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1-   Introduction 

In today wireless system, the principle of combining OFDM (Orthogonal Frequency Division 

Multiplexing)  scheme and multi-antenna processing (MIMO or SIMO architectures) is often use 

and offer an important increase of achievable performances. Another objective is to propose more 

and more integrated systems, and to reduce the space and the cost of the wireless designs. In this 

way, homodyne down conversion structure appears to be very seductive. Unfortunately, multi-

antenna systems and complexity reducing are really contradictive: increasing the number of multi-

branches leads to RF components duplication and increase in space occupation. In order to decrease 

systems cost, the dirty RF concept [1] which aims at identifying constraints that can be relaxed on 

hardware component is an interesting solution. However, OFDM technique is really sensitive on RF 

impairments [2] and numerical processing have to be used in order to estimate and correct non-

idelallities of the hardware stage to minimize the decreasing of performances transmission due to 

dirty RF. Especially in the case of the use of an homodyne structure, when RF impairments are 

much more critical, as compared with super-heterodyne receivers [3]. Three most critical RF 

impairments have been studied in the special case of OFDM receiver: phase noise [4, 5] and 

frequency offset [6,7] due to local oscillator non idealities and IQ imbalance due to mismatch 

between the both I and Q branches especially critical in an homodyne structure [9, 10]. For each 

considered impairments numerical processing ensuring an impairments defaults exist, but error can 

still occure and the use of these algorithm increase the numerical complexity of the developed 

receiver. In this context, the aim of this work is to point out the potential of naturally compensating 

the RF impairment presented before jointly with the fading effects by the usage of a classical SIMO 

antenna processing algorithm, thus without increasing numerical complexity in the special context 

of the often used 802.11g WLAN OFDM transmission [12]. In this current article, main of the 

presented results are obtained by taking into account most as possible realistic working condition by 

the use of a global system evaluation scheme based on Agilent Technologies equipments [13]. As 

presented in [13], realistic consideration of the characteristics of transmission channel, the antenna 

coupling and also the channel correlation would indeed allow a fast and effective design of multi-

antenna wireless systems in order to obtain an important design cycle reducing. 

The first part presents the used global system level approach and the associated tools with some 

theoretical, simulated and measured results in order to validate the developed testbed radio 

plateform. In the second part, the three presented RF impairments are considered one by one in a 

Zero-IF down conversion structure and their effect on OFDM transmission performances are 

detailed. In the last part, after a short description of the SIMO processing that is used, the natural 

compensation of each RF impairment it is possible to obtained taking advantage of space diversity 
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is presented. Results given in this part are obtained by taking into account different measured 

propagation channels (AWGN or fading channels) and a complete 802.11g structure. 

 

2- Description and validation of the global simulation scheme 

This part of the work presents the global simulation scheme developed in order to efficiently 

simulate and measure all part of a SIMO (Single Input Multiple Output) 802.11g transmission chain 

from the global system level down to the particular model of RF components or fading channels. 

[13] presents the testbed radio platform developed using Agilent Technologies equipments: the 

ADS software and the measurement hardware (two arbitrary waveform generators - ESG 4438C - 

and a vector spectrum analyzer with two RF inputs - VSA 89641). Due to the capabilities of the 

developed platform, realistic 2x2 MIMO transmissions, extending measurements up to 6 GHz, with 

a received bandwidth analysis of 36 MHz could be experimented (Fig. 1). 

 

 

Figure 1 - The 2x2 MIMO connected solution using the interaction between ADS software and Agilent 

Technologies equipments. Emitter part, channel propagation and receiver part can be studied and modelled. 

