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Abstract—Much research has been devoted to maximize the
life time of mobile ad-hoc networks. Life time has often been
defined as the time elapsed until the first node is out of battery
power. In the context of static networks, this could lead to
disconnectivity. In contrast, Delay Tolerant Networks (DTNs)
leverage the mobility of relay nodes to compensate for lack of
permanent connectivity, and thus enable communication even
after some nodes deplete their stored energy. One can thus
consider the lifetimes of nodes as some additional parameters that
can be controlled to optimize the performance of a DTN. In this
paper, we consider two ways in which the energy state of a mobile
can be controlled. Both listening and transmission require energy,
besides each of these has a different type of effect on the network
performance. Therefore we study two coupled problems: i) the
activation problem which determines when a mobile will turn
on in order to receive packets, and ii) the transmission control
problem, which regulates the beaconing. The optimal solutions
are shown to be of the threshold type. This paper introduces new
methods to derive the threshold structure of optimal policies, as
previously used methods, are not useful in this context due to
the multidimensional nature of the problem. The findings are
validated through extensive simulations.

Index Terms—Optimal control, fluid models, delay tolerant
networks, threshold policies

I. INTRODUCTION

During the last few years, there has been a growing interest
in Delay Tolerant Networks (DTNs) [1], [2]. In such networks,
no continuous connectivity guarantee can be assumed [3],
[4]. Nevertheless, messages can still arrive at their destination
thanks to the mobility of some subset of nodes that carry
copies of the message. One central problem in DTNs is the
routing of packets towards the intended destination, since mo-
bile nodes rarely possess a priori information on the encounter
pattern. This is also known as the zero knowledge scenario [5],
[6]. One intuitive solution is to disseminate multiple copies of
the message in the network, increasing the probability that
at least one of them will reach the destination node within a
given time window [4].

The above scheme is referred to as epidemic-style forward-
ing [7], which is similar to the spread of infectious diseases.
Each time a message-carrying node encounters an uninfected
node, it infects this node by passing on the message. Finally,
the destination receives the message when it meets an infected
node. In this paper, we refer to a more efficient variant of the
plain epidemic routing, namely the two hops routing protocol.
The source transmits copies of its message to all mobiles it
encounters, but the latter relay the message only if they meet
the destination [8]. In this framework, we study the problem

of optimal control of both routing and activation of relays; our
objective is to maximize the probability of message delivery to
the destination before a given deadline while satisfying specific
energy constraints. Henceforth, our focus is solely on two hops
routing protocol.

In particular, being mostly composed of battery operated
mobile terminals, the functioning of a mobile DTN depends
on its overall energy budget. Such energy budget has to
accommodate the cost of energy expended on two major
operations, namely, message forwarding and node beaconing1.
Typically, a finite energy cost accrues every time a message
is transmitted and received. Furthermore, in DTNs, due to
the need of continuous node discovery, relay nodes spend
substantial energy for periodic beaconing.

Thus the energy budget has to be controlled in order to cope
up with two distinct trade-offs. First, the higher the number
of message copies, the smaller the message delay. This gain
comes at the price of a higher energy expenditure, because
of forwarding more messages. Second, since when a relay
performs beaconing it depletes its battery charge over time, it
is possible to make relays active, i.e. to start their beaconing
operations at different points in time, in order to better sched-
ule the use of their battery charge. This can be done, e.g., using
wake-up timers. To overcome this issue, previous research in
context of sensor network have discussed the benefit of optimal
activation times of deployed sensor nodes [9]–[11]. We are
the first to discuss activation methodology to enhanced energy
saving policy in context of DTNs.

Given a finite DTN energy budget, a natural way to optimize
the network performance is to control a number of DTN
parameters; we focus here on two such parameters. The first
one is the beaconing rate, which controls the power by which
relay nodes operate their transceivers; this has an effect on
the so called inter-meeting rate [3], [4]. The second one is the
time when relay nodes are activated.

Our goal here is to obtain jointly optimal transmission and
activation control policies that maximize the probability of
successful delivery of the message by some time T , given
the total energy budget and a bound on the activation rate
of the relay nodes. As such, this appears to be the first
study that addresses a combined modeling and optimization
of beaconing, activation and routing for mobile ad hoc DTNs.

We leverage fluid approximations of the system dynamics,
and use tools from optimal control theory to obtain a closed-

1A periodic signalling for node discovery prior to message reception.
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form dynamic optimal policy. As we will see later, this turns
out to be a two-dimensional threshold type policy. We validate
the model and the results using extensive simulations.

The structure of the paper is as follows. In the remainder
of this section, we first discuss related work and then identify
the main contributions of the paper. Section II introduces the
model and the optimization problem. We tackle the problem
in Section III, and in Section IV we solve it for some
reference cases. In Section V, we extend the model to allow for
unbounded activation rates, and derive further properties of the
optimal control. The model is then validated in Section VI with
a numerical investigation that illustrates the usefulness and
power of the optimal control approach. Section VII concludes
the paper.

Related works

Control of forwarding schemes has been addressed in the
DTNs literature before. For example, [12] describes the rela-
tive performance of different self-limiting strategies. In [6] and
its follow-up [5], the authors optimize network performance
by designing message relays. Some papers related to our
work here are [13]–[15]. In [13], the authors consider buffer
constraints and derive buffer scheduling policies in order
to minimize the delivery time. In [15], we have provided
a general framework for the optimal control of a broad
class of monotone relay strategies. The more recent paper
[16] employs stochastic approximation to avoid the explicit
estimation of network parameters. The performance of the two
hops forwarding protocol along with the effect of the timers
have been evaluated in [17]; the framework proposed there
allows for performance optimization by choosing the average
timer duration.

