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Abstract
This is a technical appendix to “Adaptive estimation of stationary Gaus-
sian fields” [6]. We present several proofs that have been skipped in the main

paper. These proofs are organised as in Section 8 of [0].

AMS 2000 subject classifications: Primary 62H11; secondary 62M40.
Keywords and phrases: Gaussian field, Gaussian Markov random field,
model selection, pseudolikelihood, oracle inequalities, Minimax rate of es-
timation.

1. Proof of Proposition 8.1

Proof of Proposition 8.1. First, we recall the notations introduced in [3]. Let N
be a positive integer. Then, Zx stands for the family of subsets of {1,..., N}
of size less than 2. Let 7 be a set of vectors indexed by Zy. In the sequel, 7 is
assumed to be a compact subset of RV(N+1)/2)+1 The following lemma states
a slightly modified version of the upper bound in remark 7 in [3].

Lemma 1.1. Let T be a supremum of Rademacher chaos indexed by I of the
form

N
T := sup Z UUjtg 5y + Zt{i} +tz|,
teT | —
{7’7.7} =1
where Uy, ..., Un are independent Rademacher random variables. Then for any
x>0,
P{T > E[T] + z} < 4e B aE (1)
= W=tEPA\TLEDRE N IL.E)

where D and E are defined by:

D := sup sup
t€T a:f|e|2<1

)

N
Z Ui Z ajtgi g
=1 j#i

N

> el

i=1 j#£i

E = sup sup
teT o) ,a® |laMW|2<1 [|a@]|<1
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Contrary to the original result of [3], the chaos are not assumed to be ho-
mogeneous. Besides, the t;) are redundant with 4. In fact, we introduced this
family in order to emphasize the connection with Gaussian chaos in the next
result.

A suitable application of the central limit theorem enables to obtain a corre-
sponding bound for Gaussian chaos of order 2.

Lemma 1.2. Let T be a supremum of Gaussian chaos of order 2.

7t Yy +ZtY +io

{i.3}

T := sup
teT

: (2)

where Y1,..., YN are independent standard Gaussian random variable. Then,
for any x > 0,

x? T
PI{T > E[T < _
(T2 Bl +-2) < e (- g A ) g
where
D := sup sup Yi(1 + 0; )t i,
tETO‘eRNH(ﬂhSl; J J { 7]}
E = sup sup sup Zal,iaz,jt{i,j}(1+5i,j) .

t€T an, [larfla<1az, [lazlla<177

The proof of this Lemma is postponed to the end of this section. To conclude,
we derive the result of Proposition 8.1 from this last lemma. For any matrix
R € F, we define the vector t/t € R (""+1)/2+1 indexed by Z,, as follows

Rlij) RYJi,i)
im0y = 0wt (2= 0i )= iy = —— and th .= —tr(R) ,

where d; ; is the indicator function of i = j. In order to apply Lemma 1.2 with
N =nr and T = {t|R € F}, we have to work out the quantities D and E.

n

D = sup sup ZZY[z,k] Zzti’k’l(l + (Si,j(sk,l)aé

tReT acR™™, |lall2<1 | 527 =1 1=1

T

= sup sup 2 z": Y(i,k] Z
1 k=1

REF acknr, [alo<1 | 42

R, J]a

n T

= sup Zaf <Z Y[i,k]R[i,j])
i=1

RGF(IE]R"T, ||Ot”2<1 k=1j=1
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Applying Cauchy-Schwarz identity yields

n T ka 2
D? = %sup ZZ(ZY[i’k]R[i’jl>

" ReF | 15501 \im
4 _

= —suptr(RYY*R") . (4)
N ReF

Let us now turn the constant £

E = sup sup (1+ 6ij6k7l)tf]’-klalf7ia12,j
theT ap, o € R 1<ij<r 1<k.i<n
aiflz <1, [lazll2 <1
2
= sup sup - R[iaj]a]f,iag,j .

ReF aq, o9 € R 1<i,j<r 1<k<n
loall2 < 1, flazfla <1
From this last expression, it follows that E is a supremum of L, operator norms
2

E = — sup ¢max (Diag(") (R)) ,
N ReF

where Diag(™ (R) is the (nr x nr) block diagonal matrix such that each diagonal
block is made of the matrix R. Since the largest eigenvalue of Diag™(R) is
exactly the largest eigenvalue of R, we get

2
E = — sup ¢max(R) . (5)
N ReF

Applying Proposition 1.2 and gathering identities (4) and (5) yields

P(Z > E(Z) +t) < exp [— <LlItE72(V)/\ L%Bﬂ ,

where B=F and V = D2, O

Proof of Lemma 1.1. This result is an extension of Corollary 4 in [3]. We shall
closely follow the sketch of their proof adapting a few arguments. First, we upper
bound the moments of (7" —E(T"))_ . Then, we derive the deviation inequality
from it. Here, 24 = max(z,0).

Lemma 1.3. For all real numbers q > 2,

(T~ E(T))+llq < v/LGE(D) + LgE (6)

where ||T'||2 stands for the q-th moment of the random variable T'. The quantities
D and E are defined in Lemma 1.1.
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By Lemma 1.3, for any ¢ > 0 and any ¢ > 2,

E[(T —E(T))1]
ta

<\/L_qE(D) + LqE>q .

P(T > E(T) +1)

t

The right-hand side is at most 272 if \/LgE(D) < t/4 and LqF < t/4. Let us
set

ot At
© = 16LE(D)2 " 4LE -

If go > 2, then P(T > E(T)+1t) < 27%. On the other hand if ¢y < 2, then
4 x 279 > 1. It follows that

P(T > E(T) +1t) < dexp (_10522) LUEZ?)Q A %D .

Proof of Lemma 1.3. This result is based on the entropy method developed in
[3]. Let f: RY — R be a measurable function such that T = f(Uy,...,Uy). In
the sequel, Uj,...,U) denote independent copies of Uy, ...,Uy. The random
variable T/ and VT are defined by

T’ZI = f(Ul,...,Uifl,UZ-l,UiJrl,...,UN),
N

ve o= | -Tiod|
=1

where U} refers to the set {Uy,...,Ux}. Theorem 2 in [3] states that for any
real ¢ > 2,

(T = E(T))+llg < VLallVVHq - (7)
To conclude, we only have bound the moments of vV +. By definition,

N
Z Uint{iJ} + Zt{i} +ty
{i,5} =1

T = sup
teT

Since the set 7 is compact, this supremum is achieved almost surely at an
element t° of 7. For any 1 <4 < N,

(T -T)); < ((Ui 20103 tho{i,j}DQ .