In order to validate the developed testbed platform, the first tests were done for an uncoded 36 

Mbps 802.11g SISO transmission, under an AWGN propagation channel simulating a perfect Zero-

IF base band conversion stage. For such a data rate, a 16-QAM modulation scheme is used. The 

theoretical Symbol Error Probability sP  for a M-QAM is computed considering two independent 

M PAM modulations on both I-and Q-channels: 

( )211
Ms PP −−=                                 (1) 

with : 
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where bγ  denotes the energy per bit to noise ratio (Eb/No) and Q the Gaussian function. The 

relationship between the Signal to Noise Ratio (SNR), the transmission data rate, the coding ratecR , 

the signal bandwidth (BW) andbγ  is given by: 

b
c

BW

Rratedata
SNR γ⋅⋅= _

                    (3) 

Where BW = 20 MHz, and cR =3/4 in the case of a 802.11g transmission. 

In the end, the theoretical Bit Error Probability (BER) is: 

( )M

P
BER s

2log
=                      (4) 

Fig. 2 compares simulated, measured and theoretical BER for an uncoded 36 Mbps 802.11g (16-

QAM) transmission. In order to obtain a targeted BER value estimation (variance of 10-2), 10 000 

frames of 200 bytes are transmitted in measure and simulation tests for each SNR value. AWGN 

measures were not made in anechoid chamber but in close and static line of sight working 

conditions. A good matching between the different data can be observed (deviation is around only 1 

dB).  Unless stated otherwise, all described results were obtained with real simulated 802.11g 

structure using 52 OFDM data sub-carriers, convolutionnal error correcting code, Viterbi decoder 

and soft decision technique. The transmission data rate is 36 Mbps. 
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Figure 2 - Uncoded 802.11g AWGN BER performances. Theoretical, simulated and measured data are plotted 

versus SNR.   
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3- RF impairment SISO effects 

 

3.1 Notations 

Three RF impairments at the receiver side are taken into account. Our work focuses on the effect of 

frequency offset, the local oscillator (LO) phase noise, the I-Q imbalance (both gain and phase).  

Fig. 3 presents the structure of a Zero-IF converter including the RF impairments considered in our 

study. To ease readability, the low pass filter stage and the ADC are intentionally omitted even 

though they are also responsible for I-Q imbalance. 

θ (rad) and α (V) refer to phase and gain imbalance respectively; ∆f (Hz) is the mismatch between 

the carrier frequency fc of the emitter and the receiver; φ is the phase noise due to local oscillator 

imperfection. The gain imbalance G is given in dB by: 










−
+=

α
α

1

1
log20G                      (5) 

The frequency offset value is often expressed in parts per million: 

( )
c

ppm f

Hzf
f

∆=∆                                 (6) 

 

 

Figure 3 – Zero-IF converter with RF impairments (local oscillator phase noise, frequency offset and I-Q 

imbalance). 

x(t), y(t) and z(t) (to be introduced later) denote the complex emitted signal, the received signal after 

channel propagation without RF impairments, and the baseband signal after RF impairment 

degradation in the temporal domain, respectively. h(t) and n(t) refer to the temporal channel impulse 

response and the additive white Gaussian noise, respectively. The same notation using capital letters 

refers to the transposed signals in the frequency domain. ⊗  is the convolution operator, and * 

sRF(t) π/2 + θ/2 
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denotes complex conjugation. M is the number of sub-carrier used in the OFDM system (M=64 for 

a 802.11g transmission). 

Most of the presented performances are given in relative BER (i.e. ratio between BER with 

imperfection and BER with perfect RF conditions). Reference BER is about 5.10-3. This is obtained 

for a perfect simulated Zero-IF down converter. To have a precise estimation of relative BER, 3000 

measurements or simulated frames of 1600 bit are performed. 