Optimal activation of nodes in redundantly deployed sensor
networks has been studied before in [9]–[11]. A threshold-
based activation policy was shown to perform close to the
optimal policy for dynamic node activation in [9]. In [10],
spatial temporal correlation has been exploited to improve
usable lifetime in environmentally powered sensor networks.
Scheduling/controlling the activity nodes to exploit energy
harvesting features has been studied in [11].

Main contributions

Compared with the existing literature, this paper makes two
main original contributions.

1) Our model explicitly accounts for the maximum allowed
energy expenditure, the delivery probability within a
given deadline, and the activation of relays. It also
accounts for the impact of beaconing on the battery
depletion of activated relays, a quite important aspect for
mobile DTNs where network operations heavily depend
on node discovery.

2) We provide a formulation rooted in optimization, which
entails joint optimization of the activation control and
the transmission control in order to maximize the time-
constrained delivery probability. This is a non-standard
dynamic optimization problem formulated with coupled

Symbol Meaning
N number of nodes (excluding the destination)
ξ inter-meeting intensity
µ active nodes death rate
T timeout value
X(t) fraction of nodes having the message at time t (excluding the

destination) – controlled dynamics;
X(t) uncontrolled dynamics (U(t)=1)
E(t) energy expenditure by the whole network in [0, t ]
U(t) energy control at time t, U(t) ∈ [u, 1], u ≥ 0
V (t) activation rate at time t
K(t) upper bound of the activation rate: 0 ≤ V (t) ≤ K(t)
x maximum number of message copies due to energy constraint
z :=X(0)
D(t) CDF of the message delay
` optimal activation threshold
h∗ optimal energy control threshold

TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

controls.Once solved, interesting properties of the optimal
solution and the special role of the control on the relay
activation have emerged.

II. SYSTEM MODEL

For ease of reading, we collect all the main symbols used in
the paper in Table I. We consider a network of N + 1 mobile
nodes, where one of them, the source, has a message to send
to a destination node. We adopt the two hops routing relay
policy, so that the source relays to mobiles which do not have
the message but a relay transfers the message if and only if
it meets the destination node. This relay strategy is monotone
[15] because the number of copies of the message increases
over time.

The time between contacts of any two nodes is assumed
to be exponentially distributed with parameter ξ. The validity
of such a model has been discussed in [18], and its accuracy
has been shown for a number of mobility models (Random
Walker, Random Direction, Random Waypoint). We assume
that the message that is transmitted is relevant for some time
T . We do not assume any feedback that allows the source
or other mobiles to know whether the message has made it
successfully to the destination within the allotted time T .

Each mobile sends periodically beacons to inform the source
that they are in radio range. The source can transfer the
message according to its forwarding policy. A relay node may
already have a copy of the message: for such a node beaconing
is not required, which may save considerable amount of
energy. In what follows, we assume, that relays only keep
beaconing untill they get a message copy from the source.
However, some node can switch to inactive state to save
energy.

Accordingly, we define the state of a tagged node as falling
into three categories:

i. inactive: the tagged node does not take part in any
communication;

ii. activated: the tagged node does not have a message copy,
it keeps beaconing until it receives a message copy;



3

iii. infected: a node with a message is active but it does not
send beacons.

We assume that once a node becomes infected, it preserves
energy for the last transmission of the message to the desti-
nation node, in case it meets destination before time T .

Notice that the average life time of a mobile may be
considerably shorter than the bound T . This limited life time
is due to constraints on the total energy consumed: two
hops routing is particularly convenient since a relay does
not use much energy in transmission; however, the impact of
beaconing is substantial in comparison to transmission energy.
In this respect we assume that the probability that an activated
mobile empties its battery at time (t, t + δ) is given by µδU
if it uses power U(t) during that period.

A. The Control

There are two parameters that are controlled:
a. activation rate control: inactive mobiles do not con-

tribute to communications in the DTN and do not use
energy. By activating less/more mobiles per unit of time,
one can use resources when needed.

b. transmission control: the beaconing transmission power
is controlled in order to mitigate the battery discharge
of active relay nodes.

Let {Tn} be the sequence of instants where an encounter
takes place between two mobiles. Only at these times the
state X̃ may change, where X̃ is a Markov chain process
that represents the number of nodes that have the message.

Next, we introduce the fluid models used in the rest of the
paper. Approximation of Markov chains through differential
equations is a well known technique; see for example [19] for
a survey. The use of fluid approximations is a standard tool in
modeling epidemic forwarding [20]–[22]. The approximation
is known to be tight for large populations of nodes; more
precisely the sample paths of the Markov chain X̃ are known
to converge in probability to the solution of the limiting
differential equation, which represents the expectation of the
fraction of the total nodes having copy of the message [19],
denoted by X(t) in the following.

Fluid Approximations
Let X(t) be the fraction of the mobile nodes that have at

time t a copy of the message. Let Y (t) denote the fraction
of active mobiles at time t which do not have a copy of the
message. V (t) denotes the activation rate at time t and U(t)
denotes the transmission control. X(t) grows at a rate given
by the following pair of coupled differential equations:

Ẋ(t) = U(t)Y (t)ξ (1)

Ẏ (t) = −U(t)Y (t)(ξ + µ) + V (t) (2)

The term U(t)Y (t)ξ above represents the increase in the
number of mobiles with copies of the message: it is due to
encounters between the source with active mobiles without
messages where each of these encounters has rate ξ. We take,
without any loss of generality, Y (0) = 0.

We also assume that U(t) ∈ [u, 1] for some u > 0, and the
activation rate V is bounded as 0 ≤ V (t) ≤ K(t), 0 ≤ t ≤
T, where K(t) is a piecewise continuous function. Without

loss of generality, we further assume that
∫ T

0
V (t)dt = 1.

Let the set of functions V (·) satisfying these two constraints
(non-negativity and upper bounds, and unit area) be denoted
by V.

