
HAL Id: inria-00414473
https://hal.inria.fr/inria-00414473

Submitted on 9 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Highly Robust P2P-CDN Under Large-Scale and
Dynamic Participation

Manal El Dick, Esther Pacitti, Bettina Kemme

To cite this version:
Manal El Dick, Esther Pacitti, Bettina Kemme. A Highly Robust P2P-CDN Under Large-Scale and
Dynamic Participation. First International Conference on Advances in P2P Systems, Oct 2009, Sliema,
Malta. �inria-00414473�

https://hal.inria.fr/inria-00414473
https://hal.archives-ouvertes.fr

A Highly Robust P2P-CDN Under Large-Scale and Dynamic Participation

Manal El Dick, Esther Pacitti
Atlas Group, Inria and Lina
University of Nantes, France

{manal.el-dick, esther.pacitti}@univ-nantes.fr

Bettina Kemme
School of Computer Science

McGill University, Montreal, Canada
kemme@cs.mcgill.ca

Abstract—By building a P2P Content Distribution Network
(CDN), peers collaborate to distribute the content of underpro-
visionned websites and to serve queries for larger audiences on
behalf of the websites. This can reveal very challenging, given
the highly dynamic and autonomous participation of peers.
Indeed, the P2P-CDN should adapt to increasing numbers
of participants and provide robust algorithms under churn
because these issues have a key impact on performance. Also,
the distribution of tasks and content over peers should take into
account their interests in order to give them proper incentives
to cooperate. Finally, the routing of queries should aim peers
close in locality and serve content from close-by providers
to reduce network overload and achieve scalability. We have
previously proposed a locality and interest-aware P2P-CDN,
Flower-CDN, that lacks efficient management of robustness and
scalability. In this paper, we focus on these crucial shortcomings
and propose PetalUp-CDN. The performance evaluation wrt.
scalability and churn shows highly significant gains.

I. INTRODUCTION

In the last decade, there has been a tendency of shifting
content distribution towards peer-to-peer (P2P) technology.
The reason behind this is mainly the scalability provided
by P2P systems at low costs. It is commonly believed that
P2P is naturally suited for handling large-scale applications,
due to its inherent self-scalability: as more peers join the
system, they contribute to the aggregate resources of the
P2P network. In the context of content distribution, peers
collaborate to redistribute the content of some websites for
large audiences, basically by storing content copies. This
means that peers build a P2P Content Distribution Network
(CDN) to which queries are redirected in order to relieve
the web-servers from their substantial query load.

However, building a P2P-CDN that makes efficient use
of scalability can reveal extremely challenging, given the
autonomous and dynamic partcipation of peers. We inves-
tigate this issue under three angles. First, we argue that
the distribution of tasks and content over peers should take
into account their interests in order to give them proper
incentives to cooperate. Several works like [7], [10] force
peers to store content they are not interested in, which can
dramatically limit the participation and thus, the system self-
scalability. Under the same matter, it is obvious that peers
cannot be charged with heavy workloads and thus the system
should adapt to increasing numbers of participants and

accordingly balance the load. Second, since a P2P network
abstracts all topological information about the underlying
physical network, the P2P-CDN must incorporate locality-
awareness to provide fast lookup to nearby stored copies of
the requested content. This feature contributes significantly
in achieving scalability, as the consumption of network
resources is kept at bay. In most existing approaches [4],
[7], [9], [10], [11], queries are routed without considering
whether the requested content is available in a peer close to
the requestor in locality. Finally, we are concerned with the
robustness of the P2P system under failures and dynamic
changes that massively occur in P2P networks. In fact, the
participation of peers is highly dynamic, implying thousands
of continuous joins and leaves, which creates the effect of
churn. It is crucial that every P2P-CDN should be able to
maintain an acceptable level of performance despite churn.