 

3.2 Phase  noise effect 

Phase noise effect can be separated into a multiplicative and an additive part in single-input single 

output OFDM systems. Due to phase noise impairments φ(t), the temporal received signal is 

defined by 

( ) ( ) ( )[ ] ( ) ( )tnetxthtz tj +⋅⊗= ϕ                               (7) 

After removing the cyclic prefix and applying the DFT on the remaining samples, the demodulated 

carrier amplitudes ( )kZm  with k the sub-carrier index ( 10 −<< Mk ) of the mth OFDM symbol are 

given by [14] 

( ) ( ) ( )
{

( ) ( ) ( )kNSlHlXSkXkHkZ m

ICI

M

kll
klm

CPE

mmmm ++= ∑
−

≠=
−

444 3444 21

1

,0
,0,                          (8)                 

The term imS ,  corresponds to DFT of one realization of ( )nje ϕ  during the mth OFDM symbol: 

( )( )∑
−

=

+−=
1

0

/2
,

1 M

n

nMinj
im e

M
S ϕπ                     (9) 

The received sample in frequency domain (8) exhibits two terms due to phase noise. All phase noise 

correction schemes are based on Common Phase Error (CPE) estimation and mitigation, and are 

relatively efficient in WLAN OFDM systems for small phase noise working conditions. However, 

under high phase noise, the Inter-Carrier Interference (ICI) term dominates over the CPE. In this 

case, the phase noise suppression becomes really difficult [6] and the performances requirement 

may not be guaranteed due to the loss of orthogonality between sub-carriers.  

The most common way of characterizing oscillator’s phase noise is its Power Spectral Density 

(PSD), Sφ(f), where f is the frequency offset to the carrier frequency. The phase noise effect is 

commonly characterized as a Wiener process corresponding to a PSD slope of -20dB/dec. In this 

case, the critical parameter of the oscillator quality is the single sideband -3 dB bandwidth of the 

Lorentzian power density β. The phase noise variance is hence computed as Tπβσ ϕ 42 = , with T 

being the sample time [6]. [4] gives the variance expression for a model more general than the 
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classical Wiener process, closer to the measurements and which studies the influence of different 

phase noise spectrum slopes on the system performance: 

( )dffS∫
∞

∞−

= ϕϕσ 2                                                                                    (10) 

When no phase noise suppression algorithm is applied, [4] shows that the Energy per Symbol Ratio 

degradation D (in dB) caused by phase noise defined by any PSD spectrum - assuming phase noise 

variance is small (σ2 <<1) - is not dependent on the number of sub-carriers, and is given by: 

( )sD γσ 21log10 +=                               (11) 

sγ denotes the initial Energy per Symbol Ratio without phase noise impairments. 

Fig. 4 shows a comparison between simulated and theoretical BER performance for an uncoded 16-

QAM OFDM 802.11g transmission in AWGN propagation condition. These results were obtained 

considering a phase noise with a PSD spectrum for positive frequencies modelled as follows, and 

which correspond to a phase noise variance of σ
2 = 0.015 rad2 : 

-60 dBc/Hz   at 1 kHz 

-90 dBc/Hz  at 100 kHz 

-110 dBc/Hz  at > 1 MHz 
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Figure 4 – Phase noise impact on AWGN SISO BER performances (theoretical and simulated data).  Phase noise 

value of local oscillator: [1 kHz @ -60 dBc/Hz, 100 kHz @ -90 dBc/Hz, 1 MHz @ -110 dBc/Hz]. 

We observe relatively good matching between the results obtained with the developed ADS 

802.11g transmission scheme and the analytical results. However, it is important to note that in 

many WLAN OFDM receivers, CPE correction is applied (see [20] for example). As CPE can 
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easily be suppressed, only ICI distribution has to be considered to compute SNR penalty. The 

properties of the ICI term were previously studied by several authors. In many cases, only a Wiener 

process is considered and the ICI term is assumed to be complex Gaussian distributed. This 

approximation is valid only for small phase noise process [14]. As explained in [5], it is important 

to take into account different slopes values in the phase noise spectrum to provide applicable 

models for hardware design. Our developed test-bed answers this need, but it is not the aim of this 

work.  

