
HAL Id: inria-00413485
https://hal.inria.fr/inria-00413485

Submitted on 4 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load Balancing and Efficient Memory Usage for
Homogeneous Distributed Real-Time Embedded

Systems
Omar Kermia, Yves Sorel

To cite this version:
Omar Kermia, Yves Sorel. Load Balancing and Efficient Memory Usage for Homogeneous Distributed
Real-Time Embedded Systems. Proceedings of the 4th International Workshop on Scheduling and
Resource Management for Parallel and Distributed Systems, SRMPDS’08, 2008, Portland, Oregon,
United States. �inria-00413485�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50147271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00413485
https://hal.archives-ouvertes.fr

Load Balancing and Efficient Memory Usage for Homogeneous Distributed
Real-Time Embedded Systems

Omar Kermia, Yves Sorel

INRIA Rocquencourt,
BP 105 - 78153 Le Chesnay Cedex, France

Phone: +33 1 39 63 52 60 - Fax: +33 1 39 63 51 93
omar.kermia@inria.fr, yves.sorel@inria.fr

Abstract

This paper deals with load balancing and efficient mem-
ory usage for homogeneous distributed real-time embedded
applications with dependence and strict periodicity con-
straints. Most of load balancing heuristics tend to minimize
the total execution time of distributed applications by equal-
izing the workloads of processors. In addition, our heuris-
tic satisfies dependence and strict periodicity constraints
which are of great importance in embedded systems. How-
ever, since resources are limited some tasks distributed onto
a processor may require more data memory than available.
Thus, we propose a fast heuristic achieving both load bal-
ancing and efficient memory usage under dependence and
strict periodicity constraints. Complexity and theoretical
performance studies have showed that the proposed heuris-
tic is respectively efficient and fast.
Thus, an efficient memory usage is also necessary, espe-
cially in embedded systems where memory is limited.

Although the total execution time of tasks is minimized
some tasks could not be executed because the processors

where they were distributed do not own enough memory to
store the data used by these tasks.

However, memory usage plays a significant role in deter-
mining the applications performances.
Keywords
Load Balancing; Multiprocessor Real-time scheduling;
Memory Optimization

1 Introduction

Distributed real-time embedded applications found in
domains such as avionics, automobiles, autonomous
robotics, telecommunications lead to non-preemptive dis-
tributed scheduling problems with dependence and strict
periodicity constraints. These complex applications must

meet their real-time constraints, e.g. deadlines equal to the
periods of the tasks, otherwise dramatic consequences may
occur. Then, their total execution time or the completion
time of the last task must be minimized in order to decrease
the delay in the feedback control occurring in these appli-
cations, and in addition the memory resources must be ef-
ficiently used since they are limited due to the embedded
feature. Here, because we deal with signal processing and
automatic control applications the tasks have a strict peri-
odicity. A strict period means that if the periodic task a has
period Ta then ∀i ∈ N, (sai+1 − sai) = Ta, where ai and
ai+1 are the ith and the (i + 1)th instances of the task a,
and sai and sai+1 are their start times [1].

The problem of load balancing started to emerge when
distributed memory processing was gaining popularity.
Load balancing aims at decreasing the total execution
time of distributed (parallel) computation by equalizing the
workloads of processors during or after the distribution and
the scheduling of the application. For an overview on the
general load balancing problem see [2]. Since memory
must be carefully managed in embedded systems we pro-
pose a new load balancing technique that provides efficient
memory usage.

Studies on general purpose distributed applications
showed that over 65% of processors are idle at any given
time [3]. It means that some processors are underloaded
when others are overloaded. This is the main reason to
achieve load balancing which in addition induces a smaller
total execution time than if the load is unbalanced. In our
case since we aim at real-time applications, this percent-
age can be more important due to periodicity constraints.
On the other hand since we address embedded systems we
must take into account the limited memory of every pro-
cessor. Thus, it is important to efficiently use the memory.
This issue is much more important when, as it is the case in
this paper, tasks with different periods communicate. This

is illustrated in a simple example with two tasks a and b
which communicate while their periods are not the same
(e.g. period of b be equal to n times the period of a) such
that a distributed onto processor P1 produces data for b
distributed onto P2 assuming that b depends of a. Depen-
dent tasks scheduled onto different processors lead to inter-
processor communications between these processors. We
consider that before executing b the processor P2 must re-
ceive the n data produced by the n instances of a [4] exe-
cuted by P1. The scheduling of these tasks is depicted in
figure 1 for n = 4 where four data produced by the four ex-
ecutions of task a on P1 must be stored on P2 until b is able
to use the four data, i.e. on P2 the memory used to store the
data produced by the first instance of a cannot be reused by
the data produced by the second, the third and the fourth
instances of a. That means memory reuse [5] is not always
possible in this case where as much data as instances are
used.

