s −−−→
B

q′qp s′, then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

RPL′: if a(x) → p1 . . . pn ∈ R/A, b ∈ Σ, B, B′ ∈ C, s, s′ are states of B, and
q, q′, q1, . . . , qn ∈ QL such that b(B)→ q ∈ ∆i, a(B′) →֒∆i

q′, L(Ai, qj) ∩
L(A, pj) 6= ∅ for all 1 ≤ j ≤ n, s −−−−−→

B

q1...qn s′ then ∆i+1 := ∆i ∪
{

b(B +

〈s, q′, s′〉))→ q
}

.

DEL: if a(x) → () ∈ R/A, b ∈ Σ, B, B′ ∈ C, s is a state of B, q, q′ ∈ QL such
that b(B)→ q ∈ ∆i, a(B′) →֒∆i

q′, then ∆i+1 := ∆i∪
{

b(B + 〈s, q′, s〉)→

q
}

.

DELs: if a(x) → x ∈ R/A, b ∈ Σ, B ∈ C, s, s′ are states of B, q, q′ ∈ QL

such that b(B) → q ∈ ∆i, a(Bs,s′) →֒∆i
q′, then ∆i+1 := ∆i ∪

{

b(B +

〈s, q′, s′〉)→ q
}

.

Note that INSfirst, INSlast, RPL are special cases of respectively INS′
first, INS′

last,
RPL′. Since no state is added to the original automatonAL and all the transition
added involve horizontal languages of the set C, which is finite, the iteration
of the above operations terminates with an automaton A′. Let us show that
L(A′) = pre∗

R/A(L).

Lemma 6 L(A′) ⊆ pre∗
R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q), q ∈ QL, there exists
u ∈ L(AL, q) such that t −−−−→

∗

R/A u. The proof is by induction on the measureM

associating to a reduction t −−→
∗

A′ q the multiset containing, for each transition
rule ρ ∈ ∆i with i > 0 used in the reduction, the index min(j > 0 | ρ ∈ ∆j).

Base case. If M is empty, all the transition are in ∆0. It means that t ∈
L(AL, q) and we let u = t.

Induction step. Assume that we have a reduction by A′ of the form

t = t[a(h)] −−→
∗

A′
t[a(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q (2)

(with q0 ∈ QL, q1 . . . qn ∈ L(B)) and that the step t[a(q1 . . . qn)] −−→
A′ t[q0]

applies a transition b(B) → q0 added to ∆i+1 for some i ≥ 0. We analyse the
cases which permitted the addition of this transition to ∆i+1.

RR n° 7007

30 Jacquemard and Rusinowitch

REN: the transition a(B)→ q0 was added to ∆i+1 because a(x)→ b(x) ∈ R/A
and b(B) →֒∆i

q0. Hence, there exists a reduction

t′ = t[b(h)] −−→
∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (2), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→∗

R/A
u. Since

t = t[a(h)] −−−−→
R/A

t[b(h)] = t′, we conclude that t −−−−→∗
R/A

u.

INS′
first: the transition a(B)→ q0 was added to ∆i+1 because a(x)→ b(p x) ∈

R/A, with q0, qp ∈ QL, L(Ai, qp) ∩ L(A, p) 6= ∅ and b(qpB) →֒∆i
q0. Hence,

there exists a reduction

t′ = t[b(tp h)] −−→
∗

A′
t[b(qpq1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (2), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A u. Since

t = t[a(h)] −−−−→
R/A t[b(tp h)] = t′, we conclude that t −−−−→

∗

R/A u.

INS′
last: this case is similar to the previous one.

INSinto: the transition is a(B′)→ q0 and was added to ∆i+1 because a(xy)→
b(x p y) ∈ R/A, B ∈ C, s, s′ are states of B, q0, qp ∈ QL, such that L(Ai, qp) ∩
L(A, p) 6= ∅, s −−→B

qp s′, b(B) →֒∆i
q0 and B′ = B + 〈s, ε, s′〉. In this case, let

t = a(hℓ), and assume that the reduction (2) has the form

t = t[a(hℓ)] −−→
∗

A′
t[a(q1 . . . qn q′1 . . . q′m)] −−→

A′
t[q0] −−→

∗

A′
q

with q1 . . . qn q′1 . . . q′m ∈ L(B′) by iB′ −−−−−→
B′

q1...qn s −−→ε
B′ s′ −−−−−→

B′

q′

1
...q′

m fB′ (iB′ and
fB′ are resp. initial and final states of B′). Hence, by construction, we have