In [3], we presented Flower-CDN, a locality and interest-
aware P2P-CDN. In the context of a large-scale appli-
cation, the main limitation of Flower-CDN is that peers
providing access to the system for new participants may
become a bottleneck, which severely threatens the scalability
of Flower-CDN. Another crucial limitation that was not
extensively studied in [3] consists of churn management
which dramatically affects hit ratio and response times of
queries. Aiming at high scalability and robustness, this paper
brings three main contributions: (1) a highly scalable P2P-
CDN called PetalUp-CDN which dynamically adapts to
increasing numbers of participants in order to avoid overload
situations; (2) a maintenance protocol for PetalUp-CDN to
cope with the worst scenarios of churn, while preserving
the architecture efficiency and flexibility; (3) an empirical
analysis of scalability and robustness under churn.

II. RELATED WORK

We briefly review the main P2P-CDNs and discuss their
contributions wrt. robustness and scalability. In [9], [6],
the web-server provides a centralized directory service by
redirecting each query to previous downloaders of the re-
quested object. With the web-server doing all the redi-
rection, the system scalability is dramatically limited. [6]
does not address churn management but tries to incorporate
location-awareness in the web-server directory. [9] proposes
a strategy that models the object lifetime to guide the web-

server’s redirection under churn, but it does not consider
localities of clients. [11] uses an unstructured and dynami-
cally constructed overlay where peers keep their requested
objects to provide them to other participants. Query search
is performed via flooding, which induce heavy traffic and
affects scalability. The approach in [5] organises peers in
groups and runs gossip communication based on locality-
awareness. Query search can be perfomed in one hop at the
cost of aggressive and redundant replication, without any
consideration for interests of peers. Several approaches [4],
[7], [10] rely on DHT-structured overlays and store for each
requested object either a copy or a directory of pointers
to recent downloaders of the object. The storing peer is
identified by the hash of the object’s identifier without any
locality or interest considerations. A query navigates through
the DHT and then receives a pointer. Such approaches
may be vulnerable to high churn because the directory
information is abruptly lost at the failure of its storing peer.

III. PETALUP-CDN
This section introduces the design and construction of

PetalUp-CDN which rely on Flower-CDN architecture.

A. Flower-CDN architecture
In Flower-CDN, each client participates on behalf of a

website with content it likes; it selects one of k predefined
physical localities based on some latency measurements. The
group of peers in the same locality loc and interested in the
same website ws forms petal(ws, loc). These peers, called
content peers (cws,loc), store and provide content of ws.
One peer of each petal(ws, loc) is charged with the role
of a directory peer (dws,loc): dws,loc stores addresses of
all content peers cws,loc in view(ws, loc) and indexes their
stored content in directory-index(ws, loc). Directory peers
are also embedded in the DHT-based overlay, D-ring.

D-ring fulfills two roles. First, it handles queries of new
clients. Instead of querying ws, a client in loc submits its
query to D-ring and gets redirected to dws,loc which resolves
the query based on its directory-index. Second, D-ring serves
as a reliable access for new participants: the client joins
petal(ws, loc) as a content peer cws,loc where it can resolve
its further queries and help in serving other clients.

Each petal(ws, loc) provides a search infrastructure for
queries of content peers cws,loc. For this purpose, within
petal(ws, loc), content peers gossip to exchange contacts
(i.e., addresses of other known content peers cws,loc) and
summaries of their stored content. Thus, each cws,loc main-
tains a partial view(ws, loc) of its petal(ws, loc), initially
obtained from either its directory peer dws,loc or another
content peer cws,loc. petal(ws, loc) expands progressively
as more clients of ws in loc join the P2P system.

B. Design of PetalUp-CDN
PetalUp-CDN is designed in a way that enables the

extensive deployment of a petal while keeping the load on

Figure 1. Example of petal(β, 1) in PetalUp-CDN

its directory peer at bay. More than one directory peer for
each couple (ws, loc), can consecutively join D-ring.

D-ring adopts a novel key management service that lever-
ages interests and localities. In Flower-CDN, D-ring assigns
to dws,loc a peer ID that concatenates the ID of ws and the
ID of loc. To manage scalability in PetalUp-CDN, another
ID of m additional bits (called scalable ID) is suffixed to the
peer ID. We obtain 2m consecutive peer IDs for each couple
(ws, loc) instead of only one. Thus, we may have up to 2m

instances of each dws,loc, noted diws,loc (0 ≤ i < 2m). All
directory peers for same website and locality have successive
peer IDs and are neighbors on D-ring.