Figure 1. Data Transfer

We assume that the distributed architecture is homoge-
neous, i.e. the processors and the communication media are
identical, and moreover they have the same memory capac-
ity. Also, we assume that load balancing is achieved off-line
in order to minimize its impact at run time. We assume inter-
processor communications take time, and thus we shall take
them into account in the distributed scheduling as well as
in the load balancing of tasks. Since we have dependence
and strict periodicity constraints, when load balancing is
intended, a task is moved only if the constraints still remain
satisfied. The distributed scheduling problem in such con-
ditions is very difficult to solve. Therefore, we first perform
a separate distributed scheduling heuristics [4, 6] which
seeks only to satisfy the dependence and strict periodicity
constraints. From this result we perform another heuristic
for load balancing and efficient memory usage. We assume
that each task has a known execution time (Worst Case Exe-
cution Time WCET) and a known required memory amount
which represents its need in terms of data storage. Using
these two information, the proposed heuristic computes a
cost function to determine at any time to which processor
the tasks have to be moved. It begins by grouping tasks
scheduled onto the same processor into blocks according
to their dependences. Finally, it distributes each resulting

block onto the processor according to the value of the cost
function.

We are concerned by fast heuristics because realistic in-
dustrial applications we deal with, are very complex, i.e.
several thousands of tasks and tens of processors, prevent-
ing the utilization of slow heuristics. That leads us to de-
velop a fast sub-optimal heuristic which performs load bal-
ancing and efficient memory usage for such applications.

The rest of the paper is organized as follows: the next
section is devoted to the related work. Section 3 introduces
some notations, gives the principles of the proposed heuris-
tic and its pseudo code, then the proposed heuristic is illus-
trated by an example. In section 4, the complexity of our
heuristic is studied. A theoretical performance study is pro-
posed in section 5. Finally, Section 6 presents a conclusion.

2 Related Work

Optimal load balancing which consists in finding the
smallest total execution time is an NP-hard problem [7].
Optimal algorithms for this problem are usually based on
the Branch and Bound principle. Korf in [8] gives an opti-
mal Branch and Bound algorithm for the Bin Packing prob-
lem which is similar to the load balancing problem [7].
In addition, heuristics which produce sub-optimal solutions
have been developed. For example “Genetic Algorithms”
have gained immense popularity over the last few years as
a robust and easily adaptable search technique. For exam-
ple Greene proposed in [9] a Genetic Algorithm for load
balancing of general purpose distributed applications. In
these works, the memory usage was not taken into account.
There exist only few load balancing algorithms which con-
sider memory usage [10, 11]. On the other hand, the notion
of “Memory Balancing” is used as in [12] which considers
only memory balancing and no load balancing.

3 Load Balancing Heuristic with efficient us-
age of memory

3.1 Definitions

The proposed heuristic deals with applications involv-
ing N tasks and M processors. Each task a has an execu-
tion time Ea, a start time Sa computed by the distributed
scheduling heuristic, and a required memory amount ma.
The required memory amount may be different for every
task. It represents the memory space necessary to store the
data managed by the task, i.e. all the variables necessary
for the task according to their types.

As shown in [13] to analyze an application composed
of periodic tasks it is enough to study its behavior for a
time interval equal to the least common multiple (LCM)

of all the task periods, called the hyper-period. Because
of the strict periodicity constraints, each task is repeated
according to the ratio of the hyper-period and its period.
This ratio corresponds to the number of instances of the
task on the hyper-period. The time elapsed between the
start times of two successive instances is always equal to
its period [4]. For each processor, the proposed heuristic
considers all the tasks scheduled in a time interval equal to
[SP0 , S

