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Abs t r ac t . The quality of dependable systems (DS) is characterized by a 
number of non-functional properties (e.g., performance, reliability, avail
ability, etc.). Assessing the DS quality against these properties imposes 
the application of quality analysis and evaluation. Quality analysis con
sists of checking, analytically solving, or simulating models of the sys
tem, which are specified using formalisms like CSP, CCS, Markov-chains, 
Petri-nets, Queuing-nets, etc. However, developers are usually not keen 
on using such formalisms for modeling and evaluating DS quality. On 
the other hand, they are familiar with using architecture description 
languages and object-oriented notations for building DS models. Based 
on the previous and to render the use of traditional quality analysis 
techniques more tractable, this paper proposes an architecture-based en
vironment that facilitates the specification and quality analysis of DS at 
the architectural level. 

1 Introduction 

Nowadays, there exists a clear t rend for business, industry, and society to place 
increasing dependence on systems, consisting of the integration of numerous, 
disparate and autonomous components. Consequently, users have strong non
functional requirements on the quality of these systems. To satisfy these de
mands, quality analysis must be performed during the lifetime of the system. 
The quality of dependable systems (DS) is characterized by a number of at
tributes (e.g., security, performance, reliability, availability, etc.) , vi?hose values 
are, typically, improved by using certain means (e.g., encryption, load balanc
ing, fault tolerance mechanisms). Two different kinds of quality analysis can be 
performed: 

- Qualitative analysis, which aims at facilitating and verifying the correct use 
of certain means for improving the DS quality. 

— Quantitative analysis, which aims at predicting the values of the quality 
a t t r ibutes characterizing the overall DS quality. 

R. dc Lemos et al. (Eds.): Architecting Dependable System.s, LNCS 2677, pp. 197-218, 200.3. 
(c) Springer-Verlag Berlin Heidelberg 2003 
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The above kinds of quality analysis are complementary. In particular, the 
results of quantitative analysis are most probably affected by certain means, 
whose correct use is verified by the qualitative analysis. On the other hand, the 
use of certain means is guided by the results of the quantitative analysis at early 
design stage. 

Performing quality analysis is not a new challenge and several techniques have 
been proposed and used for quite a long time [1-4]. Techniques for qualitative 
analysis are mainly based on theorem proving and model checking. Typically, 
models specifying the system's behavior are built using formalisms like CSP, 
CCS, Pi-Calculus, TLA, etc. Then, these models are checked against properties 
that must hold for the system to behave correctly. Techniques for quantita
tive analysis can be analytic, simulation, or measurement-based. Again models 
specifying the system's behavior are built using formalisms like Markov-chains, 
Petri-nets, Queuing-nets, etc. Certain model parameters (e.g., failure rates of 
the system's primitive elements) are obtained using measurement-based tech
niques. Then, the models are analytically solved, or simulated, to obtain the 
values of the attributes that characterize the overall system's quality. The main 
problem today is that building good quality models requires lots of experience 
and effort. Developers use Architecture Description Languages (ADLs) [5, 6], and 
object oriented notations (e.g., UML [7]) to design the system architecture. It 
is a common case that they are not keen on building quality models using CSP, 
CCS Markov chains, Petri-nets, Queuing-nets, etc. Hence, the ideal would be to 
provide the developers with an environment, which enables the specification of 
DS architectures and further provides adequate tool support that facilitates the 
specification of models suitable for DS quality analysis. 

In this paper, we investigate the above issue and we present a developer-
oriented, architecture-based environment for the specification and quality anal
ysis of dependable systems. The specification of DS architectures is based on 
an extensible ADL, which is defined in Section 2. Section 3, then, presents an 
approach that facilitates the qualitative analysis of DS at the architectural level. 
Similarly, Section 4 discusses an approach that facilitates the quantitative anal
ysis of DS at the architectural level. Finally, Section 5 concludes this paper with 
a summary of the contributions to DS quality analysis, the lessons learned, and 
the future directions of this work. 

