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ABSTRACT
This paper addresses the problem of computing approxi-
mate answers to continuous join queries. We present a new
method, called DHTJoin, which combines hash-based place-
ment of tuples in a Distributed Hash Table (DHT) and dis-
semination of queries exploiting the trees formed by the un-
derlying DHT links. DHTJoin distributes the query work-
load across multiple DHT nodes and provides a mechanism
that avoids indexing tuples that cannot contribute to join
results. We provide a performance evaluation which shows
that DHTJoin can achieve significant performance gains in
terms of network traffic.

1. INTRODUCTION
Recent years have witnessed major research interest in

data stream management systems (DSMS), which can man-
age continuous and unbounded sequences of data items. There
are many applications that generate data streams including
financial applications [7], network monitoring [24], telecom-
munication data management [6], sensor networks [4], etc.
Processing a query over a data stream involves running the
query continuously over the data stream and generating a
new answer each time a new data item arrives. However,
the unbounded nature of data streams makes it impossible
to store the data entirely in bounded memory. This makes
difficult the processing of queries that need to compare each
new arriving data with past ones. For example, real data
traces of IP packets from an AT&T data source [11] show
an average data rate of approximately 400 Mbits/sec, which
makes it hard to keep pace for a DSMS. Moreover, a DSMS
may have to process hundreds of user queries over multi-
ple data sources. For most distributed streaming applica-
tions, the naive solution of collecting all data at a single

site is simply not viable [8]. Therefore, we are interested
in techniques for processing continuous queries over collec-
tions of distributed data streams. This setting imposes high
processing and memory requirements. However, approxi-
mate answers are often sufficient when the goal of a query is
to understand trends and making decisions about measure-
ments or utilizations patterns. An example of such queries
is join queries which are very important for many applica-
tions. For example, consider a network monitoring appli-
cation that needs to issue a join query over traffic traces
from various links, in order to monitor the total traffic that
passes through three routers (R1, R2 and R3) and has the
same destination host within the last 10 minutes. Data col-
lected from the routers generate streams S1,S2 and S3. The
content of each stream tuple contains a packet destination,
the packet size and possibly other information. This query
can be posed using a declarative language such as CQL [2],
a relational query language for data streams, as follows:

q1: Select sum (S1.size)
From S1[range 10 min], S2[range 10 min], S3[range 10 min]
Where S1.dest=S2.dest and S2.dest=S3.dest

A common solution to the problem of processing join queries
over data streams is to execute the query over a sliding
window [12] that maintains a restricted number of recent
data items. To improve performance and scalability, dis-
tributed processing of data streams is a well accepted ap-
proach [25][8]. However, even in a distributed setting high
stream arrival rates and cost-intensive query operations may
cause a DSMS to run out of resources. For example, when
the memory allocated to maintain the state of a query is not
sufficient to keep the window size entirely, the completeness,
i.e., the fraction of results produced by an query operator
over the total results (which could be produced under per-
fect conditions) is reduced.

A major problem in the distributed processing of data
streams is the occurrence of node failures. For example,
consider the join query q1 of the above example. A possible
query plan that consists of two join operations is (S1 ⊲⊳

S2) ⊲⊳ S3 where each join operation can be allocated to
two different nodes and streams tuples come from different
nodes. If during the processing of the continuous query q1

the node that processes S3 fails, the node that processes
S1 ⊲⊳ S2 can generate partial results irrespective of whether



they produce join query results. Thus, if no matching tuple
of S3 appears in the node that processes (S1 ⊲⊳ S2) ⊲⊳ S3, the
resources involved in sending, processing and storing S1 ⊲⊳

S2 tuples are wasted and the results may be incomplete.
Furthermore, this produces unnecessary intermediate join
results and reduces completeness of results due to the lack
of matching tuples caused by the failure of a node.