J#i
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Gathering this bound for any i between 1 and N, we get

s o) o

J#i

N
vt < YE ((Ui—Ul")
i=1

5 [ZthO{i,j}r

<
=1 " g
al 2
< 2 sup [ a'( 0 U)}
a€RN, laf2<1 Z ! Z {i,5}J

i=1 j#i

N 2
: Qfél}r)aeuwsllﬁnzgizzl {Ui;%t{i’”] 2
Combining this last bound with (7) yields
T —EM)+lly < VLav2|Dl
< VIq[E(D)+|(D-ED)).l,| - (8)

Since the random variable D defined in Lemma 1.1 is a measurable function
f2 of the variables Uy, ..., Uy, we apply again Theorem 2 in [3].

I(D —ED)), ], < MHW

where V" is defined by

)
q
N

S0 o)

=1

V,t =E ulN

3

and D} := fo(Ur,...,U;i—1,U!,Uiy1,...,Un). As previously, the supremum in
D is achieved at some random parameter (t°,a’). We therefore upper bound
V;r as previously.

oy

IN
.MZ
=

v (@ (S etin))

J#i

2
040
(Z O‘jt{m})

J#i

N 2
2
sup < g ag) E a?t{id}) =2E".
a@eRN |lafl2<1 \ ;7 J#i

Gathering this upper bound with (8) yields

(T = E(T)+llq < LgE(D) + LeE .

IN
N

IA
I\
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Proof of Lemma 1.2. We shall apply the central limit theorem in order to trans-
fer results for Rademacher chaos to Gaussian chaos. Let f be the unique function
satisfying T = f(y1,...,yn) for any (yi,...,yn) € RN, As the set 7 is com-
pact, the function f is known to be continuous. Let (Ui(J))lgiSN,jZO an i.i.d.

family of Rademacher variables. For any integer n > 0, the random variables
Y™ and T are defined by

- (5% 55)

J=1

7™ .= f(Y<">).

Clearly, T(™) is a supremum of Rademacher chaos of order 2 with nN variables
and a constant term. By the central limit theorem, 7™ converges in distribution
towards T as n tends to infinity. Consequently, deviation inequalities for the
variables 7™ transfer to T as long as the quantities E [D(”)] , B and E[T(™)]
converge.

We first prove that the sequence 7™ converges in expectation towards 7.
As T converges in distribution, it is sufficient to show that the sequence 7°(")
is asymptotically uniformly integrable. The set 7 is compact, thus there exists
a positive number ., such that

T < tm[zhfi(n)Ymeq

2%
)]

Mz

< too[ (N+1)/2
i=1

It follows that

)2 N+1\>N+2
() < a(5) 5 ©

)
1+;(Yi )

The sequence Yi(") does not only converge in distribution to a standard nor-
mal distribution but also in moments (see for instance [1] p.391). It follows that

limE {(T(”))Q} < oo and the sequence f (Y(")) is asymptotically uniformly in-
tegrable. As a consequence,

lim E [T(")] —E[T] .

n—oo

Let us turn to the limit of E [D(")]. As the variable T(") equals

. U(k)U(l) ) u®
T :ngp Zt{m-} Z +Zt Z \/ﬁ;%-l-tz-l-zi:ti ;

{i,5} 1<k, l1<n i 1<k<n
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it follows that

D™ = sup sup
teT aeR"N, |la2<1

1<i<N 1<k<n i 1<i<n 1k

D (l)
< sup sup {Z Z (14 0ij)tp 3 ————— 1<i<n & } +AM™

teT aeR"N | |af2<1 vn

where the random variable A is defined by

N n U(J)
A™ = gup sup Z Zt{' L

t€T aeR™Y, |lall2<155 25

N2
Straightforwardly, one upper bounds A™ by t../ n\/ pOR > i1 (Ui(J )) and

its expectation satisfies
E(|A7]) <oy
n

which goes to 0 when n goes to infinity. Thus, we only have to upper bound
the expectation of the first term in (10). Clearly, the supremum is achieved only

when for all 1 < j < N, the sequence (a§-l))1§l§n is constant. In such a case,

the sequence (a;l))lgjgj\[ satisfies ||aV ||y < 1/y/n. it follows that

1
E (D™ = IE{ sup sup E[ Yi(n) 149 a} } + 0O (—) .
[ } teT aeRN ||af2<1 zl: ;( ’]) ! \/ﬁ

Let g be the function defined by

gW1,...,yn) =sup  sup {Zyzz 1+6i,j)aj:| ;

teT aE]RNHa”2<1 Z

for any (y1,...,yn) € RY. The function g(.) is measurable and continuous as
the supremum is taken over a compact set. As a consequence, g(Y(")) converges
in distribution towards ¢g(Y"). As previously, the sequence is asymptotically uni-
formly integrable since its moment of order 2 is uniformly upper bounded. It
follows that limE [D(™] = E[D].

Third, we compute the limit of E(™). By definition,

EM = sup sup ialfz[zzn: {”} +22a ¥

t€T a1,02€R"N, [lar [2<1, [lazl2<1 527 ke oyl 17

N n o n
= sup sup Z Z(l + 51-7]_) t{:LJ} [Z Z Ogi{ci Oéég

t€T ay,az, [lenfl2<1flezl2 <1527 55

5
o)

SRAIDSE D SRULEE) SEE DA

(10)
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As for the computation of D(™ | the supremum is achieved when the sequences
(af ))1<k<n and (aéyj)lglgn are constant for any ¢ € {1,..., N}. Thus, we only
have to consider the supremum over the vectors a; and s in R¥.

N N

1
E™ = sup sup Z Z(l + 6ij)ti jon iz + O <—> :
t€T ar,a2€RN [Jay|l2<1 557 j=1 n

It follows that E(™) converges towards E when n tends to infinity.

The random variable T —E(T(™)) converges in distribution towards T'—E(T).
By Lemma 1.1,

x? €
_ >x) <l -
P(T ~E(T) > z) < lim exp< EDOPL; E<">L2> ’

for any > 0. Combining this upper bound with the convergence of the se-
quences D™ and E(™ allows to conclude. |

2. Proof of Theorem 3.1

Proof of Lemma 8.3. We only consider here the anisotropic case, since the isotropic
case is analogous. This result is based on the deviation inequality for suprema of
Gaussian chaos of order 2 stated in Proposition 8.1. For any model m’ belonging
to M, we shall upper bound the quantities E(Z,,/), By, and E(W,,/) defined
in (42) in [6].

1. Let us first consider the expectation of Z,, . Let U7/n,m’ be the new vector
space defined by
v Dx

/ .
= ) —
Um,m/ m,m )

where Uy, is introduced in the proof of Lemma 8.2 in [6]. This new space
allows to handle the computation with the canonical inner product in the
space of matrices. Let ijl 2 be the unit ball of U,’nym, with respect

to the canonical inner product. If R belongs to U, v, then ||R|w =
|R\/Ds/pl| r, where ||.||r stands for the Frobenius norm.