2 Architecture Description Language 

2.1 Background and Related Work 

Architecture description languages are notations enabling the rigorous specifi
cation of the structure and behavior of systems. ADLs come along with tools 
that facilitate the analysis and the construction of systems, whose architecture 
is specified using them. Several ADLs have been proposed in the past years and 
they are all based on the same base principles [6]. In particular, the structure 
of systems is specified using components, connectors and configurations. It is 
worth noticing that existing ADLs have concise semantics and are widely known 
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and used in academia, but their use in the industry is quite limited. Industrials, 
nowadays, tend to use object-oriented notations for specifying the architecture 
of their software systems. UML, in particular, is becoming an industrial stan
dard notation for the definition of a family of languages (i.e., UML profiles) for 
modeling software. However, there is a primary concern regarding the impreci
sion of the semantics of UML. To increase the impact of ADLs in the real world, 
and to decrease the ambiguity of UML, we propose an ADL defined in relation 
to standard UML elements. Our main objective is the definition of a set of core 
extensible language constructs for the specification of components, connectors 
and configurations. This core set of extensible constructs shall further facilitate 
future attempts for mapping existing ADLs into UML. Our effort relates to the 
definition of architecture meta-languages hke ACME [5] and AML [8]. Our work 
also compares to the recent XML-based, extensible ADL [9]. Our approach can 
be the basis for the definition of a standard UML profile for ADLs, while [9] 
can be the basis for a complementary standard DTD used to produce textual 
specifications from graphical ADL models. 

2.2 Basic Concepts 

To define ADL components, connectors, and configurations in relation to stan
dard UML model elements, we undertook the following steps: (i) identify stan
dard UML element(s), whose semantics are close to the ones needed for the 
specification of ADL components, connectors and configurations; (ii) if the se
mantics of the identified element(s) do not exactly match the ones needed for 
the specification of components, connectors, and configurations, extend them 
properly and define a corresponding UML stereotype (s) ;̂ (iii) If the semantics 
of the identified element(s) match exactly, adopt the element(s) as a part of the 
core ADL language constructs. 

A component abstracts a unit of computation or a data store. As discussed 
in the literature [10,11], various UML modehng elements may be used to specify 
an ADL component. The most popular ones are the Class, Component, Package, 
and Subsystem elements. Prom our point of view, the UML Component element 
is semantically far more concrete compared to an ADL component, as it specif
ically corresponds to an executable software module. Moreover, the UML Class 
element is often considered as the basis for defining architectural components. 
However, a UML class does not directly support the hierarchical composition of 
systems. It is true that the definition of a UML Class may be composite, con
sisting of a number of constituent classes. However, the class specification can 
not contain the interrelationships among the constituent classes. Consequently, 
if an ADL composite component is mapped into a UML class, its definition may 
comprise a set of constituent components for which we have no means to de
scribe the way they are connected through connectors. Technically, to achieve 

^ A UML stereotype is a UML element whose base class is a standard UML element. 
Moreover, a stereotype is associated with additional constraints and semantics. 
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the previous we would need to define a Package containing the UML class defini
tions and a static structure diagram showing how they are connected. However, 
packages cannot be instantiated or associated with other packages. Hence, they 
are not adequate for specifying ADL components. This leads us to use the UML 
Subsystem element to model ADL components. A UML Subsystem is a subtype 
of both the UML Package and Classifier element, which may be instantiated 
multiple times, and associated with other subsystems. Precisely, we define an 
ADL component as a UML Subsystem, that may provide and require standard 
UML interfaces. The ADL component is further characterized by a property, 
named "composite", which may be true, or false depending on whether, or not 
a component is built out of other components and connectors. 

A connector is an association representing the protocols through which 
components may interact. Hence, the natural choice for specifying it in UML is 
by stereotyping the standard UML Association element. A connector role cor
responds to an association end. Moreover, the distinctive feature of a connector 
is a non-empty set of interfaces, named "Interfaces", representing the specific 
parts of components' functionality playing the roles. Each interface out of the 
set must be provided by at least one associated component. Equally, each in
terface out of the set must be required by at least one associated component. 
So far, we considered connectors as associations representing communication 
protocols. However, we must not ignore the fact that, in practice, connectors 
are built from architectural elements, including components and more primitive 
connectors. Taking CORBA for example, a CORBA connector can be seen as a 
combination of functionalities of the ORB and of CORBA services (i.e., COSs). 
Hence, it is necessary to support hierarchical composition of connectors. At this 
point, we face a technical problem: UML Associations can not be composed of 
other model elements. However, there exists a standard UML element called 
Refinement defined as "a dependency where the clients are derived by the suppli
ers" [7]. The refinement element is characterized by a property called mapping. 
The values of this property describe how the client is derived by the supplier. 
Hence, to support the hierarchical composition of connectors, we define a stereo
type, whose base class is the standard UML Refinement element and is used 
to define the mapping between a connector and a composite component that 
realizes the connector. 