In this paper, we address the problem of computing ap-
proximate answers to windowed stream joins over data streams.
We propose a method, called DHTJoin, which deals with ef-
ficient processing of join queries over all data items which are
stored in a DHT network. We provide an efficient process-
ing of join queries, in terms of network traffic, by avoiding
the indexing of tuples that are not involved by the target
continuous query and by addressing node failures that can
produce unnecessary intermediate join results. We evalu-
ated the performance of DHTJoin through simulation. The
results show the effectiveness of our solution compared with
previous work.
This paper is an extended version of [19] with the following
added value. First, we present a dissemination system (Sec-
tion 3.2) based on the trees formed by DHT links that uses
O(n − 1) messages. This yields an important reduction of
network traffic compared with the O(nlogn

2
) messages gener-

ated by the dissemination system proposed in our previous
work. We also propose (Section 3.4) and validate (Section 5)
an optimization that avoids the sending of unnecessary inter-
mediate results, i.e. tuples that cannot contribute to join re-
sults, when a node fails. For example, considering the query
q1 of the above example and the query plan (S1 ⊲⊳ S2) ⊲⊳ S3,
when the node that processes (S1 ⊲⊳ S2) ⊲⊳ S3 finds out that
cannot generate join results due to the lack of S3 matching
tuples, it sends a feedback message to node that processes
S1 ⊲⊳ S2 which immediately suspends the sending of unnec-
essary intermediate results. Finally, we show analytically in
Section 4 that DHTJoin can scale up the processing of con-
tinuous join queries using multiple peers and improves the
completeness of join results linearly as memory capacity is
increased.
The rest of this paper is organized as follows. In Section 2,
we introduce our system model and define the problem. In
Section 3, we describe DHTJoin. In Section 4, we provide
an analysis of result completeness of our algorithms which
relates memory constraints, stream arrival rates and result
completeness. In Section 5, we provide a performance eval-
uation of our solution through simulation using Java. In
Section 6, we discuss related work. Finally, Section 7 con-
cludes.

2. SYSTEM MODEL AND PROBLEM DEF-
INITION

In this section, we introduce a general system model for
processing data streams over DHTs, with a DHT model and
a stream processing model. Then, we state the problem.

2.1 DHT Model
In our system, the nodes of the overlay network are or-

ganized using a DHT protocol. While there are significant
implementation differences between DHTs [20] [23], they all
map a given key k onto a node p using a hash function
and can lookup p efficiently, usually in O(logn) routing hops
where n is the number of nodes. DHTs typically provide two

basic operations : put(k, data) stores a key k and its asso-
ciated data in the DHT using some hash function; get(k)
retrieves the data associated with k in the DHT. Tuples are
originated at certains nodes and continuous queries are orig-
inated at any node of the network. Nodes insert data in the
form of relational tuples and queries are represented in SQL.
Tuples and queries are timestamped to represent the time
that they are inserted in the network by some node. We
assume that data and query sources are equipped with well-
synchronized clocks by using the public domain Network
Time Protocol (NTP) designed to work over packet-switched
and variable latency data networks and already tested in a
distributed DSMS as Borealis [25]. Each tuple has a unique
key generated using the name of the node that inserts it, the
name of the relation to which it belongs and its timestamp.
Additionally, each query is associated with a unique key qid

used to identify it in query processing, optimization tasks
and to relate it to the node that submitted it. We identify
two types of queries depending on the attributes involved.
If the join attribute is the same in all the relations of the
query (e.g. query q1 of section 1) we say that it is a query
of type 1, otherwise we say that the query is of type 2, i.e.
the join attributes are different.

2.2 Stream Processing Model
A data stream Si is a sequence of tuples ordered by an

increasing timestamp where i ∈ [1..m] and m ≥ 2 denotes
the number of input streams. At each time unit, a num-
ber of tuples of average size li arrives to stream Si. We
use λi to denote the average arrival rate of a stream Si in
terms of tuples per second. Many applications are inter-
ested in making decisions over recently observed tuples of
the streams. This is why we maintain each tuple only for a
limited time. This leads to a sliding window S[Wi] over Si

that is defined as follows. Let Wi denotes the size of S[Wi]
in terms of seconds, i.e. the maximum time that a tuple is
maintained in S[Wi]. Let TS(s) be a function that denotes
the arrival time of a tuple s and t be current time. Then
S[Wi] is defined as S[Wi] = {s|s ∈ Si ∧ (t − TS(s) ≤ Wi}.
Tuples continuously arrive at each instant and expire after
Wi time steps (time units). Thus, the tuples under consid-
eration change over time as new tuples get added and old
tuples get deleted. In practice, when arrival rates are high
and the memory dedicated to the sliding window is limited,
it becomes full rapidly and many tuples must be dropped
before they naturally expire. In this case, we need to decide
whether to admit or discard the arriving tuples and if ad-
mitted, which of the existing tuples to discard. This kind
of decision is made using a load shedding strategy [22][26]
which yields that only a fraction of the complete result will
be produced.