iB −−−−−→B
q1...qn s −−→B

qp s′ −−−−−→B′

q′

1
...q′

m fB (iB′ = iB and fB′ = fB) and there exists a
reduction

t′ = t[b(h tp ℓ)] −−→∗
A′

t[b(q1 . . . qn qp q′1 . . . q′m)] −−→
A′

t[q0] −−→
∗

A′
q

with a measure M strictly smaller than for (2), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A u. Since

t = t[a(h ℓ)] −−−−→
R/A t[b(h tp ℓ)] = t′, we conclude that t −−−−→

∗

R/A u.

From now on we assume that the reduction of t by A′ has the form

t = t[b(h)] −−→
∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q (3)

with q1 . . . qn ∈ L(B′′), q0 ∈ QL, and that the step t[b(q1 . . . qn)] −−→
A′ t[q0]

applies a transition b(B′′)→ q0 added to ∆i+1 for some i ≥ 0 in one of the five
cases.

INRIA

Rewrite based Verification of XML Updates 31

INSleft: the transition b(B′′)→ q0 was added to ∆i+1 because a(x)→ p a(x) ∈
R/A, B, B′ ∈ C, s, s′ are states of B, q0, qp, q

′
0 ∈ QL, such that b(B)→ q0 ∈ ∆i,

a(B′) →֒∆i
q′0, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−−→

B

qp q′

0 s′, and B′′ = B + 〈s, q′0, s
′〉. In

this case, let t = b(ha(v)ℓ), and assume that the above reduction (3) has the
form

t = t[b(h a(v)ℓ)] −−→
∗

A′
t[b(q1 . . . qn q′0 q′1 . . . q′m)] −−→

A′
t[q0] −−→

∗

A′
q

with q1 . . . qn q′1 . . . q′m ∈ L(B′′) by iB′′ −−−−−→
B′′

q1...qn s −−−→q′

0

B′′ s′ −−−−−→
B′′

q′

1
...q′

m fB′′ (iB′′ and
fB′′ are resp. the initial and final states of B′′). Hence, by construction, we

have iB −−−−−→B
q1...qn s −−−−→B

qp q′

0 s′ −−−−−→B
q′

1
...q′

m fB (iB′′ = iB and fB′′ = fB) and there
exists a reduction

t′ = t[b(h tp a(v) ℓ)] −−→
∗

A′
t[b(q1 . . . qn qp q′0q

′
1 . . . q′m)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (3), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A u. Since

t = t[a(h a(v)ℓ)] −−−−→
R/A t[b(h tp a(v)ℓ)] = t′, we conclude that t −−−−→

∗

R/A u.

INSright: this case is similar to the previous one.

RPL′: the transition b(B′′) → q0 has been added to ∆i+1 because a(x) →
p1 . . . pn ∈ R/A, B, B′ ∈ C, s, s′ are states of B, q0, q

′
0, qp1

, . . . , qpn
∈ QL, such

that b(B) → q0 ∈ ∆i, a(B′) →֒∆i
q′0, L(Ai, qpj

) ∩ L(A, pj) 6= ∅ for all j ≤ n,
s −−−−−−→B

qp1
...qpn s′, and B′′ = B + 〈s, q′0, s

′〉. In this case, let t = b(ha(v)ℓ), and
assume that the above reduction (3) has the form

t = t[b(h a(v)ℓ)] −−→
∗

A′
t[b(q1 . . . qm q′0 q′1 . . . q′m′)] −−→

A′
t[q0] −−→

∗

A′
q

with q1 . . . qm q′1 . . . q′m′ ∈ L(B′′) by iB′′ −−−−−→
B′′

q1...qm s −−−→
q′

0

B′′ s′ −−−−−→
B′′

q′

1
...q′

m′ fB′′ (iB′′

and fB′′ are resp. initial and final states of B′′). Hence, by construction, we

have iB −−−−−→B
q1...qm s −−−−−−→B

qp1
...qpn s′ −−−−−→B

q′

1
...q′

m′ fB (iB′′ = iB and fB′′ = fB) and there
exists a reduction, with for all j ≤ n, tj ∈ L(Ai, qpj

) ∩ L(A, pj),

t′ = t[b(h t1 . . . tn ℓ)] −−→
∗

A′
t[b(q1 . . . qm qp1

. . . qpn
q′1 . . . q′m′)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (3), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A
u. Since

t = t[a(h a(v)ℓ)] −−−−→
R/A t[b(h t1 . . . tn ℓ)] = t′, using the rule a(x) → p1 . . . pn,

and we conclude that t −−−−→
∗

R/A u.