P
0 + LCM], where SP0 is the start time of the first

task scheduled onto P .
The inter-processor communication times are taken into

account by the proposed heuristic according to the follow-
ing principle. When a task is scheduled onto a processor P ,
if there is a dependence between this task and n (n ∈ N ,
n ≥ 1) other tasks already scheduled onto other proces-
sors, n new receive tasks must be created and scheduled
before this task in order to receive the data on that pro-
cessor P . On the other hand a send task must be created
and scheduled onto the processor where the producer task
is scheduled. The data transfer associated to a dependence
is carried out by sending and receiving messages through
the communication medium which connects both processors
where corresponding tasks are executed. The communica-
tion time specifies the time elapsed between the start time
of the sending task and the completion time of the receiv-
ing task. Since the communication time depends on the size
of data to be transferred (the larger the task, the longer
the transfer time), the memory usage affects communication
times [14].

In multi-periodic applications, the data transfer between
the tasks is not achieved by the same way as in the non-
periodic applications. When there is a dependence between
task a and b and the period of b is twice the period of a,
task a is repeated twice as fast as task b. It means that task
b needs two data produced by task a to be executed (the
data produced by each execution of a are generally differ-
ent). This principle explains the possible dependence be-
tween tasks at different periods knowing that the problem
does not exist when they are at the same period. Here is a
simple example of that. Let a be a sensor which measures
the temperature of an engine, and let b be the task which
computes the average temperature of the same engine (pe-
riod of b is equal to n times the period of a). Therefore a is
repeated n times before executing b which has to receive n
data from a to compute the average temperature.

Tasks are grouped into blocks according to the following
principle. A block is built of one task or several dependent
tasks scheduled onto the same processor such as the move
of one of these tasks produces an inter-processor communi-
cation. A block moves from its initial processor to another
processor, likewise, and in order to keep the same designa-
tion a block can also move from its initial processor to this
same processor.

When a block moves, either it keeps the same start time,
or its start time decreases leading to decrease the total exe-
cution time. The execution time (resp. the required memory
amount) of a block is the sum of the execution times (resp.
the required memory amounts) of the tasks it contains, and
its start time is the start time of the first task.

Let B be the block containing the tasks {b0, .., bi, .., bn}
scheduled onto the same processor. Let a and c be two tasks
scheduled onto the same processor where B is scheduled,
such as a ≺ bi and bi ≺ c (a ≺ bi means that there are
dependences between a and bi, i.e. bi cannot start until a
is completed). Let Ea be the execution time of a, and C the
communication time. Then, B is a block if

∀i ∈ N, 0 ≤ i ≤ n,
Sbi ≥ (Sa + Ea + C) (1)

and

(Sbi +Ebi + C) ≤ Sc (2)

Equation (1) deals with the dependence a ≺ bi and equa-
tion (2) deals with the dependence bi ≺ c.
We distinguish two categories of blocks:

1. a block whose tasks are only the first instances of each
of these tasks. These blocks contain only first instances
of tasks. This category represents blocks which can im-
prove the total execution time because their start times
can decrease when they are moved from a processor to
another one. The other instances of these tasks belong
to blocks of the second category.

2. a block whose the first task is another instance than the
first instance of this task. The other tasks of this cat-
egory of blocks are either the first or other instances
of tasks. The start time of this category of blocks de-
creases only if the start time of the first instance of its
first task which belongs to a block of the first category
decreases.

We denote by GPi→Pj (A) the gain in terms of time due
to the move of the block A of the first category from the
processor Pi to a processor Pj . Pj may be the same or
different than Pi. SPiA is its initial start time and SPjA is its
new start time on Pj . SPjA is less or equal to SPiA .

GPi→Pj (A) = SPiA − S
Pj
A (3)

When SPjA = SPiA , GPi→Pj (A) = 0
As explained before, on each processor, tasks are re-

peated according to their periods inside a time interval
equal to the hyper-period and they are scheduled upon that
hyper-period which is repeated infinitely. In order to guar-
antee that repetition we introduce a condition, called Block

Condition, inside the load balancing heuristic. It consists in
checking that before moving a block to a processor it does
not prevent the execution of the next instance of the first
block moved to this processor.

Let assume A is the first block which has been moved to
processor P . A block B satisfies the Block Condition if

SPB +EB ≤ SPA + LCM (4)

LCM is the least common multiple of all periods of tasks.
The heuristic is based on a Cost Function λPi→Pj (A)

which is computed for a block A initially scheduled on Pi
and a processor Pj . It combines GPi→Pj (A) and the sum
of required memory amounts by the k blocks B1, ..., Bk al-
ready moved to this processor Pj .