Each directory peer diws,loc manages a partial view
noted view(ws, loc)i and thereby a partial directory-
index(ws, loc)i of petal(ws, loc). More formally, for each
website ws and locality loc, we have two properties:

Property 1: ∀i, j : view(ws, loc)i ∩ view(ws, loc)j = ∅
Property 2: petal(ws, loc) =

⋃
0≤i<2m view(ws, loc)i

By having multiple directory peers in charge of a petal,
the failure of one or more of these directory peers will not
lead to a complete loss of directory information, and will
allow the system to continue in a slightly-reduced capacity.
An example of PetalUp-CDN configuration is illustrated in
Fig. 1 which focuses on petal(β, 1). Two directory peers
d0
β,1 and d1

β,1 share the management of petal(β, 1). Thus,
they manage each one a subset of the content peers cβ,1.

C. Construction of PetalUp-CDN

The construction of PetalUp-CDN involves progressive
expansions of D-ring and its petals.

1) D-ring expansion: A new directory peer is created for
petal(ws, loc) when the number of content peers cws,loc
can no more be manageable by the existing directory peers
diws,loc. In other words, directory peers of petal(ws, loc)
are created sequentially, starting from d0

ws,loc. Recall that
queries routed over D-ring are initiated by new clients that
eventually join the petals. Thus, in PetalUp-CDN, a query
targeting petal(ws, loc) scans through the existing directory
peers diws,loc in search for an underloaded directory peer
that can resolve the query and take in charge the client as

a new content peer. If no such directory peer is found, the
latest created diws,loc initiates the join of a new di+1

ws,loc.
A query routed over D-ring uses a key in which the

website and locality IDs reflect the client’s information. To
determine the scalable ID, we consider the optimal route that
the query should follow while scanning the directory peers
of its targeted petal. First, the number of query redirections
required to reach an underloaded directory peer should be
minimized in order to limit query response time. Second, no
directory peer should be overloaded with query redirections.
Indeed, if contacted by every new client of its petal, diws,loc
can become overloaded even if its is just redirecting queries
to other directory peers. Thus, as directory peers share the
management of directory information, they should also share
the handling of new queries. Therefore, an optimal route
can be achieved if each client can discover the number of
directory peers that have been created so far for its petal and
randomly choose one of them to contact it. When no such
discovery scheme is available, we use a safe alternative by
picking for the scalable ID a random value between 0 and its
middle value. For instance, if the scalable ID is formed of 23

bits, the scalable ID takes a value between 0 and 4. Consider
a query with ID4

ws,loc. If d4
ws,loc does not exist, the DHT

routing protocol delivers the query to the first preceding
directory peer (i.e., diws,loc with 0 ≤ i < 4) because the
latter has the closest ID to ID4

ws,loc. In such a case, the
query would have reached the latest created directory peer
which can locally process the query or create a new directory
peer for petal(ws, loc) if overloaded. If d4

ws,loc does exist,
the query gets to d4

ws,loc which keeps on redirecting the
query to further directory peers of petal(ws, loc) until
an underloaded directory peer is found or created. This
redirection approach shortens the route of the query and
distributes load rather evenly accross directory peers.

Whenever the query reaches a directory peer diws,loc of the
targeted petal, dws,loci

processes the query based on its view
size. If the view size has reached a predefined limit called
maxDirectory, diws,loc verifies if di+1

ws,loc is in D-ring. In
case di+1

ws,loc exists , diws,loc redirects the query to di+1
ws,loc

which in its turn processes it. In case di+1
ws,loc does not exist,

diws,loc selects from its view a content peer to join D-ring
as di+1

ws,loc. The content peer is then removed from the view
and directory-index of diws,loc. Afterwards, in order to avoid
waiting for di+1

ws,loc to join, diws,loc processes the query, in its
stead, based on its directory-index and eventually forwards
the query to some content peer that holds ows. Consequently,
diws,loc adds the client to its directory-index as a provider
of ows and to its view as a content peer cws,loc. If the view
size has not reached maxDirectory yet, diws,loc performs
the same steps to resolve the query and add the new client.