1 N
Tt = sup  —tr [RDs(YY* — 1,2)]
ReBZ; s
Dy
=  sup tr [R (YY" - 1p2)} (11)
Res? .o LP
Dy
_ HHU/ Dy v ||
m,m/ D P
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where Ilyr  refers to the orthogonal projection with respect to the

canonical inner product onto the space U;n,m" Let Fy,...,Fq , ,, de-
note an orthonormal basis of U, .,
d,2 2 D
E(Z2,) = E[tr2 Fi == (YY" — ]
(Z) ; o (Y = 12)
dm,Z m’2 p2 2
Vv Dxlj.4)
= [ Fylj.) E”(YY*[ 11)}
i=1 j=1
d,,2 02
= > —tr(F Dy F)
i=1
2 12
o - 2d 2 max b
< Z 280max DE) _ m2,m2902 ( ) .
Applying Cauchy-Schwarz inequality, it follows that
2d 2 max b
E(Zm/)g\/ m2,m2<,02’ ( ) ) (12)
np

. Using the identity (11), the quantity By, equals

\/D_2>_

p

2
Bm/ = - sup Pmax (R

n ReBZ)

As the operator norm is under-multiplicative and as it dominates the
Frobenius norm, we get the following bound

2 Sﬁmaxa])
np '

. Let us turn to bounding the quantity E(W,, ). Again, by introducing the

ball Br(n2 2y We get

Wm’ — é sup %t?" [RWDER}
n RGBZ;,m/Z
< ZL(PL’;(E) sup tr [RWR}
np REB;ZL;JHIQ
< ‘L‘PLXQ(Z)(HF sup tT[R(W_IPZ)R])'

n (2)
p REBMQMQ
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Let Fy,...Fy , , an orthonormal basis of U, , . and let A be a vector

in R%2.m2 We write [[All2 for its Lo norm.

B s o [RYY 1) ) )

RrReB®)
d,,2 02 2
- E( sup Y AiAjtr[ﬂFj(W/nfpz)]>
IM2<1 52
dmszzz
< Y E(0[REYY/n-1:)]7) .
ij=1

The second inequality is a consequence of Cauchy-Schwarz inequality in

2
R(@m2.m2)" since the I norm of the vector (Aidj)i<ij<d, >, » € R%mz2,m2
is bounded by 1. Since the matrices F; are diagonal, we get

d o 2
o
E( s tr[mw*/n—nfef)g— S IERI.
ReB) nos

It remains to bound the norm of the products F;F} for any 7, j between 1
and dmZ,m’Q .

d,,2 .02 d,,2 2 p? p> d,,2 .02 2
STERB = Y Y RwePFra?= " Y Fkw?
ij=1 ij=1 k=1 k=1 i=1

For any k € {1,...,p%}, Z Filk,k)?> < 1 since (Fiyoos By o o)

form an orthonormal family. Hence we get

dWLQ ,m/2 2

p WLQWL
> IER Z > Fikk? = dpz e -
k=1 =1

i,j=1
2,2 oo

14 ) Emem? 14

+ " ] (14)

Gathering these three bounds and applying Proposition 8.1 allows to obtain the
following deviation inequality:

]P)<Zm/ NE=EIN NV ey Ny /z+§})

< oxp [(V1+a/2-1) /2. ,2+5] A va|(Vita/2- 1)\/m+5]1}

All in all, we have proved that

4<PmaX(E)

E(Wp) <
(W) < 202

Y]

2L1(1+\/2dm2’m/2/n) V2L

m,m fwm,,m,’ _ 5L"}m,,m,’
SeXp - 2L1(1+\/2dm2,m’2/n) /\ \/§L2 :| |:L1[1+\/2dm27m/2/n /\ \/_L2:|} ’
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where Wy m/ = (\/1 +a/2— 1) /2 me2. As n and d,2 2 are larger than

one, there exists a universal constant L) such that

(\/ 1 + 04/2 — 1)2dm21m/2 /\ \/ﬁ(\/l + Oé/2 — 1)\/dm2,m’2‘|

2L1 (1 + 2dm2,m’2 /n) \/ELQ

> ALY\ /dpyz s [(\/1 Y a/2— 1)2 A (\/m— 1)} .

Since the vector space Uy, s contains all the matrices D(0) with ¢’ belonging to
m/, dp2 2 is larger than d,,.. Besides, by concavity of the square root function,

it holds that \/1+ a/2—1> a[4\/1+ a/2]7'. Setting L} := [4L,(1++/2)] 7!
[V/2Ly]~! and arguing as previously leads to

5(\/1+Oz 271\/ m2,m /2/\ €
L1 (1+ 2dm2 m/2/7’L \/_LQ !

W”ﬁ]

Gathering these two inequalities allows us to conclude that

P (zm, > 2@%"(2) { (1 + /2) dyp2 +£}>

2

< g , (03 (03 - ’
= e"p{ Lo/ (m/\l—i—ah) Lag

Proof of Lemma 8.4 in [0]. The approach falls in two parts. First, we relate the
dimensions d,, and d,,2 to the number of nodes of the torus A that are closer
than 7, or 21, to the origin (0,0). We recall that the quantity r,, is introduced
in Definition 2.1 of [6]. Second, we compute a nonasymptotic upper bound of
the number of points in Z2 that lie in the disc of radius r. This second step is
quite tedious and will only give the main arguments.

Let m be a model of the collection M. By definition, m is the set of points
lying in the disc of radius 7, centered on (0,0). Hence,

O = vect{¥, ;, (i,j) € m} ,

where the matrices ¥, ; are defined by Eq. (14) in [6]. As ¥, ; = ¥_,; _;, the
dimension d,,, of ©,, is exactly the number of orbits of m under the action of
the central symmetry s.

As d,,2 is defined as the dimension of the space U,,, it also corresponds to
the dimension of the space

vect {C(0),0 € O} + vect {C(6)*,6 € O, } (15)
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FIGURE 1. The black dots represent the orbit space of m and the white dots represent the
remaining points of the orbit space of N'(m).

which is clearly in one to one correspondence with U,,. Straightforward compu-
tations lead to the following identity:

C(\Ijil-,jl)C(\Ilh-,jz) = C(\Iji1+i27j1+j2) [1 + Si1+i2-,j1+j2]
+ C(qjh—iz,jl —jz) [1 + Siy—ia —jz]) )

where s, , is the indicator function of + = —2z and y = —y in the torus A.
Combining this property with the definition of ©,,,, we embed the space (15) in
the space

vect {C (Ui, 1iy ji+42) > (i1,71), (i2,52) € mU{(0,0)}} ,

and this last space is in one to one correspondence with

vect {Wi, iy jytjas (i1,1), (i2,52) € mU{(0,0)}} . (16)

In the sequel, N'(m) stands for the set

{(i + iz, 51+ Ja)s (i1, 51), (G2, j2) € mU{(0,0)}}

Thus, the dimension d,,2 is smaller or equal to the number of orbits of A/ (m)
under the action of the symmetry s.