DEL: the transition b(B′′)→ q0 has been added to ∆i+1 because a(x)→ () ∈
R/A, B, B′ ∈ C, s is a state of B, q0, q

′
0 ∈ QL, such that b(B) → q0 ∈ ∆i,

a(B′) →֒∆i
q′0, and B′′ = B + 〈s, q′0, s〉. In this case, let t = b(h a(v)ℓ), and

assume that the above reduction (3) has the form

t = t[b(h a(v)ℓ)] −−→
∗

A′
t[b(q1 . . . qm q′0 q′1 . . . q′m′)] −−→

A′
t[q0] −−→

∗

A′
q

with q1 . . . qm q′1 . . . q′m′ ∈ L(B′′) by iB′′ −−−−−→B′′

q1...qm s −−−→
q′

0

B′′ s −−−−−→B′′

q′

1
...q′

m′ fB′′ (iB′′

and fB′′ are resp. initial and final states of B′′). Hence, by construction, we

RR n° 7007

32 Jacquemard and Rusinowitch

have iB −−−−−→B
q1...qm s −−−−−→B

q′

1
...q′

m′ fB (iB′′ = iB and fB′′ = fB) and there exists a
reduction

t′ = t[b(h ℓ)] −−→
∗

A′
t[b(q1 . . . qm q′1 . . . q′m′)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (3), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→∗

R/A
u. Since

t = t[a(h a(v)ℓ)] −−−−→
R/A

t[b(h ℓ)] = t′, and we conclude that t −−−−→∗
R/A

u.

DELs: the transition b(B′′)→ q0 has been added to ∆i+1 because a(x)→ x ∈
R/A, B ∈ C, s, s′ are states of B, q0, q

′
0 ∈ QL, such that b(B) → q0 ∈ ∆i,

a(Bs,s′) →֒∆i
q′0, and B′′ = B + 〈s, q′0, s

′〉. In this case, let t = b(ha(v)ℓ), and
assume that the above reduction (3) has the form

t = t[b(h a(v)ℓ)] −−→
∗

A′
t[b(q1 . . . qm a(v1 . . . vk) q′1 . . . q′m′)] −−→

∗

A′
t[b(q1 . . . qm q′0 q′1 . . . q′m′)] −−→

A′
t[q0] −−→

∗

A′
q

with q1 . . . qm q′0, q
′
1 . . . q′m′ ∈ L(B′′) by iB′′ −−−−−→

B′′

q1...qm s −−−→
q′

0

B′′ s′ −−−−−→
B′′

q′

1
...q′

m′ fB′′ (iB′′

and fB′′ are resp. initial and final states of B′′) and s −−−−−→Bs,s′

v1...vk s′.

Hence, by construction, we have iB −−−−−→B
q1...qm s −−−−−→B

v1...vk s′ −−−−−→B
q′

1
...q′

m′ fB (iB′′ =
iB and fB′′ = fB) and there exists a reduction

t′ = t[b(h v ℓ)] −−→
∗

A′
t[b(q1 . . . qm v1 . . . vk q′1 . . . q′m′)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (3), by hypothesis. Therefore, by
induction hypothesis, there exists u ∈ L(AL, q) such that t′ −−−−→

∗

R/A u. Since

t = t[a(h a(v)ℓ)] −−−−→
R/A t[b(h v ℓ)] = t′, we conclude that t −−−−→

∗

R/A u.

Note that INSfirst, INSlast, RPL, were not considered above because they are
special cases of respectively INS′

first, INS′
last, RPL′.

(end Lemma direction ⊆) 2

Lemma 7 L(A′) ⊇ pre∗
R/A(L).

Proof. We show that for all t ∈ L, if u −−−−→
∗

R/A t, then u ∈ L(A′), by induction

on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L and we are done since
L = L(AL) ⊆ L(A′) by construction.