In consequence of the above, a new client is only added to
the view and directory-index of one specific directory peer,
which achieves Properties 1 and 2.

2) Petal expansion: Once its query satisfied, the client
becomes a content peer of the petal and does not use D-
ring anymore to route its queries. To enable content sharing
throughout each petal(ws, loc), cws,loc gossips to any other
cws,loc of its petal. Thus, in Fig. 1, c1 can gossip to both
c2 and c3 and eventually benefit from their stored content
to satisfy its queries. But how does c1 get to know content
peers like c3 that are controlled by other directory peers?

Actually, a new di+1
ws,loc uses its view and content sum-

maries maintained while still a content peer of diws,loc, until
its old view expires and gets progressively replaced by a new
view related to newly arrived clients. When receiving first
clients, di+1

ws,loc provides them with a subset of its old view
so that they initialize their view of petal(ws, loc). Thereby,
these clients that will become content peers get to know
content peers of diws,loc and eventually introduce them to
other content peers of di+1

ws,loc via gossip.

IV. ROBUSTNESS UNDER CHURN

A. Maintenance of Connection

Flower-CDN mechanisms are achieved via the connection
between D-ring and the petals. Thus, a primary concern is to
maintain this connection despite the highly dynamic environ-
ment. Given that several directory peers coexist within the
same petal, we have to maintain a connection between each
diws,loc and the subset of content peers in its view(ws, loc)i.

More precisely, each content peer of petal(ws, loc) re-
stricts its communications to the directory peer diws,loc via
which it joined the petal. cws,loc maintains dir-info which
holds information about diws,loc: the address and peer ID
of diws,loc as well as an age field. The age is a value
incremented periodically by cws,loc and reset to zero upon
each contact with diws,loc, to detect the availability of diws,loc.

To keep the directory peer connected to its content peers,
we exploit a feature inherent to P2P systems, keepalive
messages, which are periodically sent to check links between
peers. cws,loc regularly sends keepalive messages to diws,loc
which can therefore discover and remove expired pointers
from its view and directory-index. Moreover, given that a
content peer may request and access new content, cws,loc
sends updates about its newly stored objects to diws,loc, using
push messages. cws,loc monitors the changes (i.e., the newly
stored objects) and sends them in a push message whenever
they reaches a predefined threshold. In Fig. 1, c1 which is
linked to d0

β,1, only sends push and keepalive messages to
d0
β,1. Additionally, a content peer may need to evict some

locally stored objects via a cache replacement policy (e.g.,
LRU) because the content is generally stored in a local cache
with a limited storage size. Such object evictions are also
reported to diws,loc as new changes via push messages.

Two content peers that gossip to each other also exchange
their dir-info. If the exchanged dir-info share the same peer
ID, then the 2 content peers belong to the same directory

peer. In such a case, they both keep the dir-info with the
smaller age, which refers to more recent information about
their directory peer. Thus, whenever a directory peer leaves,
some of its content peers that detect it when trying to contact
it, gossip the information to other concerned content peers
that can thus update their dir-info.

B. Maintenance of D-ring

Normally, DHT overlays recover from churn (i.e., failures,
leaves, joins) by reorganizing the DHT and redistributing the
stored data accordingly. However, our system adopts its own
maintenance protocols to preserve D-ring structure.

1) Failures and Leaves: A directory peer may leave
D-ring at any moment. The leave of diws,loc is detected
by its content peers, i.e., contained in its view(ws, loc)i,
while sending keepalive or push messages. PetalUp-CDN
replaces diws,loc by a peer that shares the interest in the same
website’s content and belongs to the same locality, i.e., a
content peer from view(ws, loc)i or a new client. If diws,loc
leaves voluntarily, it selects from its view a content peer to
replace it. Otherwise, any content peer of view(ws, loc)i can
perform the replacement as soon as it detects the failure.