 

3.3 Frequency offset 

The complex baseband received signal affected by frequency carrier mismatch between the receiver 

and the emitter’s local oscillator is: 

( ) ( ) ( )[ ] ( )tnetxthtz tj f +⋅⊗= ∆− π2                             (12) 

We define the normalized frequency offset ε as the ratio between the carrier frequency offset in Hz 

and the adjacent OFDM sub-carrier spacing. In the expression below, BW is the occupied signal 

bandwidth (recalling that BW = 20 MHz for 802.11g transmissions): 

BW

Mf ⋅∆
=ε                                           (13) 

[8] gives the expression of the sampled signal for the sub-carrier k (k=0,…, M-1) after the receiver 

fast Fourier transform processing: 

( ) ( ) ( )
{

( ) ( ) )(
1

,0
0 kNlXlHSSkXkHkZ

ICI

M

kll
kl
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44 344 21

                          (14) 

Where the sequence klS − is given by: 
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1
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                          (15) 

For a quick evaluation, [6] gives a well-known good approximation of the Energy Per Symbol sγ  

degradation D (in dB) for an M-QAM OFDM transmission: 

( ) ( ) sD γπε 2

3

1

10ln

10=                               (16) 

Fig. 5 compares BER performances of an uncoded 16-QAM OFDM transmission under an AWGN 

propagation channel, taking into account a frequency offset equal to 8.3 ppm (∆f = 20 kHz). The 

fact that the different curves match validates our structures and measurement methods. 
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Figure 5 – Frequency offset impact on AWGN SISO BER performances (theoretical, simulated and measured 

data). The frequency offset value is 20 kHz. 

 
3.4 I-Q imbalance 

The imbalance can be modelled either symmetrical or asymmetrical (these are equivalent 

representations). In the symmetrical method which is used here [11], each arm (I and Q) 

experiences half of the phase and amplitude errors. It has been shown that multi-carrier signals are 

affected by a mutual inter-carrier interference between each pair of symmetric sub-carriers [10]. 

The perfect baseband received signal after channel propagation is given by: 

( ) ( ) ( ) ( )tntxthty +⊗=                                                            (17) 

[10] gives the expression of the imperfect baseband signal due to I-Q imbalance 

( ) ( ) ( )*tytytz ⋅+⋅= λµ                              (18) 

Injecting (18) in (17), one can show that 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]*tntxthtntxthtz +⊗⋅++⊗⋅= λµ                           (19) 

where µ and λ depend on the I-Q imbalance: 



















−
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=

2
sin

2
cos

2
sin

2
cos

θθαλ

θαθµ

j

j

                             (20) 

In the frequency domain, for each data sub-carrier k of the OFDM signal (k  ∈ [-26, 26]), the 

received signal is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )*** kNkNkXkHkXkHkZ −++−−+= λµλµ                          (21) 
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[10] shows that the error ∆ between the estimated received symbol and the emitted symbol for each 

sub-carrier k due to the I-Q imbalance is 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )**

* 11
kN

kH
kN

kH
kX

kH

kH
k −++−−=∆

µ
λ

µ
λ

                         (22) 

[15] gives the analytical BER expression for M-QAM OFDM systems in the presence of I-Q 

imbalance, based on constellation degradation. Fig. 6 presents, in the case of AWGN transmission, 

uncoded 16 QAM-OFDM BER performances by using the presented radio communication 

platform.  
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Figure 6– I-Q imbalance impact on AWGN SISO BER performances (theoretical, simulated and measured 

data). The phase imbalance value is 5° and the gain imbalance is equal to 0.6 dB. 

 

Simulated and measured data are compared with theoretical results. In this figure, phase imbalance 

and gain imbalance are respectively equal to θ=5° and α=0.6 dB.  

 

4- RF impairments mitigation using SIMO processing 

 

4.1 The SIMO 802.11g architecture 

Spatial diversity is very often considered in today radio receiver ensuring BER performances 

improving by the use of SIMO processing. Instead of using only one antenna at the receiver side, N 

antennas are used to take advantage of the several versions of the same emitted signal, combining 

these N signals and increasing the SNR of the received signal.  