A configuration specifies the assembly of components and connectors. In 
UML, the assembly of model elements is specified by a model. The correspond
ing semantic element of a model is the standard UML Model element, defined as 
"an abstraction of a modeled system specifying the system, from, a certain point 
of view and at a certain level of abstraction... the UML Model consists of a con
tainment hierarchy where the top most package represents the boundary of the 
modeled system" [7]. Hence, a configuration is actually a UML model, consist
ing of a containment hierarchy where the top-most package is a composite ADL 
component. The given definition of configuration is weak in that it enables the 
description of any architectural configuration provided it complies with the well-
formedness rules associated with the component and connector elements. This 
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results from our concern of supporting the description of various architectural 
styles, which possibly come along with specific ADLs as is the case with the 
C2 style [6]. Constraints that are specific to a style are introduced through the 
definition of a corresponding extension of the ADL configuration element, possi
bly combined with extension of the UML elements for component and connector 
definition. 

2.3 Tools 

The basic ideas described so far for the specification of software architectures 
are realized into a prototype implementation of the architecture-based develop
ment environment, which makes use of an existing UML modeling tool. More 
specifically, we use the Rational Rose tool ^ for the graphical specification of soft
ware architectures. The Rational Rose tool allows the definition of user specific 
add-ins that facilitate the definition and use of stereotyped elements. Given the 
aforementioned facility, we implemented an add-in that eases the specification of 
architectural descriptions using the elements defined in the previous subsection. 
Moreover, we use an already existing add-in, which enables generating XMI tex
tual specifications of architectures specified graphically using the Rational Rose 
tool; these textual specifications shall serve as input to the tools we use for qual
itative and quantitative analyses of ajchitectures. We further developed an OCL 
verifier that can be used to verify architectural constraints expressed in OCL. 
Note that we could have used an already existing verifier implemented in Java ^. 
However, given that the expected complexity of our models is high, we preferred 
developing a more efficient implementation based on OCAML "*, which has been 
successfully used to efficiently develop large applications like the COQ theorem 
prover ^. 

2.4 Example 

To illustrate the use of our environment, we employ examples taken from a case 
study we are investigating in the context of the DSoS 1ST project ^. The case 
study is a travel agent system (TA). TA offers services for flight, hotel, and 
car reservations. It consists of the integration of different kinds of existing sys
tems supporting air companies, hotel chains, and car rental companies. Figure 1 
gives a screen shot of the actual architecture of the TA as specified using the 
UML modeling tool, which we customized. The TA comprises the TravelAgent-
FrontEnd component, which serves as a GUI for potential customers wanting 

^ http: //www. rat ional .com. Notice that the use of the Rational Rose tool was mainly 
motivated by pragmatic consideration that is the ownership of a license and former 
experience with this tool. However, our specific developments may be integrated 
within any extensible, UML-based tool that processes XMI files. 

•* http: //www. db. inf ormat ik. vmi-bremen. de/proj ects/USE. 
"* http://www.caml.inria.fr/oceuiil/. 
^ http://www.coq.inria.fr. 
^ http://www.newcastle.research.ec.org/dsos. 
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to reserve tickets, rooms, and cars. The TA further includes the HotelReser-
vation, FHghtReservation, CarReservation components, which accept as input 
individual parts of a customer request for hotel, ticket and car reservation, and 
translate them into requests for services provided by specific hotel, air company 
and car company components. The set of the hotel components is represented 
by the Hotels composite component. Similarly, the sets of air company and car 
company components are represented by the AirCompanies and CarCompanies 
composite components. Two different kinds of connectors are used in our ar
chitecture. The HTTP connectors (e.g., see the specification relating to HTTP 
in Figure 1) represent the interaction protocol among customers and the TA 
front end component, and among components translating requests and existing 
component systems implementing Web servers. The RPC connector represents 
the protocol used among the front end component and the components that 
translate requests. Note that multi-party connectors abstract complex connec
tor realizations, which may actually be refined into various protocols, depending 
on the intended behavior. For instance, the RPC connector may be refined into a 
number of bi-party connectors as well as into a complex transactional connector. 