2) Joins and Replacements: A peer p can try to join D-
ring as a directory peer either in case it is initially (1) a
content peer or (2) a new client. Case (1) occurs when p is
replacing its failed directory peer or when it joins as di+1

ws,loc

due to its petal’s growth. Case (2) only happens if p has
found no directory peer available for ws in loc while routing
its query over D-ring, because p is the first participant of
petal(ws, loc) or directory peers of petal(ws, loc) have left
D-ring and have not been replaced yet. In all cases, p does
not always succeed in joining because several peers may
simultaneously target the vacant position; the one that first
integrates into D-ring, succeeds.

Similarly to the standard join in DHT-based overlays, p
routes a join message with a key equal to IDi

ws,loc, the
ID of the directory peer position targeted by p (i = 0
for new peers). If the targeted position is not vacant, the
join message reaches the current diws,loc and p discovers
its current directory peer to update its dir-info. Then, if p
is a new client, it simply joins petal(ws, loc) as a content
peer. If the targeted position is vacant, p becomes diws,loc
and gradually contructs its view and directory-index as its
content peers discover its join and send it push messages. As
introduced in Sec. IV-A, content peers discover the join of
p as they try to contact their previous directory peer diws,loc
and detect its leave. Then, some of them will try to join,
detect that there is already a new directory peer and update
their dir-info. Subsequently, the information about the new
diws,loc spreads rapidly to content peers via gossip.

If the previous diws,loc had voluntarily left, it would have
transferred a copy of its view and directory-index to p
before its departure. Moreover, in case p used to be a
content peer before joining D-ring, p can try to answer

first received queries from its content summaries. Note that
diws,loc eventually constructs its routing table by exchanging
messages with its neighbors as normally done in DHT.

When petal(ws, loc) shrinks because ws has lost its
popularity, directory peers of petal(ws, loc) merge their
views, then they withdraw from D-ring, leaving only one
directory peer to manage petal(ws, loc). For lack of space,
we do not detail this algorithm and leave it for future work.

V. PERFORMANCE EVALUATION

For our performance evaluation, we use 3 metrics: (1)
Hit ratio is the fraction of queries successfully served from
the P2P system; (2) Lookup latency is the latency taken to
resolve a query and reach the destination that will provide
the requested object; (3) Transfer distance is the network
distance, in latency, from the querying peer to the peer that
will provide the requested object. Additionnally, we analyse
the overhead of our approach by measuring the average
traffic in bps experienced by a content or directory peer due
to its received and sent messages of gossip or push.

A. Preliminary Discussion

This evaluation focuses on robustness and scalability
provided by the maintenance protocols. It aims at quan-
tifying the performance in serving queries under dynamic
participation. On this issue, it sounds reasonable to state that
the performance of having one or multiple directory peers
per petal will be similar (due to the lack of space we cannot
deepen this discussion). This is because the maintenance
protocols manage dynamicity in order to ensure that the
query search infrastructure common to both approaches
is not disrupted by bottlenecks or failures. Regarding the
overhead, the gossip behavior of content peers is unaffected
whether one or more directory peers manage the petal. Due
to memory constraints, we could simulate up to 11000 peers,
which lead to small petals and prevented the creation of
multiple directory peers per petal. Thus, we can generalize
that one or multi-directory performance is equivalent.

B. Simulation Setup

Our simulation relies on PeerSim [1]. We generate an un-
derlying topology of peers connected with links of variable
latencies between 10 and 500 ms. Also, we model k = 6
localities using a landmark-based technique [8]. We choose
Chord [12] as our DHT-based overlay. We compare PetalUp-
CDN with Squirrel [4] that relies on one DHT-structured
overlay. For each requested object, a peer identified by the
DHT without locality or interest considerations stores a
directory of pointers to recent downloaders of the object. A
query always navigates through the DHT and then receives a
pointer. For our query workload, we use synthetically gener-
ated data because available web traces reflect object accesses
while we are interested in website accesses. Each website

provides 500 objects whith Zipf popularity distribution [2].
We do not deal with cache expiration policies.