Delivery Delay Distribution
The probability distribution of delay Td, denoted by D(t) :=

P (Td < t) is given by (see [23, Appendix A]),

D(t) = 1− (1− z) exp
(
−Nξ

∫ t

s=0

X(s)ds
)
, (3)

Note that because of monotonicity, maximizing D(t) is equiv-
alent to maximizing

∫ t

s=0
X(s)ds.

Energy Consumption
In what follows, we will consider the case when the total

energy consumed by the network is bounded. Let ε > 0
be the energy consumed by the network for transmission
and reception of a single copy of the message. Thus, the
total energy consumed by the network for transmission and
reception of message copies during [0, T ] is ε(X(T )−X(0)).
Moreover, the beaconing power used at time t by active
relays is proportional to U(t)Y (t)ξ so that the energy expen-

diture in [0, T ] due to beaconing is µ
∫ T

0
U(s)Y (s)ds, i.e.,

µ
ξ (X(T ) − X(0)). Hence, it follows that the total energy
consumed in time T is E(T ) = (ε + µ

ξ )(X(T )−X(0)).

B. The Optimization Problem

Our goal is to obtain joint optimal policies for the activation
V (t) and the transmission control U(t), with U(t) ∈ [u, 1],
and V (·) satisfying the additional upper-bound and integral
constraints introduced earlier, that solve

max
{V (·)∈V,U(·)}

D(T ), s.t. X(T ) ≤ x,X(0) = z , (4)

where x and z (x > z) are specified. Recall that maximizing
D(T ) is equivalent to maximizing

∫ T

0
X(t)dt.

III. OPTIMAL CONTROL

The solution to the problem will be shown to consist
of policies involving two thresholds, one beyond which we
stop activating mobile terminals, and the other beyond which
we stop transmitting beacons. Various methodologies have
been developed to establish the threshold structure of optimal
transmission policies in DTNs: one based on the Pontryagin
maximum principle [15], another based on some sample path
comparisons [16], some on stochastic ordering, etc. These
approaches, developed in the context of DTNs with one type of
population, are not applicable to our problem since the model
is no longer scalar. Accordingly, we develop a new approach
that establishes the optimality of a threshold type policy for
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the activation control, following which we use Pontryagin’s
maximum principle [24].

To obtain the optimal solution we first hold U(t) ∈ [u, 1]
fixed, carry out optimization with respect to V (·), and then
we substitute the optimal V (·), V ∗(·), back into the objective
function and carry out a further maximization with respect to
U ·). For the first step, it is convenient to write the integral of
X(·) explicitly as a V ·), which turns out to be linear :

∫ T

0

X(t)dt = ξ

∫ T

0

m(t)V (t)dt , (5)

where m(·) is some appropriate function, an expression for
which is provided in the next subsection.

A. Optimal Activation Control

With U(t) ∈ [u, 1] fixed, we now first justify the equivalence
(5), with an explicit expression for m(·), and then show that
m(·) is non-increasing. This will allow us to conclude that the
optimum choice for V (·) is of threshold form.

Lemma 3.1: Equivalence in (5) holds, with the expression
for m(·) given in the proof below.
Proof. To derive the equivalent form, we solve the coupled
equations (1)-(2) in terms of V (·) and U(·), with zero initial
conditions:

Y (t) =
∫ t

0

Φ(t, s)V (s)ds = Φ(t, 0)
∫ t

0

Φ(0, s)V (s)ds

X(t) = ξ

∫ t

0

dσU(σ)Φ(σ, 0)
∫ σ

0

Φ(0, s)V (s)ds

where Φ(t, T ) = exp
(
−(ξ + µ)

∫ t

T
U(s)ds

)
. Letting dW :=

U(σ)Φ(σ, 0)dσ, and then integrating by parts, we obtain

X(t) = ξ

∫ t

0

dW (σ)
∫ σ

0

Φ(0, s)V (s)ds

= ξW (t)
∫ t

0

Φ(0, s)V (s)ds− ξ

∫ t

0

W (σ)Φ(0, σ)V (σ)dσ

Using the above equation we can express the original
objective function as follows:

∫ T

0

X(t)dt = ξ
[ ∫ T

0

W (t)
∫ t

0

Φ(0, t)V (t)dt

−
∫ T

0

∫ t

0

W (σ)Φ(0, σ)V (σ)dσ
]

Notice that we can simplify it further by integration by parts.
Defining Z through dZ = W (t)dt, we have
∫ T

0

X(t)dt =

ξ
[
Z(T )

∫ T

0

Φ(0, t)V (t)dt−
∫ T

0

Z(t)Φ(0, t)V (t)dt

−T

∫ T

0

W (t)Φ(0, t)V (t)dt +
∫ T

0

W (t)Φ(0, t)V (t)dt
]

which implies (5) where m(t) is given by

m(t) = Z(T )Φ(0, t)− Z(t)Φ(0, t)

−TW (t)Φ(0, t) + tW (t)Φ(0, t) (6)

which concludes the proof. ♦
Lemma 3.2: m(t) is non-increasing in t for all U(·) ≥ 0,

and is monotonically decreasing for U(t) > 0. Moreover, the
expression for m(·), as given in (6), can equivalently be written
as

m(t) =
∫ T

t

(T − s)U(s)Φ(s, 0)dsΦ(0, t) (7)

where

Φ(s, 0) = exp
(
−

∫ s

0

U(s)ds
)

Proof. The expression for m(t) in (6) can first be simplified
using W (s) =

∫ s

0
dσU(σ)Φ(σ, 0) and deriving

Z(t) = tW (t)−
∫ t

0

sU(s)Φ(s, 0)ds

The expression for m(t) in (7) now follows from direct
calculations.