2.3 Problem Definition
In this paper, we address the problem of processing join

queries over data streams. We view a data stream as a se-
quence of tuples ordered by monotonically increasing times-
tamps. The nodes are assumed to synchronize their clocks
using the public domain Network Time Protocol (NTP),
thus achieving accuracies within milliseconds [3]. Each tu-
ple and query have a timestamp that may be either implicit,
i.e. generated by the system at arrival time, or explicit, i.e.
inserted by the source at creation time. Formally, the prob-
lem can be defined as follows. Let S = {S1, S2, ...., Sm} be



a set of data streams, and Q = {Q1, Q2, ...., Qn} be a set of
join queries specified on these data streams. Our goal is to
provide an efficient method to execute Q over S in a way
that minimizes network traffic.

3. DHTJOIN METHOD
In this section, we describe our solution, DHTJoin, for

processing continuous join query processing using DHTs.
The main issues for processing continuous queries in DHTs
are the following: how to route data and queries to nodes in
an efficient way; how to provide a data storage mechanism
for storing relational data; and how to provide a good ap-
proximate answer to join queries.
DHTJoin has two steps: indexing of tuples and dissemina-
tion of queries. A tuple inserted by a node is indexed, i.e.,
stored at another node using DHT primitives and a query is
disseminated using the embedded trees inherents to DHTs
networks. However, a node indexes a tuple only if there is a
query that contains an attribute of the arriving tuple in its
where clause. To this end, a node stores locally a dissemi-
nated query and once it receives a tuple it checks for already
disseminated queries that contain an attribute of the arriv-
ing tuple in its where clause.
We describe the design of DHTJoin based on Chord which
is a simple and very popular DHT. However, the techniques
used here can be adaptable to others DHTs such as Pas-
try [21] and Tapestry [28]. To process a query, we consider
different kinds of nodes. The first kind is Stream Reception
Peers (SRP) for indexing tuples to the second kind of nodes,
the Stream Query Peers (SQP). In Figure 1(b), nodes 3, 6
and 7 correspond to SRP because they receive tuples belong-
ing to streams z, y, and x respectively. SQP are responsible
for executing query predicates over the arriving tuples using
their local sliding windows, and sending the results to the
third kind of node(s), the User Query Peers (UQP). In Fig-
ure 1(b), nodes 1 and 4 are SQP because node 1 computes
the join predicate X.A = Y.A of query q2 (submitted at
node 0) and node 4 performs the join predicate Y.B = Z.B

of q2. In addition, node 0 is a UQP because query q2 was
submitted at this node.
To support dissemination of queries, a node must be a dis-
semination node (i.e. executes a dissemination protocol)
while to index tuples, a node must be a DHT peer. Note
that the difference between SRP, SQP and UQP is functional
and the same node can support all these functionalities.

3.1 Indexing tuples
Let us describe our DHTJoin method for streams S =

{S1, S2, ...., Sm}. Let si be a tuple belonging to Si. Let A

be the set of attributes in si and val(si, α) be a function
that returns the value of an attribute α ∈ A in tuple si.
Let h be a uniform hash function that hashes Si’s name
and val(si, α) into a DHT key, i.e. a number which can be
mapped to a node id. Let S[Wi] denote a sliding window on
stream Si. Recall that we use time-based sliding windows
where Wi is the size of the window in time units. At time t,
a tuple belongs to S[Wi] if it has arrived in the time interval
[t − Wi, t].
For indexing a tuple si that arrives at a SRP, each tuple ob-
tains an index key computed as key = h(Si, val(si, α)). The
attribute α in si is chosen by searching locally for queries
that contains α in its where clause. Then si is indexed to
a SQP, by performing put(key, si). Thus, tuples of different

streams having the same key are put in the same SQP node
and are stored in sliding windows where they are processed
to produce the result of a specific join predicate.