For a realistic simulation environment, we simulate churn
based on a study [13] where P2P population converges to
a desired size, P . For this purpose, the arrival rate of peers
must be equal to the mean departure rate, P

m , where m
denotes the mean uptime of a peer. We model the uptime
of a peer as an exponential distribution with m = 60
minutes, resulting in a high churn rate. We assume that a peer
always fails (i.e., when its lifetime expires) and never leaves
normally, to test PetalUp-CDN in highly unstable scenarios.
Moreover, a peer might re-join multiple times during an
experiment, each time with a different uptime.

Each experiment is run for 24 hours mapped to simulation
time. Initially, each peer is randomly assigned a website from
|W | to which it has interest throughout the experiment. We
start with a population of k ∗ |W | = 600 directory peers
which have limited uptimes and form the initial D-ring (i.e.,
one directory peer per (website, locality)). After a small
warm-up period, the population stabilizes around P as new
clients keep on arriving and existing peers on failing. In
order to keep the load at bay, we restrict the query generation
to 6 active websites of W . For non-active websites, peers are
only involved with churn because it affects D-ring routing.
More precisely, a peer with interest for an active website
submits queries on a regular basis (i.e., 1 query every 6
min), as soon as it arrives until it fails. A peer of a non-
active website, is simply added to its petal upon its arrival
and involved in the failure management of its directory peer.

We assume that a content peer has enough storage poten-
tial to avoid replacing its content through the experiment’s
duration. As a peer only stores content it has requested, this
is a reasonable assumption given the usual browsing activity
of individual users. A peer only poses queries for objects
unavailable in its local storage (i.e., it never issues the same
query more than once). We do not limit the view size of
a content peer and allow it to grow with the size of its
petal which never surpasses 50 in the current configuration;
also, when a peer selects a contact for gossip and finds
it unavailable, the peer removes the contact from its view,
which naturally bounds the view size.

C. Simulation Results

1) Robustness to churn: We conduct for both Squirrel and
PetalUp-CDN the same experiment which targets a mean
population size of 3000. First, we analyse the evolution of hit
ratio with time (Fig. 2). At the beginning, Squirrel surpasses
PetalUp-CDN wrt. hit ratio. This is because PetalUp-CDN
needs a warm up period to build up and enable its petals
to get populated, given that query search space involves
specific petals to achieve locality-awareness. In contrast,
Squirrel searches the whole overlay for queries and its hit
ratio increases faster than that of PetalUp-CDN. However, as
the impact of churn becomes more significant, Squirrel fails

Figure 2. Comparing hit ratio evolution

Figure 3. Lookup latency distribution

to preserve an increasing hit ratio while PetalUp-CDN keeps
on improving: the improvement eventually reaches 40%. In
fact, in Squirrel, the directory information is abruptly lost
with the failure of the directory peer in charge of it. PetalUp-
CDN efficiently manages this problem because periodic
updates are disseminated in a petal via gossip and push.
Thus, a new directory peer d can progressively reconstruct
its directory-index as it receives updates from content peers.
Meanwhile, d resolves first queries using content summaries
previously received during gossip exchanges, given that a
failed directory is replaced by a content peer.

Second, we compare the lookup latency and transfer
distance between Squirrel and PetalUp-CDN. Figure 3 shows
the distribution of queries wrt. lookup latency: 66% of our
queries are resolved within 150 ms while 75% of Squirrel’s
queries take more than 1200 ms. A major reason behind
these significant gains is the query routing algorithms of
PetalUp-CDN that rely on shortcuts provided by the petals.
In contrast, Squirrel has to route every single query through
the whole DHT, leading to high lookup latencies.
Figure 4 shows the distribution of queries wrt. transfer
distance: the percentage of queries served from a distance
within 100 ms is 62% for PetalUp-CDN and 22% for
Squirrel. This is because PetalUp-CDN focuses its query
search within the same petal of the querying peer (or client)
in order to localize a close-by copy of the queried object.