^ £i» tan y.iew jjiDwse nffpoK ^uety i-jow fjijgtns ^wvxm jjw^ 

« A O L Component» 
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"3 
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Fig. 1. The architecture of the travel agent DS 



Quality Analysis of Dependable Systems: A Developer Oriented Approach 203 

3 Qualitative Analysis 

3.1 Background and Related Work 

Since the early work on ADL definition, there has been a significant effort for 
defining ADLs that ease the qualitative analysis of software architectures. Specif
ically, a number of existing ADLs come along with tools like theorem provers 
and model-checkers, allowing the specification of the functional behavior of com
ponents and connectors making up a system, and the verification of properties 
that must hold for the system against the system's functional behavior [1,4]. 
In existing ADLs, the specification of the system's behavior is, typically, done 
using formalisms like logic or process algebras. Hence, to perform qualitative 
analysis, developers have to learn these formalisms and tools. They further have 
to derive mappings between the basic architectural concepts (e.g., components, 
connectors, ports, roles, etc.) they use to specify software architectures and the 
basic constructs provided by the formalism that is to be used for specifying the 
system's functional behavior (e.g., processes, channels, etc.), if these mappings 
are not already provided by the ADL itself. Neither of the previous tasks is 
straightforward for everyday developers who are very experienced and educated 
on the use of object-oriented modeling methods (e.g., UML methods), and sev
eral programming languages like C, CH--|-, Java, but are not experts in logic and 
process algebras. An evidence of this is provided in the Web site of PVS '', a 
well-known theorem-prover, where the following warning is given: "...PVS is a 
large and complex system and it takes a long while to learn to use it effectively. 
You should be prepared to invest six months to become a moderately skilled user 
(less if you already know other verification systems, more if you need to learn 
logic or unlearn Z)..." 

A number of approaches have recently been proposed to try to alleviate the 
previous complexities towards rendering the use of qualitative analysis more 
tractable to nowadays developers. For instance, in [12], the authors propose a 
tool for model checking UML models. Developers have to specify these using 
state-chart diagrams, which are then used for generating models that serve as 
input to the SPIN model checker [13]. However, state-chart specifications of sys
tem behavior are quite low level and certainly not easy to produce. Take for 
instance the usual case where developers need to specify loops, procedure calls, 
synchronization and communication using state-charts. In this case, developers 
would prefer using a modeling language, which resembles a real programming 
language instead of using automata such as state-charts. We thus consider that 
the approach proposed in [12] is not a solution. Another approach is proposed 
in [14], which introduces stereotypes that are formally specified using Finite State 
Processes (FSP). FSP models may then be generated from UML models anno
tated with the stereotypes, for analysis using the Labelled Transition System 
Analyzer (LTSA) tool. This solution alleviates the limitations of the previous 
but it requires specifying formal models in FSP, which is not known by the vast 
majority of developers. 

'' http: //pvs. csl. sri. com/whatispvs. html. 
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From the above discussion and from a pragmatic point of view, it is not possi
ble to completely avoid using a tool-specific formalism for performing qualitative 
analysis in the general case. Hence, our basic requirement becomes to integrate 
into our environment an existing tool for qualitative analysis, whose formalism 
for behavioral modeling is as natural as possible for the developers. This has led 
us to exclude, in the first place, theorem provers. In consequence, we are left 
with the option of integrating into our framework a model-checking tool. The 
second requirement, for rendering the qualitative analysis simpler, comprises 
providing an automated procedure that maps basic architectural concepts into 
basic constructs of the behavioral modeling formalism assumed by the selected 
model-checking tool. This allows the automated generation of formal behavioral 
models from DS architectural descriptions. 

3.2 Basic Concepts 

Support for the specification of the functional behavior of the basic architectural 
elements that constitute a DS, is provided by our environment as follows: 

— ADL components are characterized by a property, called "Body Behavior", 
whose value can be assigned to a textual specification, given in any behavioral 
modeling formalism, describing the components' behavior. 

— UML interfaces provided/required by ADL components are characterized by 
a property, called "Port Behavior", whose value describes in some textual 
specification, the particular protocol used at that point of interaction. 

— ADL connectors are characterized by: 
• A property, named "Body Protocol" (see Figure 1), whose value specifies 

the role-independent part of the interaction protocol. 
• A set of properties (see Figure 1), named "Role Protocol". Each one of 

these corresponds to an association end, i.e., a role. The value of each 
property specifies the role-dependent part of the interaction protocol 
represented by the connector. 