3.2 Disseminating queries
Query dissemination is important to distribute query load

so that many DHT nodes may participate in query process-
ing tasks or optimization decisions. A query can originate
at any of the nodes and is disseminated using a tree [5]. To
disseminate a query, DHTJoin dynamically builds a dissem-
ination tree as proposed in [9]. The root of the tree is the
node that submits the query (an UQP node). The query is
disseminated from the root node to all nodes of the DHT
using a divide-and-conquer approach. A dissemination mes-
sage contains qid and a range of dissemination. For example,
using a fully-populated Chord ring with 8 nodes, each one
contains a routing table of log(n) entries called fingers. The
ith entry in the table at node n contains the identity of the
first node that succeeds or equal n + 2i. A dissemination
message initiated at node 0 is sent to finger nodes 1, 2 and
4 (see Figure 2) giving them the disseminations limits [1,2),
[2,4) and [4,0) respectively. The disseminations limits are
used to restrict the forwarding space of a node and they are
constructed using as a upper bound the finger i + 1. Each
node applies the same principle reducing the search scope.
When node 2 receives the dissemination message with limits
[2,4) it examines the routing table and sends the message to
node 3. Once node 4 receives the dissemination message it
examines the routing table and sends the message to nodes
5 and 6 with limits [5 ,6) and [6,0) respectively. In the same
way, node 5 does not continues with the dissemination pro-
cess (since there are no nodes between [5,6)) and node 6
disseminates the message to node 7. This forwarding pro-
cess assures a network coverage of 100%, generates n − 1
messages and a tree of depth log(n), which fixes the latency
of query dissemination.

3.2.1 Adaptability to other DHTs
The design of DHTJoin is based on Chord which is a sim-

ple and very popular DHT. However, the dissemination tech-
nique used can be adapted to others DHTs such as Pastry
[21] and Tapestry [28]. Recall that the basic idea in the dis-
semination of queries (using Chord) is to consider a lookup

operation as a binary search in spite of its ring geometry. In
the case of Pastry and Tapestry are both extended versions
of PRR trees that support dynamic node membership.
We here take Pastry as an example and demonstrate how
to apply the dissemination of queries into Pastry using the
mechanism proposed in [5]. Assuming a network of size n

each Pastry node maintains a routing table of log
2bn rows

with 2b entries each. For the purposes of routing the iden-
tifier of a node and keys can be thought of as a sequence of
L digits in base 2b. The mechanism to route a message is
prefix-based, i.e. the routing is achieved by forwarding the
message to a node that shares a common prefix by at least
one more digit. Pastry can route a message to any node in
log

2bn hops. For easy of explanation we use b = 1, L = 3
and a network of 8 nodes. A dissemination message initiated
a node 000 contains the query id qid and the message is sent
to the 3 nodes of its routing table 100, 010 and 001 adding
the routing table row r of each node. When a node receives
a dissemination message it searches in the routing table all
the nodes located in rows greater than r (if any) and dissem-



(a) A join example of query type 1 (b) A join example of query type 2

Figure 1: Query Processing in DHTJoin

Figure 2: A dissemination tree formed using DHT
links of a 8-node Chord ring

inates them the message. This process is repeated at each
node receiving the message generating a dissemination tree
of depth log(n).

3.3 Example of DHTJoin query processing
Let us illustrate how DHTJoin performs query processing

using the following query of type 2:
q2: Select Y.B, Z.A
From X[range 5 min], Y[range 5 min], Z[range 5 min]
Where X.A=Y.A and Y.B=Z.B

This query specifies an equijoin among X, Y and Z streams
over the last 5 minutes. The query q2 is submitted at node 0
and disseminated over the entire network as soon as it is sub-
mitted. Thus, after a while, all nodes will know the existence
of this query and be able to index the incoming streams (tu-
ples). Once an X-, Y - or Z-tuple arrives at nodes 7, 6 and
3 respectively, each node checks locally whether the query
q2 contains in its where clause an attribute α of the arriving
tuple (see Figure 1(b)). If yes, nodes 7, 6 and 3 execute the
task of a SRP. For instance, in our example, node 7 indexes
xi by performing two operations: key = h(X, val(xi, α))