Using the fact that Φ(t, 0)Φ(0, t) = 1, and

d

dt
Φ(0, t) = (ξ + µ)U(t)Φ(0, t) ,

we obtain

dm(t)
dt

= −(T − t)U(t)− (ξ + µ)U(t)m(t) ,

which is non-positive for all t ∈ [0, T ] since m(t) is nonneg-
ative, and is strictly negative whenever U(t) > 0. ♦

Let us define

` := inf
{

t ∈ (0, T ] :
∫ t

0

K(s)ds = 1
}

. (8)

In view of the results of Lemma 3.1 and Lemma 3.2, we have
the following.

Theorem 3.1: The optimal policy V ∗ exists and is given by

V ∗(t) =
{

K(t) if 0 ≤ t ≤ `,
0 otherwise .

(9)

Proof : Any activation policy V can be viewed as a probability
measure over [0, T ]; let us call Q∗ and Q two random variables
having density V ∗ and V respectively, where V ∗ is defined
in eq. (9), and where V is an arbitrary other policy. By
construction, P [Q > t] ≥ P [Q∗ > t]. Since m is continuous,
for t ∈ I = m([0, T ]) we can define t = min(m−1(t)) so that

P [m(Q∗) > t] = P [Q∗ ≤ t] ≥ P [Q ≤ t] = P [m(Q) > t]

which concludes the proof since Em(Q∗) ≥ Em(Q). ♦
In the rest of the development, we will assume that V (s),

seen as a measure, is non-degenerate, i.e., when it is applied



5

at time t, nodes are activate with positive probability from t
onwards. Formally, we will employ the following

Corollary 3.1: Let
∫ δ

0
V (s)ds > 0 for any δ > 0. Then,

Y (t) > 0, ∀t > 0 (10)

Also, X(t) is a non-decreasing function for all t > 0, and
monotone increasing function when U(t) is strictly positive.

Remark 3.1: (Turnpike property) We note from Theorem
3.1 that for all T large enough (in fact for all T that satisfy∫ T

0
K(s)ds ≥ 1), the optimal threshold ` is the same.

B. Optimal Transmission Control

In the previous subsection we characterized the optimal
activation policy. We now proceed to derive the optimal
transmission policy. From Corollary 3.1, X(t) is a monotonic
increasing function. Furthermore we notice that similarly to
what was shown in [15], the controlled dynamics X with
U(t) can be interpreted as a slower version of the uncontrolled
dynamics of X , i.e., the dynamics obtained when U(t) = 1. In
this subsection, we first derive the uncontrolled dynamics for
a general activation policy. This will then enable us to derive
the optimal control policy in closed form.

1) Uncontrolled Dynamics: Let X(t) denote the uncon-
trolled dynamics of the system: it is the fraction of infected
mobiles when U(t) = 1 for 0 ≤ t ≤ T .

Proposition 3.1: For a given activation policy V , the frac-
tion of infected nodes under U(t) = 1 and X(0) = z is

X(t) =
ξ

ξ + µ

∫ t

0

(1− e−(ξ+µ)(t−s))V (s)ds + z (11)

Proof : From (1) and (2) we have

Ẋ(t) +
ξ

ξ + µ
Ẏ (t) =

ξ

ξ + µ
V (t)

⇒ X(t) + Y (t)
ξ

ξ + µ
=

ξ

ξ + µ

∫ t

0

V (s)ds + z

⇒ Y (t) = (f(t)−X(t))
ξ + µ

ξ
(12)

where we introduced f(t) := ξ
ξ+µ

∫ t

0
V (s)ds + z , which de-

pends only on the activation control. The uncontrolled version
X(t) is obtained by substituting (12) in (1) for U(t) = 1,

which leads to: Ẋ + (ξ + µ)X = (ξ + µ)f . The solution is :

X(t) = e−(ξ+µ)t

∫ t

0

e(ξ+µ)sξ

∫ s

0

V (r)drds + z. (13)

Further, by integration by parts we obtain (11). ♦
Remark 3.2: For any given activation policy V : we substi-

tute (12) into (1) to obtain a single differential equation, which
is equivalent to the original system (1)-(2), i.e.,

Ẋ = U(t)ξg(X, t) (14)

where g(X, t) := (f(t)−X(t)) ξ+µ
ξ .

Remark 3.3: Considering (11), if we let W (r) = ξ
ξ+µ (1−

e−(ξ+µ)r)1{r≥0} , the uncontrolled trajectory appears as the
convolution X = W ∗ V , i.e., it can be seen as the linear
transformation of the basic two hops dynamics via the kernel
V imposed by the activation policy. In fact, since we can inter-
pret V as a measure with total mass 1, in the singular case, i.e.,
when µ = 0 and V = δ(t), we obtain X(t) = (1− e−ξt) + z,
i.e., the case of plain two hops routing, as expected.

We observe also that in case U(t) = c, t ∈ [0, T ], u ≤ c ≤ 1
is a constant energy control policy, a simple time-rescaling
argument offers

X(t) =
ξ

ξ + µ

∫ t

0

(1− e−c(ξ+µ)(t−s))V (s)ds + z = X(c t).

(15)
In the following using the uncontrolled dynamics of the

system, we can obtain the explicit form of the optimal trans-
mission control using the maximum principle [25].

2) Optimal Control:
Definition 3.1: A policy U restricted to take values in [u, 1]

is called a threshold policy with parameter h if U(t) = 1 for
t ≤ h a.e. and U(t) = u for t > h a.e..