To conclude, we have to compare the number of orbits in m and the number
of orbits in A (m). We distinguish two cases depending whether 2r,, + 1 < p
or 2r,, + 1 > p. First, we assume that 2r,, + 1 < p. For such values the disc
of radius r,, centered on the points (0,0) in not overlapping itself on the torus
except on a set of null Lebesgue measure. In the sequel, | z] refers to the largest
integer smaller than x. We represent the orbit space of m as in Figure 1. To any
of these points, we associate a square of size 1. If we add 2 + 2|r,, | squares to
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the d, first squares, we remark that the half disc centered on (0,0) and with
length r,, is contained in the reunion of these squares. Then, we get

2
T (17)

A + 2+ 2|1 | ZT

The points in A/(m) are closer than 2r,, from the origin. Consequently, all the
squares associated to representants of A'(m) are included in the disc of radius
2 + V2.

2

Ay + 2+ 2|2r | < g {27’m + \/5}
Combining these two inequalities, we are able to upper bound d,,>

24 212r | +dpe < 4{1+£} (dm +1+2[mm]) ,

2Tm
2 2
dp2 < 4{1+2ﬁ} dm+4{1+2ﬁ} (T+2[rm]) -
T'm T'm

Applying again inequality (17), we upper bound 7,,:

2 m
<= 1+ :
'm < {1+ 1+2(1+dm)]

Gathering these two last bounds yields

dmz§4{1+%}2 {1+$(1+%[1+1/1+g(1+dm)D]dm.

This upper bound is equivalent to 4d,,, when d,, goes to infinity. Computing
the ratio d,2/d,, for every model m of small dimension allows to conclude.

Let us turn to the case 2r,, +1 > p. Suppose that p is larger or equal to
9. The lower bound (17) does not necessarily hold anymore. Indeed, the disc
is overlapping with itself because of toroidal effects. Nevertheless, we obtain a
similar lower bound by replacing r,, by (p — 1)/2:

m(p—1)>
—

p—1
2

dm +2+2| ] >

The number of orbits of A under the action of the symmetry s is (p? +1)/2
if pis odd and [(p+1)? —1]/2 if p is even. It follows that d,,,> < [(p+1)? —1]/2.
Gathering these two bounds, we get

=8

m?2 (p + 1)2
< .
dm ~ w(p—1)2/4=2(p+1)
This last quantity is smaller than 4 for any p > 9. An exhaustive computation
of the ratios when p < 9 allows to conclude.
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FIGURE 2. The black dots represent the orbit space of m under the action of G and the white
dots represent the remaining points of the orbit space of N'°(m).

Let us turn to the isotropic case. Arguing as previously, we observe that the
dimension di is the number of orbits of the set m under the action of the group
G introduced in in [6] Sect.1.1 whereas d,,2 is smaller or equal to the number of
orbits of N (m) under the action of G. As for anisotropic models, we choose
represent these orbits on the torus and associate squares of size 1 (see Figure
2). Assuming that r,, < (p — 1)/2, we bound d,, and d,,z.

2 l \/§Tm

1
m 1 > o 9
d + > 87rrm 2[ 5 |
2
V2l o, 1
2 < 41+ — 3 = — V2 .
e = { +2Tm 87Trm+2b/_rmJ

Gathering these two inequalities, we get
2
2
d, 2 §4{1+£} dy .
2rm

As a consequence, d,,2 is smaller than 4d,, when d,, goes to infinity. As previ-
ously, computing the ratio d,,2/d,, for models m of small dimension allows to
conclude. The case r,, > (p — 1)/2 is handled as for the anisotropic case. O

3. Proofs of the minimax bounds

Proof of Lemma 8.5 in [0]. This lower bound is based on an application of Fano’s
approach. See [7] for a review of this method and comparisons with Le Cam’s and
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Assouad’s Lemma. The proof follows three main steps: First, we upper bound
the Kullback-Leibler entropy between distributions corresponding to #; and 6,
in the hypercube. Second, we find a set of points in the hypercube well separated
with respect to the Hamming distance. Finally, we conclude by applying Birgé’s
version of Fano’s lemma.

Lemma 3.1. The Kullback-Leibler entropy between two mean zero-Gaussian
vectors of size p* with precision matrices (I — C(61)) /o* and (L2 — C(62)) /o>
equals

K(01,62) =1/2 [10g (%) +tr ([Lp = C(62)] [1 — C(61)] ") _pQ] :

where for any square matriz A, |A| refers to the determinant of A.

This statement is classical and its proof is omitted. The matrices (1,2 —C(61))
and (12 — C(62)) are diagonalizable in the same basis since they are symmetric
block circulant (Lemma A.1 in [6]). Transforming vectors of size p? into p X p
matrices, we respectively define A; and Ay as the p x p matrices of eigenvalues
of (I — C(61)) and (1,2 — C(62)). It follows that

Aali.] ( Aali,j] ) )
K(61,05) =1/2 —1lo -1) .
(61,62) / Z (Al[m‘] & Atlind]

1<ij<p

For any x > 0, the following inequality holds

9 1\?
— 1 — < — pa— .
x—1—log(x) < ol (x z)

It is easy to establish by studying the derivative of corresponding functions. As
a consequence,

Aolioil | (&[m‘]) 9 (Aw,j} Al[i,j])Q
— log 1 < Z _
Atli) Atli.g) 64 \ Aifig]  Azli]
9 ( 1 1\? 2
— A1[i,5] — Aali.j 18
o1 ()\1[1’,]‘] + )\Q[i,j]) (A1li.4) 2[i.g])” (18)
Let us first consider the anisotropic case. Let m be a model in M; and let
0" belong ©,, N B1(0p,1). We also consider a positive radius r such that (1 —
0'|l1 — 2rd,,) is positive. For any 6y, 02 in C,, (0, r) the matrices (1,2 — C(61))
and (1,2 —C(62)) are diagonally dominant and their eigenvalues A1[ij] and Xa[i,j]
are larger than 1 — [|0/||1 — 2rd,,.

9

< il — i 1)2
K000 S G, g | 2, i~ At
1<i,j<p
) 2
< J—
S Aol — 1O Rl
9d,, 12 p?

< .
81— 0|y — 2rdm)?
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We recall that ||.||p refers to the Frobenius norm in the space of matrices.

Let us state Birgé’s version of Fano’s lemma [2] and a combinatorial argument
known under the name of Varshamov-Gilbert’s lemma. These two lemma are
taken from [4] and respectively correspond to Corollary 2.18 and Lemma 4.7.