3.3 Tools 

We identified 3 widely used model checking tools that could be integrated into 
our environment, i.e., FDR2 ^, SMV ^ and SPIN [13], Among them, we have 
chosen SPIN because: (i) it is based on a C-like language for modeling system 
behavior, which is more familiar to DS developers compared to other modeling 
languages, and (ii) it has built-in channels, i.e., constructs used for modeling 
message-passing, with which we can easily model parts of the ADL connectors. 
A model in the SPIN modeling language, i.e., PROMELA, consists of a num
ber of independent processes, i.e., each one has its own thread of execution, 
which communicate either through global variables or through special commu
nication channels by message-passing, as is done in CSP, at least in its machine 

* http://www.f ormal.demon.co.uk/fdr2manual. 

^ http://www.cs.emu.edu/~modelcheck. 
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readable version. Therefore, the mapping of our basic architectural elements to 
the constructs of P R O M E L A can be done in a way analogous to the mapping 
used by the Wright ADL for CSP [1]. In particular in [1], for each component, 
connector, port/ interface and role, a corresponding process is generated. Each 
generated process shall communicate with the rest through channels generated 
as prescribed by the configuration of the DS. However, such a mapping results in 
the generation of a large number of processes and requires a substantial amount 
of resources for model checking. 

Table 1. Generating PROMELA Models 

Component For each component c: 

— Create a PROMELA process type, "proctype", named after the 
component, whose behavior is given by the value of "Body Be
havior" 

— For each port p of c, create an "inline" procedure whose name is 
the catenation of the component's and the port's name, i.e., C-p. 
This procedure contains the Port Behavior of the respective port 
p. For interacting with its environment, cjp uses a channel named 
after the port's name, i.e., p. 

Connector For each connector c: 

— Create a "proctype", named after the connector, whose behavior 
is given by the value of "Body Protocol". Unlike the processes 
corresponding to ADL components that take no arguments, these 
processes receive as arguments at initiation time the channels 
they will be using for their respective roles. These channels are 
named after the rn1e.s themselves 

Configuration Create a special process called "init" in PROMELA, which will be 
responsible for instantiating the rest of the architecture. More specif
ically: 

— The "init" process creates as many instances of the processes cor
responding to particular ADL components, as there are instances 
of these components in the configuration. 

— Afterwards, it does the same for each instance of an ADL connec
tor but it uses the attachments of component ports to connector 
roles to deduce the specific channels that should be passed as 
arguments to the processes corresponding to the connector. 

To alleviate the above problem, we have chosen to generate independent 
processes for each component and connector specified in a DS architectural de
scription, while for each port and role we generate P R O M E L A inline procedures. 
This inline procedure construct of PROMELA allows us to define new functions 
that can be used by processes, but do not introduce their own threads of execu
tion. In this manner, we keep to a minimum the number of different processes 
that the model-checker will be asked to verify, thus enabling the verification of 
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large architectures. Then, for each port of an ADL component we declare in 
the PRO MELA description of the component, a communication channel named 
after that port. This channel will be used by the process related to the ADL 
component for communicating through that specific port. Since ports of ADL 
components are bound to specific roles of ADL connectors, their channels are 
passed as arguments to the processes created for these connectors, at the time 
of their initiation. Thus, messages sent from a process of an ADL component 
at a channel corresponding to a port of it, will be received by a process of an 
ADL connector. Similarly, messages sent from a process of an ADL connector to 
a channel it has received as argument at initiation time, will be in fact received 
by a process of an ADL component, whose port was mapped to that channel. 
Even though the proposed mapping may seem as depriving the architect from 
the possibility to describe complex cases, e.g., multi-threaded components, it is 
not so. Indeed, it is always possible to describe a component as a composite 
one, i.e., one that consists of a number of simpler components and connectors, 
which will be subsequently modeled as a number of independent processes. The 
steps that are followed for generating a complete PROMELA model from an 
architectural description are given in Table 1. 