Induction step. Assume that u −−−−→
+

R/A t, we analyse the type of rewrite rule

used in the first rewrite step.

REN. Assume that u = u[a(h)] −−−−→
R/A u[b(h)] −−−−→

∗

R/A t. By induction

hypothesis, u1 = u[b(h)] ∈ L(A′), i.e. there exists a reduction sequence
u1 = u[b(h)] −−→

∗

A′ u[b(q1 . . . qn)] −−→
A′ u[q] −−→

∗

A′ qf where q, q1, . . . , qn ∈ QL,

qf ∈ Qf
L, and a transition a(B) → q has been added to A′, with q1 . . . qn ∈ B.

It follows that u = u[a(h)] −−→
∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q] −−→

∗

A′ qf , hence that
u ∈ L(A′).

INRIA

Rewrite based Verification of XML Updates 33

INS′
first. Assume that u = u[a(h)] −−−−→

R/A u[b(tp h)] −−−−→
∗

R/A t for some tp ∈

L(A, p). By induction hypothesis, u1 = u[b(tp h)] ∈ L(A′), i.e. there exists a
reduction sequence

u[b(tp h)] −−→
∗

A′
u[b(qpq1 . . . qn)] −−→

A′
u[q] −−→

∗

A′
qf

where q, qp, q1, . . . , qn ∈ QL, qf ∈ Qf
L. Hence L(A′, qp) ∩ L(A, p) is not empty

because it contains tp, and a transition a(B) → q has been added to A′, with
q1 . . . qn ∈ B. It follows that u = u[a(h)] −−→

∗

A′ u[a(q1 . . . qn)] −−→
A′ u[q] −−→

∗

A′ qf ,
hence that u ∈ L(A′).

INS′
last. This case is similar to the previous one.

INSinto. Assume that u = u[a(hℓ)] −−−−→
R/A u[a(h tp ℓ)] −−−−→

∗

R/A t for some tp ∈

L(A, p). By induction hypothesis, u1 = u[a(h tp ℓ)] ∈ L(A′), i.e. there exists a
reduction sequence

u1 = u[a(h tp ℓ)] −−→
∗

A′
u[a(q1 . . . qmqpq

′
1 . . . q′n)] −−→

ρ

A′
u[q] −−→

∗

A′
qf

where q, qp, q1, . . . , qm, q′1, . . . , q
′
n ∈ QL and qf ∈ Qf

L. Hence L(A′, qp) ∩ L(A, p)
is not empty because it contains tp, and the transition rule denoted ρ in the
above sequence has the form b(B) → q, where q1 . . . qmqpq

′
1 . . . q′n is recognized

by B, with a sequence iB −−−−−→B
q1...qm s −−→B

qp s′ −−−−−→B
q′

1
...q′

n fB for some states s, s′

of B. Therefore, a transition a(B + 〈s, ε, s′〉) → q has been added to A′, and
q1 . . . qmq′1 . . . q′n is recognized by B + 〈s, ε, s′〉. It follows that u = u[a(hℓ)] −−→

∗

A′

u[a(q1 . . . qmq′1 . . . q′n)] −−→
A′ u[q] −−→

∗

A′ qf , hence that u ∈ L(A′).

INSleft. Assume that u = u[b(h a(v)ℓ)] −−−−→
R/A u[b(h tp a(v)ℓ)] −−−−→

∗

R/A t for some

tp ∈ L(A, p). By induction hypothesis, u1 = u[b(h tp a(v)ℓ)] ∈ L(A′), i.e. there
exists a reduction sequence

u[b(h tp a(v)ℓ)] −−→
∗

A′
u[b(q1 . . . qm qp q′q′1 . . . q′n)] −−→

ρ

A′
u[q] −−→

∗

A′
qf

where q, q′, qp, q1, . . . , qm, q′1, . . . , q
′
n ∈ QL, qf ∈ Qf

L, and a(v) −−→
∗

A′ q′. Hence
L(A′, qp) ∩ L(A, p) is not empty because it contains tp, and the transition rule
denoted ρ in the above sequence has the form b(B)→ q with q1 . . . qmqpq

′q′1 . . . q′n
is recognized by B, with a sequence, iB −−−−−→B

q1...qm s −−−→
qpq′

s′ −−−−−→B
q′

1
...q′

n fB for some
of states s and s′ of B. Hence, a transition b(B + 〈s, q′, s′〉) → q has been
added to A′, and q1 . . . qmq′q′1 . . . q′n is recognized by B + 〈s, q′, s′〉. It follows
that u = u[b(ha(v)ℓ)] −−→

∗

A′ u[a(q1 . . . qmq′q′1 . . . q′n)] −−→
A′ u[q] −−→

∗

A′ qf , hence that
u ∈ L(A′).