In our case, a Minimum Mean Square Error (MMSE) approach is used as the optimization criterion 

using a Sample Matrix Inversion (SMI) technique [16] to estimate the optimal complex weight to 
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apply on each received branch. These coefficients are computed using the knowledge of the two 

long preambles (corresponding to two OFDM symbols) at the beginning of each 802.11g frame in 

the frequency domain. Considering a constant propagation channel response during the complete 

frame duration, the SMI processing ensures a very good trade-off between BER performance and 

computation complexity.  

In our equipment, the two incident signals are recorded simultaneously by the VSA, and the 

baseband signals are re-injected in the ADS simulated multi-antenna structure. Simulated and 

measured performances of 1x2 SIMO structures for different propagation channels and in realistic 

working conditions are presented in [18]. In the next part of this work, we present the effect on RF 

impairments due to a non-ideal Zero-IF baseband converter. Even if adapted numerical processings 

already exist to decrease and correct RF impairments, some errors can still occur. That is why it 

seems to be an interesting study to detail the natural compensation due to SMI properties it is 

possible to reach. Furthermore, this kind of study corresponds well on the context of a global 

system performances presentation.  

 

4.2 Phase Noise Mitigation 

As detailed in section 3, local oscillator phase noise impacts M-QAM OFDM transmission 

significantly. Even if CPE can be removed, residual errors due to ICI still exist. Furthermore, the 

design of precise local oscillators ensuring a decreasing phase noise variance is expensive. That is 

why we present, in this part, the achievable performances in a SIMO configuration for different 

propagation channels including phase noise impairment. The considered phase noise PSD is 

modelled as follow: 

-60 dBc/Hz   at β Hz 

-80 dBc/Hz  at β x10Hz 

-100 dBc/Hz  at > β x100 Hz 

This corresponds to a Wiener phase noise exhibiting a -20dB/dec slope with β the PSD spectrum 

bandwidth of the phase noise. With β increasing, SNR degrades and hardware components get 

cheaper.  

Fig. 7 gives the relative BER performances obtained by simulation considering a complete 802.11g 

transmission scheme: both phase tracking ensuring CPE suppression and FEC decoding are applied. 

AWGN and frequency selective channels with fading are used to simulate the wireless propagation. 

The parameter β takes different values between 1 kHz and 30 kHz, i.e. between 3.2.10-3 and 9.6.10-2 

the OFDM sub-carrier spacing of 312.5 kHz.  

As showed in Fig. 9, SIMO processing does not mitigate phase noise impairments significantly, 

especially under the AWGN case. This result can be explained by the fact that the optimal complex 
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coefficients applied on each arm of the SIMO receiver are estimated with only the 128 samples of 

the 802.11g frame preamble (2 OFDM symbols). However, as reported in (8) and (9) the phase 

noise contribution is not constant during a whole frame, and takes different values at each new 

OFDM symbol; the SIMO weights become obsolete. This observation could be mitigated if the 

transmission is under a frequency selective channel. In this case, the multi-antenna receiver is able 

to take advantage of spatial diversity and ( ) lkSkH −  can take small values on each received branch, 

ensuring a decreasing of the ICI term. 
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Figure 7 – Phase noise mitigation in AWGN and NLOS simulated conditions. Results are given in relative BER 

versus local oscillator phase noise characteristics (β) 

 

4.3 Frequency Offset Mitigation 

In a common 802.11g receiver, digital stages of frequency offset estimation and correction are 

implemented [19]. However, residual frequency offset can occur, and introduce errors in the 

propagation channel estimation. SIMO performance evaluation in a realistic 802.11g structure 

seems to be an interesting choice and is detailed in the next part. 

Fig. 8 presents the BER relative performances for different frequency offset values, in the range of 

0 to 55 kHz (i.e. 0 to 23 ppm). These results were obtained by treating measured signal in the case 

of an NLOS with fading transmission. Even though the frequency carrier offset takes an important 

value of 50 kHz, the impact of this impairment that is obvious for a SISO transmission is really well 

mitigated using diversity.  