λPi→Pj (A) =





GPi→Pj (A) if no block has been moved to Pj

GPi→Pj (A)+1∑i=k

i=1
mBi

otherwise
(5)

1 is added to GPi→Pj (A) since GPi→Pj (A) may take
the value 0.

When the gain GPi→Pj (A) is maximized and 1∑
i=q

i=1
mBi

is maximized, i.e. the required memory amount is mini-
mized, thus λPi→Pj (A) is maximized.

3.2 The Proposed Heuristic

For each processor the proposed heuristic starts by
building blocks from tasks distributed and scheduled onto
this processor. Then, each block A is processed according
to the increasing order of their start times. This process
consists in computing the cost function λ for the processors
whose end time of the last block scheduled on these proces-
sors are less or equal than the start time of the block A,
and in seeking the processor which maximizes λ. Moreover,
a block is moved to that processor if the LCM condition is
verified, otherwise that processor is no longer considered,
and the heuristic seeks again another processor which max-
imizes λ. If the moved block belongs to the first category
and λ > 0, then this block will decrease its start time.
In order to keep its strict periodicity constraint satisfied,
the heuristic looks through the remaining blocks and up-
dates the start times of the blocks containing tasks whose
instances are in the moved block (see step 3 in the example
of section 3.3). Algorithm 3.2 details the different steps of
the proposed heuristic.

[ht!] Load Balancing heuristic [1] Each processor Pi
Build the blocks by grouping tasks Sort the blocks by their
start times in an increasing order Each block Ai initially
scheduled on Pi Each processor Pj Compute the cost func-
tion λPi→Pj (Ai) for each processor Pj whose end time of

its last block is less or equal to SAi Seek the processor P
which maximizes λPi→P (Ai) and verify that the start time
of Ai satisfies the LCM condition, otherwise seek another
processor GPi→P (Ai) > 0 on P Update the start times of
the blocks containing tasks whose instances are in Ai Move
Ai to P

3.3 Basic Example

Figure 2. Task graph and architecture

In order to illustrate how the proposed heuristic pro-
gresses we first applied the distributed scheduling heuris-
tic given in [4] to the system of figure 2. The peri-
ods of the tasks are: Ta=3 units, Tb=6 units, Tc=6
units and Td=Te=12 units. The architecture is composed
of three identical processors P1, P2, P3 connected by a
medium Med. The execution times of all the tasks are:
Ea=Eb=Ec=Ed=Ee=1 unit. The communications times
are: C=1 unit. The required memory amount of the tasks
are: ma = 4 units, mb = mc = 1 unit, md = me = 2
units. The result is depicted on figure 3. Figure 3 shows
that the total execution time is 15 units. The sum of required
memory amount of tasks scheduled onto P1 is 16 units, this
sum in P2 is 4 and 4 in P3. Each task ai constitutes a block,
tasks bj , cj form the blocks [b1−c1], [b2−c2] and tasks d, e
form the block [d−e]. Then, following the increasing order
of the block start times, they are moved to the processors as
follows (the first three steps are fully detailed):

1. block [a1] is selected, GP1→P1([a1]) =
GP1→P2([a1]) = GP1→P3([a1]) = 0 and∑

i∈p2
mi =

∑
i∈p3

mi =
∑

i∈p1
mi = 0 so

λP1→P1,P2,P3([a1]) = 0. We choose to keep [a1]
scheduled onto P1,

2. block [a2] is selected, GP1→P1([a2]) =
GP1→P2([a2]) = GP1→P3([a2]) = 0 and∑

i∈p2
mi =

∑
i∈p3

mi = 0,
∑
i∈p1

mi = 4
so
λP1→P1([a2]) = 1/4, λP1→P2,P3([a2]) = 1. We
choose to move [a2] to P2 because λP1→P2,P3([a2]) >
λP1→P1([a2]) (P3 could be chosen also);