Theorem 3.2: Consider the problem of maximizing D(T )
with respect to U(·) subject to the constraint X(T ) ≤ z + x,
under the activation control V .

i. If X(T ) ≤ x + z, then the optimal policy is U(t) = 1.
ii. If X(uT ) > x + z, then there is no feasible solution.

iii. If X(T ) > x+z > X(uT ), then there exists a threshold
policy. An optimal policy is necessarily a threshold one
in the form

U∗(t) =
{

1 if t ≤ h∗

u if t > h∗ (16)

Proof : Parts (i) and (ii) follow immediately from the fact that
X is monotonically non-decreasing. We thus proceed with part
(iii), working under the assumption X(T ) > x > X(uT ). Fix
any activation policy V ; then from the Remark 3.2 we need
to solve

max
U(·)∈[u,1]

∫ T

0

X(t)dt, s.t.Ẋ(t) = U(t) ξ g(X(t), t)

We use the maximum principle to solve this problem.
Introduce the Hamiltonian

H(X, p, U) = X(t) + (ξ + µ)U(t)p(t) (f(t)−X(t)) .

where p(·) is the co-state variable. Since H is linear in U , the
optimal control takes the extreme values u and 1 depending
on whether H is positive or negative (it will be clear from
the arguments below that the case H = 0 occurs on a set
of Lebesgue measure zero). From (12), we know that f(t)−
X(t) > 0 for all t. Hence the sign of H depends solely on
that of p. Thus we arrive at the simple optimality condition:

U(t) =
{

1, if p > 0
u, if p < 0 (17)
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The co-state variable is generated by

ṗ(t) = −dH

dX
= −[1− (ξ + µ)U(t)p(t)]

= −1 + (ξ + µ)U(t)p(t) (18)

Notice that we already know (based on linearity) that there
must be at least one switch; in fact, if there is a switch, the
only viable control would be either U(t) = u or U(t) = 1 for
all t ∈ [0, T ], which is not possible because cases (i) and (ii)
are excluded by assumption.

We now prove that the optimal policy is of the threshold
type by showing that there can be only one switch. There are
three cases to consider based on the sign of p(0) in (18).

Let us first consider the case p(0) < 0: from (18) then
U(0) = u and further from this we can say that ṗ(0) < 0.
This means that p(0+) < p(0) < 0. Hence p(t) will never
change sign, which contradicts the switching condition.

Let us next consider the case p(0) > 0 and −1 +
p(t)U(t)(ξ + µ) > 0. This implies U(0) = 1 and ṗ(0) > 0,
i.e., p(0+) > p(0) > 0. Hence the sign of p(t) always remains
positive and optimal control remains at U = 1. This again
contradicts our assumptions.

Hence the only remaining possibility is that p(0) > 0 but
−1+p(t)U(t)(ξ +µ) < 0. This implies U(0) = 1 but ṗ(0) <

0, i.e., p(0+) < p(0). Notice that the sign of ṗ(t) remains
negative as long as p(t) is decreasing until time h when value
p(h) = 0 is attained. Furthermore, p(h+) < 0 and ṗ(h+) < 0,
and the same reasoning of the previous case applies.

We see that the optimal control starts at U(0) = 1 but
switches to U(h) = u and never returns back. This satisfies
the switching condition and guarantees that optimal control
has exactly one switch. The optimal control is then given by

U(t) =
{

u, if t > h∗

1, if t ≤ h∗ (19)

where h∗ can be computed using the procedure above. ♦
IV. JOINT OPTIMAL CONTROL

The analyses above have clearly led to the complete solution
of the optimization problem (4), which is captured below.

Theorem 4.1: For the optimization problem (4), the solution
is given by the optimal activation control V ∗(t) applied
jointly with the corresponding threshold policy (as optimal
transmission control) given in Thm. 3.2.

A. Activation and Transmission Thresholds

We have seen that the optimal policies are characterized by
two scalar quantities, ` and h∗, taking values in (0, T ). One
interesting question now is whether one should wait for all
the nodes to be activated before switching off the transmission
control or not, i.e., whether it should be h∗ ≤ ` or h∗ > `.
If h∗ ≤ `, it is then possible to activate a smaller number of
relays with consequent energy savings; thus it is of interest to
know the relative order of the thresholds h∗ and `.

For ease of following the development below, let us intro-
duce X as the optimal dynamics for t ≥ h∗: from (1)-(2)

and fixing the control U(t) = u for t ∈ [h∗, T ], with initial
condition X(0) = X(h), we have

Ẋ(t) + u(ξ + µ)X(t) = u(ξ + µ)f

Hence, the optimal dynamics for t ≥ h∗ is of the form

X(t) = e−u(ξ+µ)(t−h)

∫ t

0

eu(ξ+µ)s(ξ + µ)uf(s + h)ds

+X(h)e−(ξ+µ)(t−h), t > h.

Notice that X(T ) = X(T ) = x. Without loss of generality
we assume z = 0 in the rest of the paper unless specified, for
the sake of simplicity.

Theorem 4.2: If T > max{h∗, `}, then the following rela-
tion holds for the bound x and the threshold h∗:

h∗ > `, if x > X(`) + ∆X(`, T ),
h∗ ≤ `, otherwise ,

(20)

where

X(`) =
ξ

ξ + µ

∫ `

0

(1− e−(ξ+µ)(`−s))V (s)ds,

∆X(`, T ) =
( ξ

ξ + µ
−X(`)

)(
1− e−u(ξ+µ)(T−`)

)
.

X(`) denotes the uncontrolled growth of X in t = (0, `] and
∆X(`, T ) refers to the increment in X in (`, T ] under the
controlled dynamics (with U = u ).

Proof : We first consider the case when h∗ > ` and show
that for large values of the threshold h∗, X(T ) is also large.
Further we consider the case when h∗ ≤ ` and show that still
the behavior holds true. Consequently we can conclude that
the result holds.