Even if the analytical impact of frequency offset and phase noise on the received complex samples 

are almost the same, we observe that SIMO processing ensures larger mitigation of frequency offset 
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than of phase noise impairment. This is due to the fact that the ICI term is constant in the case of a 

transmission impaired by frequency offset. Hence, this constant error is taken into account by the 

SIMO processing and complex weights computed by MMSE algorithm are still optimal during the 

entire frame (from a frequency offset mitigation point of view).  
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Figure 8 – Relative BER versus frequency offset in NLOS working conditions. SISO and 1x2 SIMO 

performances are given. 

 

4.4 I-Q mismatch mitigation 

At first, SMI gain related to simultaneous measured signals is presented in Fig. 9 for an I-Q phase 

imbalance in the range of 0° to 10°. The solid line curves represent BER performance for an 

AWGN propagation channel. This clearly shows that the SMI algorithm efficiently compensates RF 

impairments impact, even for a large phase imbalance of 10°, and that SIMO processing allows a 

very good rejection of the jamming effect due to phase imbalance. In the case of a wireless link 

under a frequency selective and fading channel, performance degradation and their mitigation with 

the SMI processing are presented with dotted lines on the same figure. SISO performances under 

AWGN and NLOS working conditions are fairly close, which seems contradict (22). A possible 

explanation is related to the noise level at the receiver input. In the present case, the reference BER 

value of 5.10-3 is relative high, so the contribution of the first term in (22) is not significant. 

Furthermore, the I-Q impairments mitigation with the SMI processing is less important for 

frequency selective working conditions than for a transmission under an AWGN channel. This 

could be explained by (22) when reminding that the same complex weights are applied to all the 
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sub-carriers. The mitigation difference clearly appears for phase imbalance of up to 8°, which is an 

important mismatch.  
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Figure 9 - Relative BER versus I-Q phase imbalance in AWGN and NLOS measured working conditions. SISO 

and 1x2 SIMO performances are given. 
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Figure 10 – Relative BER versus I-Q gain imbalance in AWGN and NLOS measured working conditions. SISO 

and 1x2 SIMO performances are given. 

 

Following the same approach, I-Q gain imbalance influence was studied. Fig. 10 presents the 

mitigation which can be reached using diversity for different I-Q gain imbalance values from 0 to 

1.2 dB. Similar conclusions can be drawn for I-Q gain imbalance mitigation with SMI processing. 
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Even if the mitigation with the SMI algorithm is less important in multi-path propagation channels 

than in AWGN conditions, excellent performance can be observed for I-Q gain imbalance values up 

to 1 dB. 

 

5- Conclusion 

We present a comprehensive study of a multi-antenna OFDM homodyne receiver, based on theory, 

simulation and measurements with a reduced design cycle results. The aim of this approach is to get 

a realistic view of a complex system's performance without requiring many stages of prototyping. 

This study highlights the key points of the RF element design for this kind of receiver. 

The multi-antenna approaches, as software radio principles, call to reduce strains on the quality of 

components to achieve an acceptable cost-performance ratio. We prove that the conventional multi-

antenna treatment used can significantly reduce damage caused by the most common RF 

impairments: frequency offset, local oscillator phase noise and IQ imbalance. The multiplication of 

RF branches can be made cheaply if we consider this natural impairments compensation, without 

ever having to resort to specific digital processing. The result, however, is that particular attention 

should be paid to the problems of phase noise, by the means of a strong constraint on the selected 

components, or by the addition of a dedicated digital processing. 

As future work, we plan to assess the same constraints and possible compensations as part of a 

multi-standard broadband architecture, making it possible to obtain a feasible receiver for 

applications such as cognitive or opportunistic radio. More results concerning this work are 

presented in [20]. 
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