and straight afterwards put(key, xi). A join predicate with
respect to q2 is evaluated at a SQP (node 1) only with tuples
that arrive in the system after the query.
DHTJoin manages the sliding windows at each SQP node
as follows. Upon each indexed tuple arrival at a SQP node,
tuples that have expired are invalidated from the sliding win-
dow of a SQP. For example, at node 1 in Figure 1(b), tuples
expired in S[WY ] are invalidated on the arrival of X-tuples.
The load shedding procedure is executed over S[WX ]’s buffer
if there is not enough memory space to insert the arriving
tuple. In our example, the intermediate results produced by
SQP node 1 are sent to SQP 4 using the value of B attribute
belonging to the Y-tuple using key = h(Y, val(yi, B)) and
straight afterwards put(key, {xi, yj}). The join result tuples
produced by SQP node 4 are immediately sent to the appro-
priate UQP node (whose address is provided when starting
query dissemination).
For queries of type 1 (see Figure 1(a)), we apply the same
method. However, as the join attribute is the same in all
the relations of query q1, all the tuples having the same at-
tribute value and the join operators are located in the same
node without producing intermediate results. In our exam-
ple nodes 7,6 and 3 indexes xi, yi and zi tuples in SQP nodes
1 and 4 depending of the join attribute value. The results
produced by SQP nodes 1 and 4 are sent to the UQP node.

3.4 Optimization
DHTJoin distributes the query workload across multiple

DHT nodes and provides a mechanism that avoids indexing
tuples using attributes not contained in the where clause of
a query. However, when a source of data streams interrupts
its operation, an SQP node can generate partial results ir-
respective of whether they produce join query results. In
this section, we address the problem of indexing tuples that
never contribute to generate join results.
Let us consider a query of type 2 where there are nodes con-
nected by a producer-consumer relationship, whereby a pro-



Table 1: Variables and functions used in our analysis
n number of nodes
m number of streams in query Q

S = {S1, S2, ...., Sm} set of streams
λi arrival rate of stream i in tuples/sec
Wi window size of stream i in seconds
sel join selectivity ∈ [0..1]
m(Si) functions that returns the memory

assigned to Si tuples

ducer node generates tuples to be processed by a consumer
node [27]. For example, in query q2 (see Figure 1(b)), node
1 is the producer of join tuples between X and Y (X ⊲⊳ Y )
that node 4 joins with Z-tuples. If the Z source (see node 3
in Figure 1(b)) leaves the DHT, the indexing of Z-tuples is
stopped, thus yielding no join results because of no match-
ing tuples in node 4. Furthermore, if no matching tuples of
Z appears in node 4 before expiration of X ⊲⊳ Y tuples, the
resources involved in sending, processing and storing these
tuples are wasted.
Motivated by the above situation, we propose the following
optimization. Once a node (e.g. node 4) detects that it is
not possible to generate join results, due to the absence of
matching tuples of Z, it sends a message to node 1 alerting
that is not necessary send tuples. This tuple stays stored
at node 1 as long as it fits in the window size. Once the
communication with the source of Z-tuples is reestablished,
node 4 sends a message to node 1 alerting that the tuples can
be sent. In this way, during the period that node 4 does not
receive Z-tuples, some tuples stored in node 1 are deleted
due to window constraints, thus avoiding to send tuples that
never contribute to generate join results.
By eliminating unnecessary intermediate results, this opti-
mization yields an important reduction of network traffic
and a better utilization of local resources. In sensor net-
works where the nodes are generally powered by batteries
and power preservation is a major objective, this optimiza-
tion is particularly useful as reducing network traffic yields
reduced power consumption.

4. ANALYSIS OF RESULT COMPLETENESS
The notion of result completeness is important in dis-

tributed and P2P databases since partial (incomplete) query
answers are often only possible[18][16]. Result completeness
is thus defined as the fraction of results actually produced
over the total results (which could be produced under per-
fect conditions). In data streaming applications,the poten-
tial high arrival rates of streams impose high processsing
and memory requirements. However, approximate answers
are often sufficient when the goal of a query is to under-
stand trends and making decisions about measurement or
utilization patterns. Query approximation can be done by
limiting the size of states maintained for queries [15]. In our
analysis we focus in the case where the memory allocated
to maintain the state of a query is not sufficient to keep
the window size entirely, thus reducing the received join re-
sults and completeness. DHTJoin provides more memory to
store tuples, but we consider that determining the number of
computing resources necessaries to achieve a certain degree
of completeness for a given query is an important aspect in
the setup phase of DHTJoin.