3.4 Example 

To exemplify the qualitative analysis of DS, we get back to the TA case study. 
A typical property that is often required over RPC and HTTP connectors is for 
reply messages to be received by the client in the order it sent the corresponding 
request messages. Meeting the previous is usually under the responsibility of the 
connector realization, possibly in association with the server. For instance, the 
HTTP/1.0 and HTTP/1.1 realizations of the HTTP connector differ in that the 
latter supports persistent connections and allows pipelining of request messages, 
which leads to explicitly require for the server to ensure that it sends back reply 
messages in the order it received the corresponding request messages. In the 
TA case study, we consider both realizations of HTTP. Moreover, we consider 
two realizations of the TravelAgentFronEnd component and the rest of the Web 
servers supporting the hotel, car and flight reservations. In the first case, the 
components process HTTP requests sequentially, while in the second case they 
use multi-threading to process multiple HTTP requests in parallel. 

The processes corresponding to the RPC and the HTTP/1.0 connectors are 
similar in functionality; they iterate constantly, doing the following: (i) they 
receive a request from the component assuming the role of the RPC caller/Web 
client, (ii) deliver it to the component assuming the role of RPC callee/Web 
server, (iii) receive the reply from the callee/server, and (iv) forward it to the 
caller/client. The HTTP/1.1 connector works differently; it can receive multiple 
requests and forward them to the callee/server, or decide to read one (or more) 
replies and deliver them to the caller/client. For instance, the following is the 
specification of the RPC connector: 
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Role Protocol: caller(RPC-channel, request, reply) 
{RPC-channel ! request; RPC-channel ? reply } 

Role Protocol: callee(RPC-channel, request, reply) 
{RPC-channel ? request; RPC.channel ! reply } 

Body Protocol: 
{Msg request, reply; 
do 

:: caller ? request; callee ! request; 
:: callee ? reply; caller ! reply; 

od] 

The Customer component initiates requests to the TravelAgentFrontEnd 
and waits for responses. The reservation components get requests from the RPC 
connector and diffuse them, through the HTTP connector, to the existing Web 
servers supporting the hotel, car and flight reservations. In the sequential ver
sions of the TravelAgentFrontEnd component and of the Web servers supporting 
reservations, the corresponding PROMELA processes process each request and 
send the corresponding reply before serving a new request. Their concurrent 
versions are based on a pool of threads. For illustration, the following is the 
specification of the Web servers that handle requests sequentially: 

Port Behavior: HTTP-Request(HTTP-channel, request, reply) 
{ HTTP-channel ? request; HTTP.channd ! reply } 

Body Behavior: 
{chan HTTP-channel ; Msg request, reply; 
do 

:: HTTP-Request(HTTP-channel, request, reply) 
od} 

Four different PROMELA models were generated. These models result from 
the combination of the different HTTP and Web server versions. More specif
ically, for all components and connectors, corresponding processes were gener
ated. The realizations of the generated processes consist of the Body Behavior 
and Body Protocol, for components and connectors respectively. These processes 
were connected via channels generated for each port of the various components, 
according to the configuration given in Figure 1. SPIN was then used to assess 
the TA against ordered dehvery of reply messages to the customers for all the 4 
cases resulting from the combination of the different HTTP and Web server ver
sions. Checking of the models resulted in identifying an erroneous architecture 
for the TA that is the case where Web components interact via HTTP/1.1 and 
the Web servers handle concurrently the request messages. The full source code 
of the TA PROMELA model used in this case study can be found in [15]. 

4 Quantitative Analysis 

4.1 Background and Related Work 

Pioneer work on the quantitative analysis of software systems at the architectural 
level includes Attribute-Based Architectural Styles (ABAS) [16]. In general, an 
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architectural style includes the specification of types of basic architectural el
ements (e.g., pipe and filter) that can be used for specifying a software archi
tecture, constraints on using these types of architectural elements, and patterns 
describing the data and control interaction among them. An ABAS is an archi
tectural style, which additionally provides modeling support for the quantitative 
analysis of a particular quality attribute (e.g., performance, reliabihty, availabil
ity). More specifically, an ABAS includes the specification of: 

— Quality attribute measures characterizing the quality attribute (e.g., the 
probability that the system correctly provides a service for a given dura
tion, mean response time). 

— Quality attribute stimuli, i.e., events affecting the quality attribute of the 
system (e.g., failures, service requests). 

— Quality attribute parameters, i.e., architectural properties affecting the qual
ity attribute of the system (e.g., faults, redundancy, thread policy). 

— Quality attribute models, i.e., traditional models that formally relate the 
above elements (e.g., a Markov model that predicts rehability based on the 
failure rates and the redundancy used, a Queuing network that enables pre
dicting the system's response time given the rate of service requests and 
performance parameters like the request scheduling and the thread policies 
of the various system elements). 