When h∗ > `, X(T ) = x can be expressed as a summation
of three terms as follows:

x = ∆X(0, `) + ∆X(`, h∗) + ∆X(h∗, T ) (21)

where ∆X(t1, t2) = X(t2)−X(t1). The following dynamics
will be valid over the corresponding intervals:

Ẋ(t) + (ξ + µ)X(t) = (ξ + µ)f(t), 0 < t ≤ ` (22)

Ẋ(t) + (ξ + µ)X(t) = (ξ + µ)f(`), ` < t ≤ h∗ (23)

Ẋ(t) + u(ξ + µ)X(t) = u(ξ + µ)f(`), h∗ < t ≤ T(24)

The first term ∆X(0, `) is given by (11):

∆X(0, `) =
ξ

ξ + µ

∫ `

0

(1− e−(ξ+µ)(`−s))V (s)ds

Similarly ∆X(`, h∗) is obtained from (23) with initial condi-
tion X(`), and subsequently ∆X(h∗, T ) is obtained from (24)
with initial condition X(h∗). Finally we can express x as,

x =
ξ

(ξ + µ)
+

(
X(`)− ξ

(ξ + µ)

)
e−(ξ+µ)u(T−`)+∆(1−u)
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where ∆ = h∗−`. From the above equation it can be seen that
X(T ) increases with ∆. Hence this concludes the first part.
Following a similar approach, we can also show that X(T )
increases with ∆ when h∗ < `. By substituting h∗ = `, we
obtain the closed-form expression for x = X(T ) as

x = X(T ) = X(`) +
ξ

(ξ + µ)
(1− e−u(ξ+µ)(T−`))

♦
Moreover, when both threshold times coincide, i.e. h∗ = `,

the bound x can be expressed as

x = X(T ) = X(`) +
ξ

ξ + µ
(1− e−u(ξ+µ)(T−`)).

B. Uniform Activation

We consider as an example the case K(s) = K0, where∫ `

0
K(t)dt =

∫ `

0
K0dt = 1, which forces the activation of

nodes to be spread uniformly over time. We consider u = 0
for the sake of simplicity. As was done in subsection IV-A,
we consider the fraction of infected node as follows under
the assumption h∗ > ` as in (4.2). However, since we have
assumed u = 0, X(h, T ) = 0. Hence in this case the above
holds when x > X(`).

Proposition 4.1: The optimal threshold for constant activa-
tion is given by

h∗ =
{

min(t̂, T ), if x > X(`) (h∗ > `)
min(t̃, T ), if x ≤ X(`) (h∗ ≤ `)

(25)

where

t̂ =
1

ξ + µ
log

ξ(e(ξ+µ)` − 1)
(ξ + µ)2`(x− ξ

ξ+µ )
,

t̃ =
L(−e−(x`(ξ+µ)2+ξ)/ξ)ξ + x`(ξ + µ)2 + ξ

ξ(ξ + µ)
.

Here L(·) denotes the Lambert function,2 which is real-valued
on the interval [− exp(−1), 0] and always below −1.
Let us first consider when h∗ > l, the total number of infected
node at time T is given as

x = X(l) + ∆X(h, l) + ∆X(T, h)

Last term vanishes due to the fact that u = 0. Therefore using
Eq. (23), we can write

x = X(h) =
ξ

ξ + µ

∫ l

0

(1− e−(ξ+µ)(h−s))K(s)ds

h =
1

ξ + µ
log

ξ(e(ξ+µ)` − 1)
(ξ + µ)2`(x− ξ

ξ+µ )
.

2The Lambert function, satisfies L(x) exp(L(x)) = x. As the equation
y exp(y) = x has an infinite number of solutions y for each (non-zero) value
of x, the function L(x) has an infinite number of branches.

This concludes the first case. For the second case when h∗ < l,
we can express

x = X(h) + ∆X(l, h) + ∆X(T, l)

Since u = 0, only the first term remains. Therefore, we can
express

x = X(h) =
ξ

ξ + µ

∫ h

0

(1− e−(ξ+µ)(h−s))K(s)ds

x =
ξ

(ξ + µ)2
(e−(ξ+µ)h + (ξ + µ)h− 1)

h =
L(−e−(x`(ξ+µ)2+ξ)/ξ)ξ + x`(ξ + µ)2 + ξ

ξ(ξ + µ)
.

This concludes the proof for second case, which together with
first case conclude the proof.

♦
Notice from above that h∗ is approximately linear in `.
Uniform activation is also of interest because of the fol-

lowing reason. In a scenario such as energy harvesting, it is
expected to have cyclic kind of activation, e.g. more nodes are
activated during the day exploiting solar energy than are at
night. In Proposition 5.1 in the next section, we show that the
threshold h∗ depends on E[V ]. This allows us to approximate
the uniform activation with appropriate parameters which may
require simpler calculation.

C. Impact of time horizon T

In the earlier sections we showed that optimal transmission
control policy U∗ is a threshold policy for finite (fixed) time
horizon and state constraint problem. We extend our earlier
results when the time horizon T is extended further to and
analyze asymptotically the impact on optimal policies.

Optimal activation policy V ∗ derived in earlier section
clearly indicates that early activation is optimal (satisfying
the rate constraint K(t)). We also saw that V ∗ is the same
for T above some value `. We next study the impact of T
on U∗. This is summarized in the proposition below. Define
Tm := sup{t : X(t) ≤ x} and Tm := sup{t : X(t) ≤ x}.

Proposition 4.2: Consider maximization of D(T ) subject
to the constraint X(T ) ≤ z + x, under the optimal activation
control V ∗ and transmission control U(t) ∈ [u, 1].

i. For u > 0, there is no feasible policy for any T > Tm.
ii. For u = 0, the optimal transmission policy when T →

∞ is given by,

A∗ =
{

U(t) = 1 if t ≤ Tm

U(t) = 0 if t > Tm.
(26)

Proof : (i) is direct. (ii) follows directly from the fact that the
optimal activation policy V does not depend on T . ♦
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Fig. 1. a) Dynamics of the number of infected nodes under uniform activation, when ` = 0, 5000, 10000, 15000; upper part (a.I) depicts uncontrolled
dynamics, the lower one (a.II) optimal dynamics for x = 0.1 b) CDF of the delay for optimal control: the thin solid lines represent the value attained by the
uncontrolled dynamics. The case ` = 0 corresponds to plain Two hops routing. c) Optimal Threshold under constant activation for two different values of x.