3. block [b1 − c1] is selected, GP2→P1([b1 − c1]) =
GP2→P3([b1 − c1]) = 0, GP2→P2([b1 − c1]) = 1 and∑
i∈p2

mi =
∑

i∈p1
mi = 4,

∑
i∈p3

mi = 0 so
λP2→P3([b1 − c1]) = 0, λP2→P1([b1 − c1]) = 1/4,
λP2→P2([b1 − c1]) = 1/2, [b1 − c1] is moved to P2.
As [b1 − c1] is a block of the first category and λ > 0
then the block [b2 − c2] which is a block of the second
category decreases its start time from 11 to 10 units;

4. block [a3] is selected, λP1→P1([a3]) = 1/4,
λP1→P2([a3]) = 1/6 and λP1→P3([a3]) = 1, [a3] is
moved to P3;

5. block [a4] is selected, λP1→P1([a4]) = 1/4,
λP1→P2([a4]) = 1/6 and λP1→P3([a4]) = 1/4, [a4]
is moved to P1;

6. block [b2 − c2] is selected, λP2→P1([b2 − c2]) = 1/8,
λP2→P2([b2 − c2]) = 0/6 = 0, λP2→P3([b2 − c2]) =
0/4 = 0, [b2 − c2] is moved to P1;

7. block [d − e] is selected, λP3→P1([d − e]) = 1/10
on P1 but it does not satisfy the LCM condition,
λP3→P2([d − e]) = 1/6, λP3→P3([d − e]) = 1/4,
[d− e] is moved to P3.

Finally, all the blocks are moved and we obtain a new
distribution and scheduling depicted on figure 4. The first
observation is that the total execution time is now 14 units
instead of 15. Secondly, the required memory amount was
[P1 : 16, P2 : 4, P3 : 4], the memory amount the heuristic
provides is: [P1 : 10, P2 : 6, P3 : 8] that corresponds to a
better memory usage.

Figure 3. Scheduling before load balancing

4 Complexity study

Let Nblocks be the number of blocks built from N tasks.
The complexity of our heuristic is O(MNblocks), where
Nblocks ≤ N .

Since usually the number of sensors which impose their
periods to the tasks is small [15], the number of different pe-
riods is small. Moreover, as the dependent tasks which are

Figure 4. Scheduling after load balancing

at the same or multiple periods are scheduled onto the same
processor [4], the number of blocks is small, even though
each block may include a large number of tasks.

The polynomial complexity of the heuristic as well as the
small number of blocks ensure a fast execution time.

The value of Nblocks is can be very small relatively to N
because the number of different periods among the multi-
periodic applications tasks due to the relatively small num-
ber of sensors and actuators which impose their periods to
the tasks [15]. As the dependent tasks are at the same or
multiple periods they are scheduled onto the same proces-
sor [4] leading to a relatively small number of blocks but
which includes a large number of tasks. Therefore, the pro-
posed heuristic has a fast execution time.

5 Theoretical performance study

In order to assess the theoretical performance of our
heuristic we calculate upper and lower bounds for the to-
tal execution time, and calculate an α-approximation for
the memory usage.

5.1 Total execution time bounds

If Lformer is the total execution time before applying the
load balancing heuristic and Lnew the total execution time
after applying the heuristic then:

Gtotal = Lformer − Lnew

Let assume that in the architecture each two processors
are connected by a communication medium (one medium
can connect several processors pairs such as in the archi-
tecture depicted in the example figure 2). The following the-
orem introduces the upper and the lower bounds which re-
strict Gtotal. These bounds allow us, on one hand, to be
sure that Lnew is always less or equal to Lformer and, on
the other hand, to know how much Gtotal may at most be
improved.
Theorem 1

The value of Gtotal is bounded by:

0 ≤ Gtotal ≤ γ[(M − 1)!] (6)

γ is a communication time. M is the number of processors
in the architecture.

Proof
First, let us begin by prove that Gtotal ≤ γ(M − 1)!.

When a block B (one or several tasks) is moved from a
processor Pi to another processor Pj , the communication
which connects B in Pi to a block A in Pj is suppressed.
Let assume that γ is the longest communication among the
whole communications that we can delete by moving blocks.

It is interesting to note that even though there exist other
moves from Pi to Pj or from Pj to Pi performed before
or after moving B, they do not take effect on Gtotal, i.e.
the total execution time is not decreased of the sum of all
these communications times, because the communication
between A and B includes all the other communications
which have a time smaller than its communication time.
This is due to the fact that the blocks are scheduled se-
quentially on a processor, and if the start time of a block
decreases all the start times of the blocks scheduled after it,
decrease also. Consequently, the total execution time is de-
creased at most of: γ × [number of processors pairs]. The
number of distinct processors pairs is equal to (M − 1)!.