In this section, we propose formulas which relate peer mem-
ory constraints, stream arrival rates, and result complete-
ness. We will use these formulas in our performance evalu-
ation and they could be useful to a DHTJoin user (e.g. an
application developer) to define and tune a DHT network
for specific application requirements. We provide the neces-
sary equations to calculate the completeness in a 2-way join
and afterwards we generalize our results for a m-way join.
For ease of analysis, we make simplifying assumptions: the
tuples are uniformly distributed across the DHT network;
the memory assigned to store tuples is the same at each peer;
we use the average rate to characterize the rate of arrivals of
incoming tuples and stream tuples arrive in monotonically
increasing order of their timestamps. We use the notations
specified in Table 1. In order to illustrate our analysis, let
us consider the following join query over two streams S1 and
S2:

Q: Select *
from S1[range 5 min], S2[range 5 min]
where S1.x = S2.x

The expected tuple arrival rate of streams S1 and S2 at each
node of the DHT is λ1

n
and λ2

n
respectively. Thus, the ex-

pected number of join tuples generated by S1 ⊲⊳ S2 per unit
time at each node can be estimated as

T (S1, S2) = sel × (
W1λ1

n
) × (

W2λ2

n
) (1)

Each node needs a memory space for storing tuples in
its local sliding window equivalent to W1λ1

n
and W2λ2

n
. In

general, if (Wiλi

n
> m(Si)) we have a loss rate (Lr) to store

tuples equivalent to:

Lr(Si) =

(

0, Wiλi

n
≤ m(Si)

Wiλi

n
− m(Si), otherwise

(2)

Assuming that memory is insufficient to retain all the tu-
ples in W1 and W2, the loss of join tuples L of S1 and S2

is:

L(S1) = sel × Lr(S1) × (
W2λ2

n
) (3)

L(S2) = sel × Lr(S2) × (
W1λ1

n
) (4)

Let αi be the Si-tuples stored in the memory space m(Si)
and βi be the Si-tuples not stored due to memory constraints
(see Figure 3). We can rewrite equations (3) and (4) as:

L(S1) = sel×β1×(α2+β2) = (sel×α2×β1)+(sel×β1×β2)

L(S2) = sel×β2×(α1+β1) = (sel×α1×β2)+(sel×β1×β2)

Notice that the tuples related to expression (sel×β1×β2)
are counted in both L(S1) and L(S2). This expression can
be rewritten as: (sel × Lr(S1) × Lr(S2)). The total loss of
join tuples TL of S1 ⊲⊳ S2 is the sum of the loss of join tuples
L(S1) and L(S2) minus the tuples counted twice:

TL(S1, S2) = L(S1) + L(S2)− (sel×Lr(S1)×Lr(S2)) (5)

The completeness C of a S1 ⊲⊳ S2 join query is the fraction
of total results T (S1, S2) minus the loss of tuples TL(S1, S2)
and total results T (S1, S2), using equation (1) and equation
(5) C is:

C =
T (S1, S2) − TL(S1, S2)

T (S1, S2)
(6)



Figure 3: A join state including stored and non
stored tuples

Developing expressions in (6) allows us to simplify C to:

C =
n2 × m(S1) × m(S2)

W1λ1 × W2λ2

(7)

Moreover, we can write (7) as:

n =

s

C × (W1λ1) × (W2λ2)

m(S1) × m(S2)
(8)

This equation allows us to evaluate how many peers are
necessary to evaluate a 2-way join query.
Now we generalize our analysis to m-way joins as following.
Recall that the total loss of join tuples TL is the sum of
the loss of join tuples minus the tuples counted more than
one time. The sum of the loss of join tuples can be easily
extended to an m-way join as