INSright. This case is similar to the previous one.

RPL′. Assume that u = u[b(ha(v)ℓ)] −−−−→
R/A

u[b(ht1 . . . tnℓ)] −−−−→
∗

R/A
t for some

t1, . . . , tn respectively in L(A, p1), . . . , L(A, pn). By induction hypothesis, u1 =
u[b(ht1 . . . tnℓ)] ∈ L(A′), i.e. there exists a reduction sequence

u[b(h t1 . . . tn ℓ)] −−→
∗

A′
u[b(q1 . . . qm qp1

. . . qpn
q′1 . . . q′m′)] −−→

ρ

A′
u[q] −−→

∗

A′
qf

RR n° 7007

34 Jacquemard and Rusinowitch

where q, qp1
, . . . , qpn

, q1, . . . , qm, q′1, . . . , q
′
m′ ∈ QL, qf ∈ Qf

L, and for all j ≤ n,
L(A′, qpj

)∩L(A, pj) contains tj , and the transition rule denoted ρ in the above
sequence has the form b(B) → q with q1 . . . qm qp1

. . . qpn
q′1 . . . q′m′ ∈ L(B),

with a sequence iB −−−−−→B
q1...qm s −−−−−−→

qp1
...qpn s′ −−−−−→B

q′

1
...q′

m′ fB, for some states s and
s′ of B. Let q′ ∈ QL be such that a(v) −−→

∗

A′ q′. By construction, a tran-
sition b(B + 〈s, q′, s′〉) → q has been added to A′, and q1 . . . qm q′ q′1 . . . q′m′

is recognized by B + 〈s, q′, s′〉. It follows that u = u[b(ha(v)ℓ)] −−→
∗

A′

u[a(q1 . . . qmq′q′1 . . . q′m′)] −−→A′ u[q] −−→
∗

A′ qf , hence that u ∈ L(A′).

DEL. Assume that u = u[b(ha(v)ℓ)] −−−−→
R/A u[b(hℓ)] −−−−→

∗

R/A t. By induction

hypothesis, u1 = u[b(hℓ)] ∈ L(A′), i.e. there exists a reduction sequence

u[b(hℓ)] −−→
∗

A′
u[b(q1 . . . qm q′1 . . . q′m′)] −−→

ρ

A′
u[q] −−→

∗

A′
qf

where q, q1, . . . , qm, q′1, . . . , q
′
m′ ∈ QL and qf ∈ Qf

L. The transition rule denoted ρ
in the above sequence has the form b(B)→ q and q1 . . . qm q′1 . . . q′m′ is recognized

by B with a sequence iB −−−−−→B
q1...qm s −−−−−→B

q′

1
...q′

m′ fB, where s is a state of B. Let q′ ∈
QL be such that a(v) −−→∗

A′ q′. By construction, a transition b(B + 〈s, q′, s〉)→ q
has been added to A′, and q1 . . . qm q′ q′1 . . . q′m′ is recognized by B + 〈s, q′, s〉.
It follows that u = u[b(h a(v)ℓ)] −−→

∗

A′ u[a(q1 . . . qmq′q′1 . . . q′m′)] −−→A′ u[q] −−→
∗

A′ qf ,
hence that u ∈ L(A′).