V. EXTENSION TO UNBOUNDED ACTIVATION

In some cases, the activation rate may not be bounded: this
is the case of timer-based activation of batches of relays. Thus,
in this section we extend our model to the case of unbounded
activation, i.e., we assume that, for some τ > 0,

∫ t

t−τ

V (s)ds ≤ Ku(t) ≤ 1

where Ku(t) ≥ 0 is a piecewise continuous function. Again,
the activation rate is subject to the normalization condition∫ T

0
V (s)ds = 1; furthermore, we impose Ku(0) = 0 without

loss of generality. In this case, the optimal activation threshold
is

` := τ ·max{k ∈ N|
∑

Ku(kτ) < 1,
∑

Ku((k +1)τ) ≥ 1}

The main difference from the results derived in Section III-A
is related to the explicit form of the optimal activation control.
Also, the related uncontrolled dynamics under the optimal
activation control can be expressed in a very simple form.
The following theorem captures these.

Theorem 5.1: Let the activation rate be bounded in the in-
tegral form. Let tk = kτ , k = 0, . . . , L−1 such that tL−1 < `,
let tL = ` and define ak = Ku(tk), k = 0, . . . , L − 1, and
aL = 1−∑

h<L ah; ak is zero otherwise. Then

i. The optimal activation control is

V ∗(t) =
∞∑

k=0

akδ(t− tk),

where δ is the Dirac distribution
ii. Under the optimal activation control V ∗, the optimal

uncontrolled dynamics are

X(t) =
∞∑

k=0

akW (t− tk)

where W (r) = (1− e−(ξ+µ)r)1{r≥0}.

Proof : i. Since the proof of Theorem. 3.1 remains intact,
we can derive the first statement from a direct calculation. In
particular, considering any other activation V , we observe that
(5) in this case becomes

∫ T

0

V ∗(t)m(t)dt =
∫ T

0

L∑

k=0

akδ(t− tk)m(t)dt

=
L∑

k=0

akm(tk) =
L∑

k=0

K(tk)m(tk)

≥
L∑

k=0

∫ tk+1

tk

V (s)m(s)ds =
∫ T

0

V (s)m(s)ds (27)

ii. As from (11), the uncontrolled trajectory is given by the
convolution X − z = W ∗ V , so that

X(t) = W ∗
L∑

k=0

akδ(t− tk) =
L∑

k=0

akW (t− tk)

which concludes the proof ♦
It is immediate to observe that Corollary 3.1 applies to the

case of unbounded activation rate also, from which it follows
that the proof of Theorem 3.2 can be applied tout court and
as a consequence Corollary 4.1 as well.

Finally, the previous result shows that, apart from the
effect of initial condition z, the uncontrolled dynamics can be
obtained as a linear combination of the sequence of delayed
plain dynamics that would be obtained starting the system at
the activation epochs tk, under an empty system (i.e., under
zero initial conditions). The weights, in turn, are given by the
fraction of nodes activated at times tk.

A. Role of V ∗ in the case h∗ > `

Using the results for unbounded activation, we can provide
more insight on the role of V ∗ on the optimal success
probability. As we will see in the following section, this result
is very well confirmed by numerical results. In particular,
consider an optimal (bounded) activation policy V ∗ and the
related optimal transmission control. Let us consider u = 0
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and z = 0 for the sake of simplicity. Assume h∗ > `, and let
Ŵ = W1{0≤u≤h∗−`}

∫ T

0

X(u)du =
∫ h∗−`

0

Ŵ (u)du

∫ h∗

0

V ∗du =
∫ h∗

0

Ŵ (u)

(28)
where we used that Ŵ (t) = 0 for t < 0, V ∗ has a finite
support, and the integral of the convolution is the product of
the integrals. Now, let τ > 0 and consider the unbounded
activation obtained using as a bound Ku(t) =

∫ t

0
V ∗(u)du;

we obtain

h∗ =
1

ξ + µ
log

( ξ

ξ + µ

Ẽ
ξ

ξ+µ − x

)

where Ẽ =
∑L

k=1 ak(τ)e−kτ . Taking the limit for τ → 0, we
observe that

lim
τ→0

Ẽ =
∫ `

0

e−(ξ+µ)uV ∗(u)du = GXV ∗ (ξ + µ)

where QV ∗ is a r.v. having density V ∗, and GQV ∗ (ξ + µ)
is the moment generating function calculated in ξ + µ. Thus
we obtain the following result that holds for the bounded
activation case:

Proposition 5.1: Let optimal activation policy V ∗ be such
that ` > h∗; then

h∗ =
1

ξ + µ
log

( ξ

ξ + µ

GQV ∗ (ξ + µ)
ξ

ξ+µ − x

)
.

Notice that, as a consequence of the above, using the standard
moment series expansion for the moment generating function,
we obtain GQV ∗ (ξ + µ) = 1 − (ξ + mu)EQV ∗ + 1

4 (ξ +
µ)2EQ2

V ∗ + . . ., which leads to GQV ∗ (ξ + µ) = 1 − (ξ +
µ)EQV ∗ + o(`2(ξ +µ)2). Thus, under the assumptions of the
proposition above, and when ` ¿ 1/(ξ + µ), we expect the
tranmission threshold to be linear in EQV ∗ .

Finally, according to (28), the system performance, i.e.,
D(T ) will be determined by the value EQV ∗ .