Second, let us prove that 0 ≤ Gtotal. The proposed
heuristic tends to move every block to a processor such that
its start time decreases, or at worst the block keeps its ini-
tial start time. Likewise, blocks which communicate with a
moved block will either decrease their start times or keep
their initial start times. It implies that Gtotal is at least
equal to 0.

Hence, (6) is proven
The previous theorem shows on the one hand that, in

some cases all the communications can be suppressed and
the total gain is equal to γ(M − 1)! but this is quite rare,
and on the other hand that our heuristic never increases the
total execution time.

5.2 α-approximation for the memory us-
age

Here we only consider memory, notice that the total ex-
ecution time is not taken into consideration. The cost func-
tion in this case is equal to λ = Cst∑

k

i=1
mBi

where Cst is
a constant number (we assume that the gain G is a con-
stant). Thus, for each block the heuristic chooses the pro-
cessor which maximizes λ, i.e. the processor which min-
imizes

∑k
i=1 mBi (k is the number of blocks Bi already

moved, see the last part of section 3.1).

5.2.1 α-approximation definition
Let us consider an arbitrary optimization problem. Let
OPT(X) denotes the value of the optimal solution for a given
input X, and let A(X) denotes the value of the solution com-
puted by algorithm A using the same input X. We say that
A is an α-approximation algorithm, of minimization, type if
A(X)

OPT (X) ≤ α for all inputs X. A 1-approximation algorithm
always returns the exact optimal solution. The approxima-
tion factor α may be either a constant or a function of the
inputs. A more detailed definition of approximation methods
and presentations of the problem that have been approxima-
tively resolved using these algorithms can be found in [16].

5.2.2 Heuristic α-approximation
In this section we introduce a theorem which proves that the
proposed heuristic is (2 − 1

M)-approximated. This result
gives an idea of the proposed heuristic performance when
it deals with memory usage only.
Theorem 2

Our heuristic is a (2− 1
M)-approximation algorithm (we

remind that M is the number of processors). More precisely,
if ωopt is the optimal solution and ω is the solution obtained
by the proposed heuristic then:

ω

ωopt
≤ 2− 1

M
(7)

ωopt and ω are the maximal memory amount used in one
processor among all memory amounts used in all architec-
ture processors.
Proof

Let us consider that a block A is moved to processor Pi
with a required memory amount mA. We denote by V the
required memory amount for blocks moved to the processor
Pi before moving the block A, this memory amount is the
smallest among all the processors. This is why Pi is chosen
by the proposed heuristic in order to move the block A to
this processor. If ωopt is the optimal solution thenmA which
is only a part of the solution is such that

mA ≤ ωopt (8)

If Nblocks is the number of blocks formed by applying the
heuristic then,

∑Nblocks
i=1 mblocki

Nblocks
≤ ωopt (9)

From the definition of V we have

V +
mA

M
≤
∑Nblocks

i=1 mblocki

Nblocks
(10)

From (9) and (10) we have

V +
mA

M
≤ ωopt (11)

Thus, the required memory amount on Pi after movingA
to Pi is

ω = V +mA (12)

By rewriting ω we have

ω = V +
mA

M
+mA

M − 1

M
(13)

From (8) and (11) we have

V +
mA

M
+mA

M − 1

M
≤ (1 +

M − 1

M
)ωopt

From (13) we have

ω ≤ (1 +
M − 1

M
)ωopt

Thus
ω

ωopt
≤ 2− 1

M

Hence (7) is proven

6 Conclusion

In this paper we presented a heuristic for load Balanc-
ing and efficient memory usage of homogeneous distributed
real-time embedded systems. Such systems must satisfy de-
pendence and strict periodicity constraints, and their to-
tal execution time must be minimized since they include
feedback control loops. In addition since memory is lim-
ited in embedded systems it must be efficiently used. This
is achieved by grouping the tasks into blocks, and mov-
ing them to the processor such that the block start time
decreases, and this processor has enough memory capac-
ity to execute the tasks of the block. We shown that the
proposed heuristic has a polynomial complexity which en-
sures a fast execution time. We performed also a theoret-
ical performance study which bounds the total execution
time decreasing, and shows that our heuristic is a (2− 1

M)-
approximation algorithm for the memory usage, withM the
number of processors.