Lemma 3.2. (Birgé’s lemma) Let (S,d) be some pseudo-metric space and
{Ps,s € S} be some statistical model. Let k denote some absolute constant
smaller than one. Then for any estimator s and any finite subset T of S, set-
ting 0 = ming et s2d(s,t), provided that max,icr IC(Ps,Py) < rlog|T|, the
following lower bound holds for every p > 1,

sup Es[dP(s,8)] > 27P6P(1 — k) .
ses

Lemma 3.3. (Varshamov-Gilbert’s lemma) Let {0,1}¢ be equipped with
Hamming distance dg. There exists some subset ® of {0,1}¢ with the following
properties

dp (6, ¢') > d/4 for every (¢,¢') € ®* with ¢ # ¢ and log|®| > g )

Applying Lemma 3.2 with Hamming distance dy and the set ® introduced
in Lemma 3.3 yields

. dom
sup g [dH (9,9)} > —(1-r), (20)

0€C (0,1) 8

provided that

9d,,r>p*n Ky,
8(1—||0"||1 — 2rdn)? — 8

(21)

Let us express (20) in terms of the Frobenius ||.|| p norm.

dpnr?p?
1 (1-k).

sup By [|C(B) — CO)II}| >
6€Cm (0,1)

Since for every 6 in the hypercube, c=?(I,2 — C(f)) is diagonally dominant,
its largest eigenvalue is smaller than 2072, The loss function [(6,6) equals

o2 /p2tr{[C(8) — C(0)](I — C(8))~1[C(9) — C(0)]}. It follows that

~ 2dm7’2
sup Ey {l (9,9)} >0"——(1—k) . (22)
0ECH (8',1) 8

Condition (21) is equivalent to r%(1—1|0'||1 — 2rd,,) =2 < k/(9p*n). If we assume
that

2 £ —]¢1h)"

23
- 18p2n ’ (23)
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then 1—1|6’||1 —2rd,, > (1 —|10']]1) (1 — Qdm\//ﬁ/(18np2)). This last quantity is

larger than (1 — [|6||1) /v/2 if d,,, is smaller than 1.5(v/2—1)+/np?/k. Gathering
inequality (22) and condition (23), we get the lower bound

ity [ (00)]

Y

inf sup E, [l (5, 9)}

7 becn {ww(lflle’”l)\/%}
10|l
L<TQA¢>W.

np

Y

One handles models of dimension d,,, between 1.5(v/2 — 1)y/np%/k and v/np by
changing the constant L in the last lower bound.

Let us turn to sets of isotropic GMRFs. The proof is similar to the non-
isotropic case, except for a few arguments. Let m belongs to the collection My
and let 6’ be an element of ©5° N B1(0,, 1). Let 7 be such that 1 — [|¢’||; — 8dis°
is positive. If f; and 6 belong to the hypercube Ci¢ (¢, r), then

9d,, % p?
(6., 605) < . .
O1:02) < ST, — srdi)?

Applying Lemma 3.2 and 3.3, it follows that

. diso
inf  sup  Ep [dH (9,9)} > 9moq gy,
9 0cCizo(0,r) 3

provided that 4.5d,,72p?*n(1 — ||0'||; — 8rd°)~2 < kd°/8. As a consequence,

~ d
inf  sup  Ep [z (9,9)} > dm gy
9 6eCio(0,r) 3

if 72 (1 — /0’|y — 8rdise) < x(36p*n)~1. We conclude by arguing as in the
isotropic case. |

Proof of lemma 8.6 in [0]. Let m be a model in M1, r be a positive number
smaller than 1/(4d,,), and 6 be an element of the convex hull of C,,(0,,7).
The covariance matrix of the vector XV is ¥ = o2 [l — C()]". Since the
field X is stationary, Varg(X|0,0]) equals any diagonal element of X. In partic-
ular, Varg(X([0,0]) corresponds to the mean of the eigenvalues of ¥.. The matrix
(I — C(0)) is block circulant. As in the proof of Lemma 20, we note A the p x p
matrix of the eigenvalues of (1,2 — C(¢)). By Lemma A.1 in [0],

ko gl
Alig) =1+ Z O1k,1) cos [27r (% + %)] ,

(k,1)eA
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for any 1 <4, j < p. Since 6 belongs to the convex hull of C,,(0,, ), O[x.1] is zero
if (k,1) ¢ m and [0ku| < rif (k,1) € m. Thus 3 )y [01k,0] is smaller than
1/2. Applying Taylor-Lagrange inequality, we get

1 22

<l-g4—
e T e

for any = between —1 and 1. It follows that

kgl ik gl
Nij] P <1-— Z O[k,1] cos {277 (% + %)] +8 Z 0[k,1] cos {277 (% + %)]

kA kA

Summing this inequality for all (¢, j) € {1, ... ,p}2, the first order term turns out
to be tr[C(0)]/p* which is zero whereas the second term equals 8tr[C(6)?]/p?.
Since there are less than 2d,, non-zero terms on each line of the matrix C(6),
its Frobenius norm is smaller than 2d,,p?r?. Consequently, we obtain

Varg (X10,0) < 0” (1 + 16d,,1r°) .

Proof of Lemma 8.7 in [0]. This property seems straightforward but the proof
is a bit tedious. Let ¢ be a positive integer smaller than Card(M ). By definition
of the radius r,, in Equation (10) in [6], the model m;;1 is the set of nodes in
A\{(0,0)} at a distance smaller or equal to 7,,,, from (0, 0), whereas the model
m; only contains the points in A\ {(0,0)} at a distance strictly smaller than
Tm;., from the origin.

Let us first assume that 27,,,,, < p. In such a case, the disc centered on
(0,0) with radius 7, , does not overlap with itself on the torus A. To any
node in the neighborhood m;;1 and to the node (0,0), we associate the square
of size 1 centered on it. All these squares do not overlap and are included in
the disc of radius ry,,,, + v/2/2. Hence, we get the upper bound 2dpp,, +1 <
T(rms,, +V/2/2)% Similarly, the disc of radius r,,,, —v/2/2 is included in the
union of the squares associated to the nodes m; U{0,0}. It follows that 2d,,, + 1

2
is larger or equal to w (rmi o V2/ 2) . Gathering these two inequalities, we
obtain

dmi+1 < (rmi+l + \/5/2)2 -1
i ™y —V2/2) =1

if r,,, is larger than 1 + V2/2. 1f Tm.,, larger than 5, this upper bound is
smaller than two. An exhaustive computation for models of small dimension
allows to conclude.
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If 2rp,,., > p and 2ry,, < p, then the preceding lower bound of d,,, and the
preceding upper bound of d,,,, , still hold. Finally, let us assume that 2r,,, > p.
Arguing as previously, we conclude that 2d,,, +1 > 7(p/2—+/2/2)?. The largest
dimension of a model m € My is (p? —1)/2 if pis odd and ((p+1)? —3)/2if p
is even. Thus, d < [(p+1)? — 3]/2. Gathering these two bounds yields

Mi41
2 _

Ay < 4(p +1) 23
me = (0= V2)

which is smaller than 2 if p is larger than 10. Exhaustive computations for small
p allow to conclude.