DELs. Assume that u = u[b(ha(v)ℓ)] −−−−→
R/A u[b(hvℓ)] −−−−→

∗

R/A t. By induction

hypothesis, u1 = u[b(hvℓ)] ∈ L(A′), i.e. there exists a reduction sequence

u[b(hvℓ)] −−→
∗

A′
u[b(q1 . . . qm q′′1 . . . q′′n q′1 . . . q′m′)] −−→

ρ

A′
u[q] −−→

∗

A′
qf

where q, q1, . . . , qm, q′′1 , . . . , q′′n, q′1, . . . , q
′
m′ ∈ QL and qf ∈ Qf

L. The tran-
sition rule denoted ρ in the above sequence has the form b(B) → q and
q1 . . . qm q′′1 , . . . , q′′n q′1 . . . q′m′ is recognized by B, with a sequence iB −−−−−→B

q1...qm

s −−−−−→
B

q′′

1
...q′′

n s′ −−−−−→
B

q′

1
...q′

m′ fB, where s, s′ are two states of B. By completeness of
AL, given s, s′, there exists q′ such that a(Bs,s′) →֒∆i

q′. It follows in particular
that a(v) −−→

∗

A′ q′. By construction, a transition b(B + 〈s, q′, s〉) → q has been
added to A′, and q1 . . . qm q′ q′1 . . . q′m′ is recognized by B + 〈s, q′, s〉. It follows
that u = u[b(ha(v)ℓ)] −−→

∗

A′ u[a(q1 . . . qmq′q′1 . . . q′m′)] −−→A′ u[q] −−→
∗

A′ qf , hence
that u ∈ L(A′).

(end Lemma direction ⊆) 2

(end of the proof of Theorem 3) 2

E Appendix: proof of Theorem 4

Theorem 4. Reachability is undecidable for uniform PGTRS without vari-
ables and parameters.

Proof. We will reduce the halting problem of Deterministic Turing Machines
(TM) that work on half a tape (unbounded on the right). We consider the
following unary symbols to represent the tape alphabet Σ = {0, 1, ♯, ♭}. We
need a copy of the alphabet Σ′ = {0′, 1′, ♯′, ♭′}. We only use ♯ to mark the left

INRIA

Rewrite based Verification of XML Updates 35

endpoint of the tape and ♭ is the blank symbol, e.g. representing the rightmost
part of the tape.

The state symbols are constants in a finite set Q ∪ Q′ where Q =
{q1, q2, . . . , qn} and Q′ = {q′1, q

′
2, . . . , q

′
n}. Hence each state of the TM has

two representations.
In order to represent a Turing machine configuration as a ground term we

shall introduce a binary symbol + and a nullary symbol ⊥. Now the TM config-
uration with tape abccde♭♭ . . ., symbol under head d, state q will be represented
by:

♯(⊥) + (a(⊥) + (b(⊥) + (c(⊥) + (c(⊥) + (d(q) + (c(⊥) + ♭(⊥))))))).

We denote by T0 (resp. T1) the set of terms on signature Σ ∪ {⊥, +} with no
occurrence of ♯ (resp. with a unique occurrence of ♯ at position 1). Given a
term in t ∈ T0 and a term s ∈ T (Σ) we write t[⊥ ← s] the term obtained from
t by replacing its rightmost ⊥ symbol by s.

For each TM transition we introduce some rewrite rules that simulate it on
the term representation. We introduce now some tree regular languages: Ls,a is
the subset of t ∈ T (Σ) such that t admits a single occurrence of a state symbol
and this state symbol is s, and it occurs right below a symbol a.
”In state q reading a go to state r and write b”. This is translated to the ground
rewrite rule:

Lq,a :: a(q)→ b(r)

”In state q reading a go to state r and move right”. This can be simulated by
some application of rules:

Lq,a :: u(⊥) → u(r′) for all u ∈ {0, 1, ♯} (4)

Lq,a :: ♭(⊥) → ♭(r′) + ♭(⊥) (5)

Note that one of these rule application may create a pattern a(q) + (b(r′) + x)
at the location where we had a pattern a(q) + (b(⊥) + x) in the configuration.
Let Lq,a,r,R be the set of term of type U [⊥ ← (a(q)+ (b(r′)+V)] where U ∈ T1,
V ∈ T0. This is clearly a regular language. Then we add the rules:

Lq,a,r,R :: a(q) → a(⊥) (6)

Lr′,u :: u(r′) → u(r) for all u ∈ {0, 1, ♯} (7)

”In state q reading a go to state r and move left”. This can be simulated by
some application of rules:

Lq,a :: u(⊥) → u(r′) for all u ∈ {0, 1, ♯} (8)