2) Scalability: For each approach (i.e., PetalUp-CDN and
Squirrel), we conduct 5 experiments, each one targeting
a different population size P in the context of a highly
dynamic environment. For each experiment, we collect the

Figure 4. Transfer distance distribution

P HIT RATIO AVG LOOKUP AVG TRANSFER
3000 Squirrel 0.41 1544 166

PetalUp-CDN 0.7 178 107
5000 Squirrel 0.52 1596 165

PetalUp-CDN 0.72 141 89
7000 Squirrel 0.58 1618 167

PetalUp-CDN 0.78 160 91
9000 Squirrel 0.59 1692 165

PetalUp-CDN 0.79 156 87
11000 Squirrel 0.62 1743 164

PetalUp-CDN 0.83 143 84

Table I
SCALABILITY COMPARISON

hit ratio obtained after 24 simulation hours, and the average
lookup latency and transfer distance for a query. To avoid
over-fitted results, we run each experiment 3 times and
compute the average hit ratio, lookup latency and transfer
time for this experiment. We also measure for PetalUp-CDN
the gossip & push overhead per peer. The results of the 5
experiments are summarized in Table I.

We can see that the hit ratio of PetalUp-CDN increases
from 0.7 to 0.82 when increasing P from 3000 to 11000.
PetalUp-CDN leverages larger scales to achieve higher
gains. Actually, a larger population size enables PetalUp-
CDN to build up faster and converge faster to a maximum hit
ratio. Also, PetalUp-CDN maintains its improvement over
Squirrel through different population sizes.

By comparing results of lookup latency and tranfer dis-
tance between PetalUp-CDN and Squirrel, we observe that
the improvement factor increases with scale and reaches 12
for lookup latency and 2 for transfer distance. When a petal
has more content peers submitting queries and becoming
providers of the requested content, searches in this petal will
have larger scopes and thus are more likely to be resolved
locally. That is why large scales are advantageous for search
speed and localization of close results in PetalUp-CDN.

Finally, the results of gossip & push overhead (not repre-
sented for lack of space) show that a peer experiences around
90 bps due to its exchanges. This is very low bandwidth
that could be sustained even by modem connections, which
proves that PetalUp-CDN incurs very acceptable overhead
via its highly effective gossip protocols.

VI. CONCLUSION

In this paper, we proposed PetalUp-CDN that aims at
providing a P2P-CDN with effective scalability and high ro-
bustness under dynamic participation of peers. PetalUp-CDN
relies on a P2P directory service that ensures a locality-aware
redirection of clients towards the content of their interest.
Aiming at large-scale audiences, the P2P directory service
dynamically adapts to avoid overload situations and warrant
the extensive deployment of PetalUp-CDN. PetalUp-CDN
is combined with a maintenance protocol that preserves the
efficiency and the performance at a high level despite the
worst scenarios of churn. Simulation results showed that our
generic approach successfully resists to churn and leverages
higher scales to achieve higher improvements.

REFERENCES

[1] http://www.peersim.sourceforge.net.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: evidence and implications.
In IEEE INFOCOM, 1999.

[3] M. E. Dick, E. Pacitti, and B. Kemme. Flower-CDN: a hybrid
P2P overlay for efficient query processing in CDN. In EDBT,
2009.

[4] S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel: a
decentralized P2P web cache. In PODC, 2002.

[5] P. Linga, I. Gupta, and K. Birman. A churn-resistant P2P
web caching system. In ACM SSRS, 2003.

[6] V. N. Padmanabhan and K. Sripanidkulchai. The case for
cooperative networking. In IPTPS, 2002.

[7] W. Rao, L. C. 0002, A. W.-C. Fu, and Y. Bu. Optimal
proactive caching in P2P network: analysis and application.
In CIKM, 2007.

[8] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker.
Topologically-aware overlay construction and server selec-
tion. In IEEE INFOCOM, 2002.

[9] Y.-S. Ryu and S.-B. Yang. An effective P2P web caching
system under dynamic participation of peers. IEICE Trans-
actions, 88-B(4), 2005.

[10] T. Stading, P. Maniatis, and M. Baker. P2P caching schemes
to address flash crowds. In IPTPS, 2002.

[11] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust
P2P system to handle flash crowds. In IEEE ICNP, 2002.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: a scalable P2P lookup service for internet
applications. In ACM SIGCOMM, 2001.

[13] D. Stutzbach and R. Rejaie. Characterizing churn in P2P
networks. Technical report, University of Oregon, 2005.