O

Proof of Proposition 6.7 in [6]. This result derives from the upper bound of the
risk of épl stated in Theorem 3.1 and the minimax lower bound stated in Propo-
sition 6.6 in [6].

Let £(a) be a pseudo-ellipsoid that satisfies Assumption (H,) and such that
at > 1/(np?). For any 0 in £(a) N B1(0,,1) NU(p2), the penalty term satisfies
pen(m) = Ko?p?pad,, /np? is larger than Kd,,pmax(3)/np?. Applying Theo-
rem3.1, we upper bound the risk gpl

2

~ . o
B [1(00::0)] < La(K) | inf [6mp0,0) + pen(m)] + La(K)pa 25

for any 6 € £(a) N B1(0p,1) NU(p2). It follows that

_ .
sup By [1(80,0)] S LK) inf 1B, 0) + ppac?
€€ (a)NB1(0p,1)NU(p2) g ( )meM1 S >0 (Orm.p ! np?

Let ¢ be a positive integer smaller or equal than Card(M;). We know from
Section 4.1 in [6] that the bias I(6,,,, @) of the model m; equals Var(X10,0|X,,,)—
o?. Since 6 belongs to the set £(a) N B1(0p, 1), the bias term is smaller or equal
to a7, with the convention a2, d(My)+1 = 0. Hence , the previous upper bound
becomes

)+1

=
5
—
—
~~
Nt
)
S
>
~—
[—
IA

dpm,
L(K inf ? 1pao?—=
( >1§i§é£rd(/\/ll) |:a’z+1 + pip20 np?

IN

o2d,,.
L(K inf 2 U 24
( 7p13p2) 1§i§é£rd(/\/l1) |:a”b+1 + np2 :| ( )

Applying Proposition 6.6 in [6] to the set £(a) N B1(0p, 1) NU(2), we get

. UCD] B R A G

Ay,
L sup (a? /\02%) .
1<i<Card(M;) np

Y
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Let us define i* by

) . o 0dm,
" i=supq1l<i<Card(My), a; > > [
np
with the convention sup @ = 0. Since a% > Uz/”l’Qv A
It follows that

is larger or equal to one.

. ~ 2 O—Qdm-*
inf sup By [1(0,0)] > Lo {0k v I )
6 0€£(a)NB1(0,.m) np

Meanwhile, the upper bound (24) on the risk of épl becomes

7 2 UQdmﬁ 2 U2dmi*
Eg |:l (Gplae):| S L(K7 plapQ) ai*Jrl + Tpg S 2L(Ka pl;pQ) ai*Jrl \ TpQ 5
which allows to conclude. O

4. Proof of the asymptotic risks bounds

Proof of Corollary 4.6 in [0]. For the sake of simplicity, we assume that for any
node (i,j) € m, the nodes (i,5) and (—i, —j) are different in A. If this is not
the case, we only have to slightly modify the proof in order to take account that
|W; ;]|% may equal one. The matrix V' is the covariance of the vector of size d,,

(Xihjl + X_ila_jl’ s aXidm Jdm + X_idma_jdm) : (25)

Since the matrix ¥ of XV is positive, V is also positive. Moreover, its largest
eigenvalue is larger than 2pmax(%).

Let us assume first the 6 belongs to O, and that Assumption (H;) is fulfilled.
By the first result of Proposition 4.4 in [6],

ot d
% L] =20t
e (®) ] =207

which corresponds to the first lower bound (30) in [0].

lim np’E {l (§m7p1,9)} = 20%tr [ILmvfl} >

n—-+o0o

Let us turn to the second result. We now assume that 6 satisfies Assumption
(Hz). By the identity (28) of Proposition 4.4 in [6], we only have to lower bound
the quantity tr [VW 1]

rvoiw] > @max(vrltr[vv]zmtr[vv].

Since the matrix X~ = 672 [[,» — C(6)] is diagonally dominant, its smallest

eigenvalue is larger than =2 (1—||0]|1). The matrix (1,2 — C(em,pl))2 (L2 — C(@))f2
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is symmetric positive. It follows that W is also symmetric positive definite.
Hence, we get

tr [V'W] (26)
y—2 don tr |C(Wiy )2 [Lp — COmp)]” [Ie — C(0)]
> TU*WHJZ [ [ 7 /| } }
k=1

The largest eigenvalue of (1,2 — C(6)) is smaller than 2 and the smallest eigen-
value of (12 — C(0p,,p,)) is larger than 1— |0, . [|1. By Lemma A.1 in [6], these
two matrices are jointly diagonalizable and the smallest eigenvalue of

-2

(Lz = C(Omp,))” (1,2 — C(0))

is therefore larger than (1 — /0., ,, [|1)?/4. Gathering this lower bound with (26)
yields

dypo 2

(L= [16]1] [L = 16rm.p [12]” -

tr [V-'wW] >

Lemma 4.1 in [0] states that ||, p, [[1 < [|0]1. Combining these two lower bounds
enables to conclude.
O

Proof of Example 4.8 in [0].

Lemma 4.1. For any 0 is the space @;’,’1’350, the asymptotic variance term of

-~
9180

o p1 €4quals

9)} 9 tr (H?)

lim np°Ey {l (@SO =20 (%) -

m ’
n—-+4oo 1,1

If 0 belongs to ©15° and also satisfies (Hy), then

V- b {l1 -6 ,,n0mmx)"}

lim np*Fy {l (é\lso gise () ,

)
N— 400 mi,p1 mi,p1

(27)

where the p?> x p? matriz H is defined as H := C (\Iﬂﬁ%)

Proof of Lemma /.1. Apply Proposition 4.4 in [6] noting that V = tr[HX H]/p?
and

2
tr { [(1 - 9milso[1,o]H)H2} }
W= — .