This rule application may create a pattern b(r′) + (a(q) + x) at the location
where we had a pattern b(⊥) + (a(q) + x) in the configuration. Let Lq,a,r,L be
the set of term of type U [⊥ ← ((b(r′)+ a(q))+ V)] where U ∈ T1, V ∈ T0. This
is clearly a regular language. Then we add the rules:

Lq,a,r,L :: a(q) → a(⊥) (9)

Lr′,u :: u(r′) → u(r) for all u ∈ {0, 1, ♯} (10)

Let us denote R = {Li :: ℓi → ri | 1 ≤ i ≤ n} the set of rules we obtain by the
above construction. Note that the languages Li are pairwise disjoint. By case

RR n° 7007

36 Jacquemard and Rusinowitch

inspection we can show that for any couple of TM configurations T1, T2 and
their respective term encodings t1, t2, there is a sequence of transitions from T1

to T2 iff t1 −−→
∗

R
t2. If we replace in every rule the regular language Li by the

disjoint union
⊎

1≤i≤n Li, the result still holds. The theorem follows. 2

F Appendix: proof of Theorem 5

Theorem 5. Given a HA A on Σ and a PTRS R/A ∈ XACU2+, for all HA
language L, pre∗

R/A(L) is a HA the language.

Proof. The proof is very close to the one of Theorem 3. Indeed, in the above
construction for Theorem 3, we consider the applications of rules INSleft, INSright,
RPL′, DEL and DELs under any symbol b ∈ Σ. Here instead, we can restrict
the construction to the application under the symbol specified in the lhs of the
rewrite rules. More precisely, let us just detail below the cases of the construc-
tion which are modified. The rest of the prof is the same as for Theorem 3.

INS2,left: if b(y a(x) z) → b(y p a(x) z) ∈ R/A, B, B′ ∈ C, s, s′ are states of B,
and q, qp, q

′ ∈ QL such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, L(Ai, qp) ∩

L(A, p) 6= ∅, s −−−→
B

qpq′

s′, then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

INS2,right: if b(y a(x) z)→ b(y a(x) p z) ∈ R/A, B, B′ ∈ C, s, s′ are states of B,
and q, qp, q

′ ∈ QL such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, L(Ai, qp) ∩

L(A, p) 6= ∅, s −−−→B
q′qp s′, then ∆i+1 := ∆i ∪

{

b(B + 〈s, q′, s′〉)→ q
}

.

RPL′
2: if b(y a(x) z) → b(y p1 . . . pn z) ∈ R/A, B, B′ ∈ C, s, s′ are states of
B, and q, q′, q1, . . . , qn ∈ QL such that b(B) → q ∈ ∆i, a(B′) →֒∆i

q′,
L(Ai, qj) ∩ L(A, pj) 6= ∅ for all 1 ≤ j ≤ n, s −−−−−→

B
q1...qn s′ then ∆i+1 :=

∆i ∪
{

b(B + 〈s, q′, s′〉))→ q
}

.

DEL2: if b(y a(x) z) → b(yz) ∈ R/A, B, B′ ∈ C, s is a state of B, q, q′ ∈ QL

such that b(B) → q ∈ ∆i, a(B′) →֒∆i
q′, then ∆i+1 := ∆i ∪

{

b(B +

〈s, q′, s〉)→ q
}

.

DEL2,s: if b(y a(x) z)→ b(yxz) ∈ R/A, B ∈ C, s, s′ are states of B, q, q′ ∈ QL

such that b(B) → q ∈ ∆i, a(Bs,s′) →֒∆i
q′, then ∆i+1 := ∆i ∪

{

b(B +

〈s, q′, s′〉)→ q
}

. 2

INRIA

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Definitions
	Unranked Ordered Trees
	Hedge Automata
	Infinite Term Rewrite Systems

	Type Inference for Update Operations
	Update Operations
	Forward Type Inference for XACU Rules
	Forward and Backward Type Inference for XACU+ Rules

	Access Control Policies for Updates
	Term Rewrite Systems with Global Membership Constraints
	XACU2+: Rewrite Rules with Context Control
	Local Inconsistency of ACP

	Appendix: proof of Lemma ??
	Appendix: proof of Theorem ??
	Appendix: proof of Theorem ??
	Appendix: proof of Theorem ??
	Appendix: proof of Theorem ??
	Appendix: proof of Theorem ??