VI. NUMERICAL VALIDATION

Here we provide a numerical validation of the model. Our
experiments are trace based: message delivery is simulated by
a Matlab script receiving as input pre-recorded contact traces;
in our simulations, we assume time is counted from the time
when the source meets the first node, so that z = 1+Pa, where
Pa is the probability that the first node met is active. Also,
active nodes lifetime is an exponential r.v. with parameter µ.

We considered a Random Waypoint (RWP) mobility model
[26]. We registered contact traces using Omnet++ in a scenario
where N nodes move on a squared playground of side 5 Km.
The communication range is R = 15 m, the mobile speed is
v = 4.2 m/s and the system starts in steady-state conditions
in order to avoid transient effects [27]. The time limit is set
to T = 20000 s. Most graphs refer to the case N = 200.

With the first set of measurements, we verified the fit of
the activation model for the uncontrolled dynamics, i.e., when
x+z = 1, and using a uniform activation policy. We assumed
that µ = 0 and u = 0. We selected at random pairs of source
and destination nodes and traced the dynamics of the infected
nodes, see Fig. 1a.I); as see there and in the following figures
the fit with the model is rather tight.

The different curves seen in Fig. 1a.I) are obtained varying
the constraint on the uniform activation policy; in particular the
activation threshold ` = 5000, 10000, 15000. We included also
the unbounded activation case when all relays can be activated
at time t = 0; namely for ` = 0 and V = δ. As indicated there,
in the case of constant activation the dynamics a change of
concavity must occur (notice that X(∞) = 1). Indeed, see
for example in [15], plain two hops routing has concave state
dynamics. However, the change of concavity is an effect of
the activation term, since (1)-(2) gives Ẍ = ξ(ξ + µ)Y −K0

which shows a sign switch when ` < T .
Also, we depicted in Fig. 1b) the values of the optimal

threshold for the transmission control in the case of uniform
activation policy, at the increase of the activation threshold
`. We considered two energy bounds x + z = 0.1 and
x + z = 0.05. As we expected, a slower activation forces
the optimal threshold to increase: as it appears in the figure,
for the chosen activation constraint, the threshold increase is
almost linear with `, showing congruence with (25). Notice
that for the parameters chosen, we have ` < h∗. The linear
increase confirms the observation made in Prop. 5.1, since in
both cases EQV ∗ = `/2 is linear in `.

We repeated in Fig. 1a.II) the measurements of the dynamics
of infected nodes and collected the CDF of the delay in the
case of the optimal control in Fig. 1c). We can clearly observe
the effect of the threshold policy on the dynamics of the
infected nodes, since the increase of the number of infected
stops at the threshold (u = 0). Conversely, we can observe
that the delay CDF has a slightly lower curve compared to the
uncontrolled case (reported with a thin solid line).

So far, we did not consider the effect of µ on the success
probability D(T ). Fig. 2 depicts the success probability for
increasing values of µ. As expected, the higher the relative
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magnitude of µ with respect to ξ, the lower the success
probability. However, the effect of energy exhaustion due to
beaconing takes over for larger values of µ and causes a
much faster decay in case of looser constraints on energy
(x + z = 0.1) than in the case of tighter ones (x + z = 0.05).

Finally, we compared the effect of the activation bound
on the success probability D(T ). In particular, we consid-
ered three alternative bounds: uniform, squared sine and
exponential. In the case of a squared sine bound, we let
K(t) = 2

` sin2( 2
π

t
` ). The comparison with the uniform ac-

tivation shows that they result in a similar performance: as
observed in Fig. 3a) the optimal transmission control and as
a consequence the success probability (Fig. 3b)) as a function
of ` is similar. This behavior is due to the fact that in both
cases h∗ ≥ ` and the two activation measures have the
same expected value. This confirms what was predicted in
Prop. 5.1: in practice the system loses trace of the shape of
the distribution as soon h∗ ≥ `. We also depicted the behavior
in the case of a bound given by a truncated exponential where
α = −70ξ: as seen in Fig. 3a) and Fig. 3b), the higher
activation rate permits a larger success probability. This effect
becomes dominant at larger values of ` and this results in the
slower increase of the transmission threshold which saturates
to a reference value; notice that this is a consequence of the
exponential saturation of EQV ∗ with `, as observed already
from Prop. 5.1. We repeated the measurements on the success
probability D(T ) for increasing numbers of nodes, as reported
in Fig. 3c). We can see the match of the uniform activation
and the squared sine one. Also, we reported the behavior under
truncated exponential activation in the case of |α| = 70ξ; the
success probability in all these examples is seen to depend
mostly on the expected value of V ∗, as observed earlier.

VII. CONCLUDING REMARKS

In this work, we have considered the joint optimization
problem underlying activation of mobiles and transmission
control in the context of DTNs. Multi-dimensional ordinary
differential equations have been used to describe (using the
fluid limit) the associated system dynamics. Since the previ-
ously used approaches were not applicable to establish the
structure of optimal activation policies, we devised a new

method that is based on identifying the exact weight of the
activation control at each time instant. We further validated our
theoretical results through simulations for various activation
schemes or constraints on activation.

The control problems that we considered were formulated
as maximization of the throughput subject to a constraint on
the energy expended. We note that we could have formulated
the problem with soft constraints, instead of hard constraints,
using a weighted sum of throughput and energy cost. We
argue that the optimal joint policy for this soft-constrained
problem is of a double threshold type (i.e., both u and v have
threshold structures). Indeed, the new problem can be viewed
as the maximization of the Lagrangian that corresponds to the
constrained problem. We can thus associate with the original
problem a “relaxed” problem. For a fixed u, we have already
seen that the cost is linear in v(·). Therefore the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient
optimality conditions, which implies that a threshold-type v
is also optimal for the unconstrained problem. To show that
a double threshold policy is optimal for the relaxed problem,
it will be necessary to verify that there is a unique optimal
policy for the constrained problem, which we leave as future
research, which we intend to undertake.
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