Pm

i=1
L(Si). However, the

expression that represents the tuples counted more than one
time is more difficult to generalize. We use the same method
of rewriting (3) and (4) to find the expression that represents
the case of tuples counted more than one time. Thus in
a S1 ⊲⊳ S2 ⊲⊳ S3 join we rewrite L(S1),L(S2) and L(S3),
discovering that (sel2 × β1 × β2 ×α3), (sel2 × β1 × β3 ×α2)
and (sel2 ×β2 ×β3 ×α1) are counted twice and (sel2 ×β1 ×
β2 × β3) is counted triple. Rewriting αi and βi we arrive at
the following expression:

sel
2
Lr(S1)Lr(S2)m(S3) + sel

2
Lr(S1)Lr(S3)m(S2)+

sel
2
Lr(S2)Lr(S3)m(S1) + 2sel

2
Lr(S1)Lr(S2)Lr(S3).

Repeating the same method with m-way joins (m ≥ 4) and
analyzing the resulting expressions, we arrive at the follow-
ing general expression for a S1 ⊲⊳ S2 ⊲⊳ .... ⊲⊳ Sm join:

m
X

k=2

X

S′⊆S

|S′|=k

X

S′′⊆S

|S′′|=m−k

S′′∩S′
=∅

(selm−1(k − 1)
Y

a∈S′

Lr(a)
Y

b∈S′′

m(b))

Now, the general case of (5) can be expressed as:

TL(S1, S2, ...., Sm) =

m
X

i=1

L(Si)−

m
X

k=2

X

S′⊆S

|S′|=k

X

S′′⊆S

|S′′|=m−k

S′′∩S′
=∅

(selm−1(k − 1)
Y

a∈S′

Lr(a)
Y

b∈S′′

m(b))

(9)

The completeness C of a S1 ⊲⊳ S2 ⊲⊳ .... ⊲⊳ Sm join query,
using the general form of (1) and equation (9) is:

C =
T (S1, S2, ...., Sm) − TL(S1, S2, ...., Sm)

T (S1, S2, ...., Sm)
(10)

Developing expressions in (10) allows us to simplify C to:

C =
nm

Qm

i=1
m(Si)

Qm

i=1
Wiλi

(11)

and to obtain

n = m

s

C ×
Qm

i=1
Wiλi

Qm

i=1
m(Si)

(12)

It is clear from our analysis that (11) is independent of
selectivity which is reasonable in the context of continuous
join queries.
As our analysis shows, DHTJoin can scale up the processing
of continuous join queries using multiple peers and improve
the completeness of join results. Using (12) a DHTJoin user
can adjust the size of the network by evaluating how many
peers are necessary to process a continuous join query for
given stream arrival rates and a desired result completeness.

5. PERFORMANCE EVALUATION
To test our DHTJoin method, we built a Java-based sim-

ulator. Our simulator is based on Chord which is a simple
and efficient DHT. We generate arbitrary input data streams
consisting of synthetic asynchronous data items with no tuple-
level semantics. We have a schema of 4 relations, each one
with 10 attributes. In order to create a new tuple we choose
a relation and assign values to all its attributes using a Zipf
distribution with a default parameter of 0.9. The max value
of the domain of the join attribute is fixed to 1000. Tuples
on streams are generated at a constant rate of 30 tuples per
second. Queries are generated with a mean arrival rate of
0.02, i.e., a query arrives to the system every 50 seconds on
average. The network size is set to 1024 nodes. In all ex-
periments, we use time-based sliding windows of 50 seconds
and the method of dissemination of queries proposed in Sec-
tion 3. For each of our tests, we run the simulator for 300
seconds. In order to assess our approach, we compare the
network traffic of DHTJoin against a complete implementa-
tion of RJoin [14] which is the most relevant related work
(see Section 6). RJoin uses incremental evaluation based
on tuple indexing and query rewriting over distributed hash
tables. The network traffic is the total number of messages
needed to index tuples and disseminate a query in DHTJoin
or to index tuples and perform query rewriting in RJoin. In
the rest of this section, we evaluate network traffic and the
effectiveness of optimization proposed in Section 3.

5.1 Network traffic
In this section, we investigate the effect of tuples’ arrival

rate, query’s arrival rate and number of joins on the net-
work traffic. The network traffic of RJoin and DHTJoin
grows as the tuples’ arrival rate grows. In RJoin, as more
tuples arrive, the number of messages related to the index-
ing of tuples and query rewriting increases (see Figure 4(a)).
As expected, DHTJoin generates significantly less messages
because a high tuples’ arrival rate does not mean more in-
dexing of tuples. The reason is that before indexing a tuple,
DHTJoin checks for the existence of a query that requires
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Figure 4: Effect of tuple/query arrival rates and number of joins on network traffic
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Figure 5: Reduction of intermediate results and its impact on network traffic