Presently, the proposed heuristic was not yet applied on
a realistic application, but the results obtained from the the-
oretical analysis demonstrated the effectiveness of the pro-
posed algorithm compared to an optimal algorithm. This
α-approximation analysis is widely used and has the advan-
tage to avoid the waste of time in implementing and testing
a heuristic if the analysis demonstrates that it is not effec-
tive.

We plan to implement our proposed heuristic in a CAD
software for real-time systems and experiment it.

References

[1] L. Cucu and Y. Sorel. Non-preemptive multiprocessor
scheduling for strict periodic systems with precedence
constraints. In Proceedings of the 23rd Annual Work-
shop of the UK Planning and Scheduling Special In-
terest Group, PLANSIG’04, Cork, Ireland, December
2004.

[2] B. A. Shirazi, K. M. Kavi, and Ali R. Hurson, editors.
Scheduling and Load Balancing in Parallel and Dis-
tributed Systems. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1995.

[3] M.W. Mutka. Estimating capacity for sharing in
a privately owned workstation environment. IEEE
Transactions on Software Engineering, 18(4):319–
328, 1992.

[4] O. Kermia and Y. Sorel. A rapid heuristic for schedul-
ing non-preemptive dependent periodic tasks onto
multiprocessor. In Proceedings of ISCA 20th inter-
national conference on Parallel and Distributed Com-
puting Systems, PDCS’07, Las Vegas, Nevada, USA,
September 2007.

[5] S. Biswas, T. Carley, M. Simpson, B. Middha, and
R. Barua. Memory overflow protection for embedded
systems using run-time checks, reuse, and compres-
sion. Trans. on Embedded Computing Sys., 5(4):719–
752, 2006.

[6] C. Hou and K. Shin. Allocation of periodic tasks
modules with precedence and deadline constraint in
distributed real-time systems. volume 46, December
1997.

[7] C. Ekelin and J. Jonsson. A lower-bound algorithm
for load balancing in real-time systems. In Proceed-
ings of the International Conference on Principles of
Distributed Systems (OPODIS’03), La Martinique,
France, December 2003.

[8] R. E. Korf. A new algorithm for optimal bin packing.
In Eighteenth national conference on Artificial intelli-
gence, pages 731–736, Menlo Park, CA, USA, 2002.
American Association for Artificial Intelligence.

[9] W. A. Greene. Dynamic load-balancing via a genetic
algorithm. In ICTAI ’01: Proceedings of the 13th
IEEE International Conference on Tools with Artifi-
cial Intelligence (ICTAI’01), page 121, Washington,
DC, USA, 2001. IEEE Computer Society.

[10] Y. Liu, T. Liang, C. Huang, and C. Shieh. Memory
resource considerations in the load balancing of soft-
ware dsm systems. In ICPP Workshops, pages 71–78,
2003.

[11] T. Kimbrel, M. Steinder, M. Sviridenko, and A. N.
Tantawi. Dynamic application placement under ser-
vice and memory constraints. In WEA, pages 391–
402, 2005.

[12] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum.
Cellular disco: resource management using virtual
clusters on shared-memory multiprocessors. ACM
Transactions on Computer Systems, 18(3):229–262,
2000.

[13] K. Danne and M. Platzner. A heuristic approach to
schedule periodic real-time tasks on reconfigurable
hardware. In Proceedings of the International Confer-
ence on Field Programmable Logic and Applications,
pages 568–573, August 2005.

[14] Krzysztof Kuchcinski. Embedded system synthesis by
timing constraints solving. In ISSS ’97: Proceedings
of the 10th international symposium on System syn-
thesis, pages 50–57, Washington, DC, USA, 1997.

[15] M. Alfano, A. Di-Stefano, L. Lo-Bello, O. Mirabella,
and J.H. Stewman. An expert system for planning real-
time distributed task allocation. In Proceedings of the
Florida AI Research Symposium, Key West, FL, USA,
May 1996.

[16] C. A. S. Oliveira. Approximation algorithms for
combinatorial optimization. In C.A. Floudas and
P.M. Pardalos, editors, Encyclopedia of Optimization.
Kluwer Academic Publishers, 2005.