To prove the second result, we observe that 6,715 equals @:;llsg . It is stated for
instance in Table 2 in [6]. O
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Since the matrix 6 belongs to 9,*,‘;350, we may apply the second result of
Lemma 4.1. Straightforward computations lead to tr(H?) = ||C (¥5)) [|F = 4p?
and

tr(H?*Y) = 4p? [Var(X[0,0]) 4 2covy (X 0,0}, X[1,1]) + covg (X 0,0}, X 2,0])] .
Since the field X is an isotropic GMRF with four nearest neighbors,
X[0,0] = 011,01 (X11,0] + X [-1,0] + X[0,1] + X[0,-1]) + €[0,0] ,

where €[0,0] is independent from every variable X [i,5] with (4, j) # 0. Multiplying
this identity by X[1,0] and taking the expectation yields

covp (X[0,0, X11,0) = 0[1,0] [Var (X [0,0]) + 2cove (X [0,0), X[1,1]) + covg (X [0,0], X [2,0])] -
Hence, we obtain tr (H2Z) = 4cove(X10,0], X[1,0])/0[1,0] and

tr(H?) 011,0]

tr(H2Y)  covg(X[o,0], X[1,0]) ’

which concludes the first part of the proof.

This second part is based on the spectral representation of the field X and
follows arguments which come back to Moran [5]. We shall compute the limit of
covg (X10,0], X[1,0]) when the size of A goes to infinity. As the field X is stationary
on A, we may diagonalize its covariance matrix 3 applying Lemma A.1 in [0].
We note Dy the corresponding diagonal matrix defined by

p P . .
ki 1
Dy [(i—1)p+4,(i—1)p+j] g g covy (X[0,0], X [k,1]) cos |:27T (pl —jﬂ ,

k=11=1 p

for any 1 < i, < p. Straightforwardly, we express covg (X[0,0], X [1,0]) as a linear
combination of the eigenvalues

p p
ZZ ( )Dz[u DpHii=1)p+] -

Applying Lemma A.1 in [6] to the matrix ¥ ! and noting that § € ©5>F allows
to get another expression of the eigenvalues of X

covp (X [0,0), X[1,01)

0.2

Dsl(i-1)p+s(i=1)pti] = 1 — 2610 [COS (221) +os (22])} |

We then combine these expression. By symmetry between ¢ and 7 we get

0‘_ zp: zp: cos (QW%) + cos (277%)

covp (X 0,00, X[1,01) . —— .
2p* = J=1 1 —2670 {cos (277%) + cos (277%)}
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If we let p go to infinity, this sum converges to the following integral

lim covg (X([0,0], X[1,0])

p——+o0

B / / cos 271',7:) + cos(27y) dudy

1 —20[1,0) (cos(2mx) + cos(27ry))

O' 2m 2 o
200 | 4#2/ / 1 —2001,0] cos( ) + cos(y)] e

This last elliptic integral is asymptotically equivalent to log 16[4(1 — 46[1,0])]
when 601,00 — 1/4 as observed for instance by Moran [5]. We conclude by sub-
stituting this limit in expression (33) in [6]. O

—1

Proof of Example 4.9 in [0]. First, we compute [9(p)]iric’l[1,o]. By Lemma 4.1 in
[6], it minimizes the function ~y(.) defined in (19) in [6] over the whole space
@milso. We therefore obtain

tr [2H)|
tr[XH?]

[0F 50 1101 =

Once again, we apply Lemma A.1 in [6] to simultaneously diagonalize the ma-
trices H and 7!, As previously, we note Dy, the corresponding diagonal matrix
of 3.

0.2

Ds[(i—1)p+j,(i—-V)p+j] = : _ _ .
1—2a {cos (277 (f—; + %)) + cos (27r (;—gz + %))}

0_2

1740&(‘,08( %)cos( 2) '

Analogously, we compute the diagonal matrix D (\Il‘ls%)

D (\I/‘ls%) [(i—D)p+3,Gi—Dp+j] =2 [cos (27r1—i) + cos (27r%)} .

Combining these two last expressions, we obtain

PP 2 [cos (27r1) + cos (27rl)]
> 0" - ;
o )
7
i=1 j=1 2

1 — 4« cos (ﬂ'%) cos (ﬂ' )

Let us split this sum in 16 parts depending on the congruence of ¢ and j modulo
4. As each if of these 16 sums is shown to be zero, we conclude that tr(HY) =

ig . . ——~liso,p1
[0P)]is0 1 0] = 0. By Lemma 4.1, the asymptotic risk of §®),, ~ therefore equals

——iso,p1 tr(H*%?)
(p) (p)1iso [ S
nEIE np°Egw) {l <9 —_—_— ]ml)] tr(H2Y)
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First, we lower bound the numerator

B o e Cei)]}

i=1 =1 {1 — 4 cos (77‘%) cos (77'%)}2

As each term of this sum is non-negative, we may only consider the coefficients
1 and j which are congruent to 0 modulo 4.

N4
(IS > p/4zl p%l 16 [cos (27r (/142 Zac;s (QW;W)} |

If we let go p to infinity, we get the lower bound

tr(H*%?) ot 4
5 > (17404)2/0 /0 [cos(2mx) 4 cos(2my)]” dady .

Similarly, we upper bound tr(H?2Y) and let p go to infinity

lim
p—-+o0 P

tr(H?Y 4
( ) < 27 / / [cos(2mz) + cos(2my)]? dady .
2 1 -4« 0 0

lim
p——+oo p

Combining these two bounds allows to conclude

——iso,p . L 2
lim  lim np®Ryw) (e(p)ml 1, [e(p)];ol) = z

p——+00 n——+00 1 — 4« '

5. Miscellaneous

Proof of Lemma 1.1 in [0]. Let 6 be a p x p matrix that satisfies condition (3)
n [6]. For any 1 < iy,i2 < p, we define the p x p submatrix C;, ;

Ciy in lin.d2] := C(0)[(i1—1)p+1,(i2—1)p+j2]

for any 1 < j1,72 < p. For the sake of simplicity, the subscripts (i1,i2) are
taken modulo p. By definition of C(0), it holds that C;, ;, = Coi,—i, for any
1 < 43,72 < p. Besides, the matrices Cp; are circulant for any 1 < i < p. In
short, the matrix C'(6) is of the form

Co1 Co2 -+ Cop
c(0) = : : : : ;
Cop Co1 -+ Cop-1
where the matrices Cp; are circulant. Let (i1,142,j1,j2) be in {1,...,p}%. By

definition,
C(0)1(i2—1)p+i1.(i2—1)p+ja] = Oliz—ir,j2—j1] -
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Since the matrix 6 satisfies condition (3) in [6], Oliz—i1,j2—j1] = Oli1—is,j1—ja). AS
a consequence,
C(0)[(i1=1)p+ir,(ia—1)p+ia] = C(0)[(i2—1)p+4z,(i1—1)p+5] and C(F) is symmetric.