it. In Figure 4(b), we show that, as more queries arrive,
RJoin generates the same number of messages when index-
ing tuples. However, more query rewriting messages are
generated when more queries arrive. DHTJoin generates
more messages because new queries related to new different
values used in the tuples arrive in the system. The number
of messages generated by the query dissemination increases
but this increase is lower to that of the query rewriting mes-
sages generated by RJoin. Figure 4(c) shows that more join
require more network traffic. RJoin generates more query
rewriting when there are more joins in the queries. However,
in DHTJoin the network traffic increases only if the arriv-
ing queries require of attributes not present in the already
disseminated queries. The reason is that with the dissemina-
tion of queries, DHTJoin can avoid the unnecessary indexing
of tuples that are not required by the queries.
In summary, due to the integration of query dissemination
and hash-based placement of tuples our approach avoids
the excessive traffic generated by RJoin which is due to its
method of indexing tuples.

5.2 Dealing with stream source failures
In this section, we investigate the effect of optimization

proposed in Section 3 in order to reduce the traffic the tuples
that never contribute to generate join results due to stream
source failures. In this experiment we replicate the same
scenario of Figure 1(b) with λi = 400tuples/sec. In Figure
5(a), we show that, as more tuples arrive and considering
that the source of Z-tuples leaves the DHT, the proposed
optimization reduces the network traffic considerably. In

Figure 5(b), we show that, as more long is the period of
inactivity (time between leave and join) of a stream source,
the generation of tuples that never contribute to generate
join results increases. However, by eliminating unnecessary
intermediate results, this optimization yields an important
reduction of network traffic.

6. RELATED WORK
A DHT can serve as the hash table that underlies many

parallel hash-based join algorithms. However, our approach
provides Internet-wide scalability. Our work is related to
many studies in the field of centralized and distributed con-
tinuous query processing [13][10][26][6][17]. In PIER [13], a
query processor is used on top of a DHT to process one-
time join queries. Recent work on PIER has been developed
to process only continuous aggregation queries. PeerCQ
[10] was developed to process continuous queries on top of
a DHT, However, PeerCQ does not consider SQL queries
and the data is not stored in the DHT. Borealis [26], Tele-
graphCQ [6] and DCAPE [17] have been developed to pro-
cess continuous queries in a cluster setting and many of their
techniques for load-shedding and load balancing are orthog-
onal to our work. The most relevant previous work regard-
ing the utilization of a DHT network is [14] which proposes
RJoin. In RJoin, a new tuple is indexed twice for each at-
tribute it has; wrt the attribute name and wrt the attribute
value. A query is indexed waiting for matching tuples. Each
arriving tuple that is a match causes the query to be rewrit-
ten and reindexed at a different node. This incremental
evaluation is based on tuple indexing and query rewriting



over distributed hash tables. A major difference in our work
differs is that DHTJoin avoids indexing tuples that cannot
contribute to generate join results.
A solution to estimate the completeness has been proposed
in [16]. Completeness is calculated on a peer level using
the notion of routing graphs. The routing graphs trace the
routes that a one time query and its sub-queries take through
the network. Our work instead considers continuous queries
and completeness is calculated on a data level.

7. CONCLUSION
In this paper, we proposed a new method, called DHTJoin,

for processing continuous join queries using DHTs. DHTJoin
combines hash-based placement of tuples and dissemination
of queries using the trees formed by the underlying DHT
links. DHTJoin takes advantage of the indexing power of
DHT protocols and dissemination of queries to avoid the in-
dexing of tuples that cannot contribute to generate join re-
sults. We show analytically that DHTJoin can scale up the
processing of continuous join queries using multiple peers
and improves the completeness of join results significantly.
To validate our contribution, we implemented DHTJoin as
well as RJoin which is the most relevant state of the art so-
lution in the context of processing continuous join queries.
Our performance evaluation shows that DHTJoin yields sig-
nificant performance gains due to the mechanism of indexing
tuples and the elimination of unnecessary intermediate re-
sults. Our results also demonstrate that the total number of
messages of DHTJoin is always less than that of RJoin wrt
tuple arrival rate, query arrival rate and number of joins.
As future work, we plan to address the problem of effi-
cient execution of top-k join queries over data streams using
DHTs, taking advantage of the best position algorithms [1]
which can be used in many distributed and P2P systems for
efficient processing of top-k queries.
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