Conversely, let B be a p? x p? symmetric block circulant matrix. Let us define
the matrix 6 of size p by

Oli.g] := Bl1,(i=1)p+]
for any 1 < 4,57 < p. Since the matrix B is block circulant, it follows that
C(0) = B. By definition, 0[i,j] = C(0)[1,(i—-1)p+j5] and O[—i,—j] = C(0)[(i—1)p+j,1]

for any integers 1 <1, j < p. Since the matrix B is symmetric, we conclude that
Oli.j) = O—i,—3). O

Proof of Lemma 2.2 in [6]. For any 6’ € ©T, ~,, ,(0') is defined as
1 —
Yrp(0') = Ptr [(I2 = C(0")XVXV* (1. — C(6))] .
Applying Lemma A.1 in [6], there exists an orthogonal matrix P that simulta-
neously diagonalizes 3 and any matrix C(¢’). Let us define Y* := ﬁ71X¢ and
Dy, := PYP*. Gathering these new notations yields
1 -
Ynp(0') = el (I = D(0")) DsYY* (L2 — D(9"))] ,

where the vectors Y* are independent standard Gaussian random vectors. Ex-
cept YY*, every matrix involved in this last expression is diagonal. Besides, the
diagonal matrix Dy is positive since ¥ is non-singular. Thus,

tr [(I2 — D(0"))DsYY* (L2 — D(0))]
is almost surely a positive quadratic form on the vector space generated by I,
and D(©1). Since the function D(.) is injective and linear on OV, it follows that
Yn,p(.) is almost surely strictly convex on 7. O

Proof of Lemma 4.1 and Corollary 4.2 in [6]. The proof only uses the station-
arity of the field X on A and the [; norm of §. However, the computations are a
bit cumbersome. Let 6 be an element of ©F. By standard Gaussian properties,
the expectation of X[0,0] given the remaining covariates is

Eo (X00|X_00y) = > OtiX[ig) -
(1.4)EAN(0,0)



Verzelen/Technical appendiz 26

By assumption (Hs), the I3 norm of 6 is smaller than one. We shall prove by
backward induction that for any subset A of A\{(0,0)} the matrix 64 uniquely
defined by

Eg (X1[0,0]X4) = Z 01,51 X [i.5] and 02[i.5] = 0 for any (i,7) ¢ A
(i,j)€A

satisfies [|04|; < ||0]|1. The property is clearly true if A = A\{(0,0)}. Suppose
we have proved it for any set of cardinality ¢ larger than one. Let A be a subset
of A\{(0,0)} of cardinality ¢—1 and (4, j) be an element of A\(AU{(0,0)}). Let
us derive the expectation of X|[0,0] conditionally to X 4 from the expectation of
X10,0) conditionally to X sy j)}-

Eo (X10,01Xa) = Eg [E(X[0,01Xa)|Xauii)]
= Z OANED} e n X (k) + 0ANED G R [X 10.51| X )(28)
(k,1)eA

Let us take the conditional expectation of Xlij] with respect to Xaug(0,0)}-
Since the field X is stationary on A and by the induction hypothesis, the unique

matrix 98?;{(0’0)} defined by

Eo (XEilXaoioon) = 9, 05 @D Xy
(k,1)e AU{(0,0)}

and 07, "V = 0 for any (k,1) ¢ AU{(0,0)} satisfies [0 > [l < [|6]1.

Taking the expectation conditionally to X 4 of this previous expression leads to

Ep (X[i.41|Xa) = Z 93%{(00)}[1@ l]X[k,l]Jr93U§(00)}[0O]E(X[O,OHXA) . (29)
(k,1)eA

Gathering identities (28) and (29) yields

9AH I} ) 4 9AVLGD Y, -]9?U§O’O}[k,l]

Xk,

Eg (X10.0|X4) = Z

(kA 1 — AU} ;020100 g o)

(4,5)

since ‘HAU{W}[z,g]HAU{O 0} [0 0]’ < 1. Then, we upper bound the [; norm of 64
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using that [|4Y{D}|; and ||93lj§(0’0)} |1 are smaller or equal to ||6]|;.

1621
Y kpyea 0T wa] + 32 ea ’(’AU{(i’j)}[iyﬂeéﬁom[w‘
1— ‘eAu{u,a)}[ e O]‘

i AU{(0,0)} AU{(0,0
161, + |9AU{( 1.7)} [4,5] | (Z(kl )eAUL(0,0)} }9(13{ [k,l]‘ —1- ‘9(i3§( )}[0,0]})

1— ‘QAU{(%])}[LJ‘]Q;-?JQ{(O O)}[O,O]’

16]]1 (1 + [0AUTGDY g ) — |0AL @D 5] (1 i

AU{(O 0)}[O O]D

B 1-— HAU{(@J’)}[i,j]HAU.{(O’O)}[O,O]‘
o] ol 1) (14 6 0]

IN

19112 +
1 ‘9AU{(1,J)}[1',]‘]925§(0 0)}[O,O]‘

Since ||6]|; is smaller than one, it follows that 04|y < [|6]];.

Let m be a model in the collection M. Since m stands for a set of neigh-
bors of (0,0), we may define ™ as above. It follows that [|§™]|; < ||0]1. Since
the field X is stationary on the torus, X follows the same distribution as the
field X* defined by X*[i,j] = X[—i,—j]. By uniqueness of 6™, we obtain that
0™ 1i,5) = 0™ [—i,—j]. Thus, 8™ belongs to the space ©,,. Moreover, 8™ minimizes
the function (.) on ©,,. Since the I; norm of ™ is smaller than one, ™ belongs
to ®+ . The matrices 8™ and 0,,,,, are therefore equal, which concludes the
proof in the non- isotropic case.

Let us now turn to the isotropic case. Let 6 belong to ©%+ and let m be a
model in M;. As previously, the matrix 6™ satisfies |§™|1 < ||0]|1. Since the
distribution of X is invariant under the action of the group G, 8™ belongs to
©k°. Since [|0™(|1 < [|6])1, 6™ lies in ©,5 150 Tt follows that 0™ = gis° O

mp1

Proof of Corollary 4.3 in [0]. Let 6 be a matrix in ©F such that (Hs) holds
and let m be a model in M;. We decompose 7(9m p1) using the conditional
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expectation of X 0,0 given X,,.

2
’7(9771,/11) = Eq|X]0,0] — Z 9m7p1[iaj]X[iJ]:|
- (i,5)em

2
= Eg|X[0,00 = Ep (X100 |Xm):|

- 2
+ Eg|Eg (X[0,0][ X0 ) — Z 9m,p1[i,j]X[i,j]} :

- (i,7)€EM

>

By Corollary (11) in [6], we know that

Eg (X001 Xm) = D Ompy i1 X[i] -

(i,5)€m

Combining these two last identities yields

2
V(Omp) = v(ﬂm,pl)HEe{ > (9m,p19m,p1)[me} :

(4,5)€A\{(0,0)}
Subtracting 7(f), we obtain the first result. The proof is analogous in the
isotropic case. |
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