In [17], the authors introduce the Architecture Tradeoff Analysis Method 
(ATAM) where the use of an ABAS is coupled with the specification of a set of 
scenarios, which roughly constitutes the specification of a service profile. ATAM 
has been tested for analyzing quality attributes like performance, availabihty, 
modifiability, and real-time. In all these cases, quality attribute models (e.g., 
Markov models, queuing networks) are manually built given the specification 
of a set of scenarios and the ABAS-based architectural description. However, 
in [17], the authors recognize the complexity of the aforementioned task; the 
development of quahty analysis models requires about 25% of the time spent 
for applying the whole method. ATAM is a promising approach for doing things 
right. However, nowadays, there is a constant additional requirement for doing 
things fast and easy. 

Our environment supports the automated generation of quality attribute 
models from architectural descriptions embedding quality attributes. In par
ticular, the environment currently supports the generation of performance and 
reliability models aimed at analysis tools that have been recognized successful 
for handling complex models associated with real systems. Note that there is no 
unique way to model systems. A model is built based on certain assumptions. 
Thus, the model generation procedures supported by our environment are cus
tomizable. Customization is done according to certain assumptions that can be 
made by the developer for the quality stimuli and parameters affecting the value 
of the particular quality attribute that is assessed. Due to the lack of space, we 
provide hereafter details regarding only the case of reliability. The interested 
reader is referred to [18] and [15] for details regarding the case of performance. 
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where the former concentrates on performance analysis of workflow-based sys
tems. 

4.2 Basic Concepts 

To perform quantitative analysis, we have to specify a service profile, i.e., a set of 
scenarios, describing how the inspected system is used. In our environment, sce
narios are specified using UML collaboration diagrams. A scenario then specifies 
the interactions among a set of component and connector instances, structured 
as prescribed by the configuration of the inspected system. Moreover, the defini
tions of the base ADL elements have been extended to support the specification 
of reliability measures, parameters, and stimuh, as defined below. 

The basic reliability measure is the probability that a scenario successfully 
completes within a given time duration. A scenario may fail if instances of com
ponents, nodes ^°, and connectors used in it, fail because of faults causing errors 
in their state. The manifestations of errors are failures. Hence, faults are the 
basic parameters, associated with components/connectors/nodes, which affect 
the reliability of an inspected system. Failures are the stimuli, associated with 
components/connectors/nodes, causing changes in the value of the reliability 
measure. According to [19], faults and failures can be further characterized by 
the properties given in Tables 2 and 3. Different combinations of the values of 
these properties can be used to customize properly the generation procedure of 
quality attribute models, which is detailed in Subsection 4.3. 

Except for faults and failures, another parameter affecting reliability is re
dundancy. Redundancy schemas can be defined using the base ADL constructs 
defined in Section 2. More specifically, a redundancy schema is a configuration 
of redundant architectural elements, which behave as a single fault tolerant unit. 
According to [20], a redundant schema is characterized by the kind of mechanism 
used to detect errors, the way the constituent elements execute towards serving 
incoming requests, the confidence that can be placed on the results of the error 
detection mechanism and the number of component and node faults that can be 
tolerated. The properties characterizing a redundancy schema are summarized in 
Table 4. A re-configurable/repairable redundancy schema may be characterized 
by additional properties (e.g. repair rate, number of spares, state of the spares), 
whose values reflect the particular re-configuration/repair policy used. 

Table 2. Properties of Failures 

Failure Properties 
domain 
perception 

Range 
time/value 
consistent/inconsistent 

Associated A D L Element 
Component/Connector/Node 

10 Since an ADL component is by definition an extension of the standard UML Subsys
tem element, it is associated with a set of UML nodes on top of which it executes. 



210 Apostolos Zarras et al. 

Table 3. Properties of Faults 

Fault Properties 
nature 
phase 
causes 
boundaries 
persistence 
arrival-rate 
active-to-benign 
benign-to-active 
disappearance 

Range 
intention/accident 
design/operational 
physical/human 
internal/external 
permanent/temporary 
Real 
Real 
Real 
Real 

Associated A D L Element 
Component/Connector/Node 

Table 4. Properties of Redundancy Schemas 

Redundancy Properties 
error-detection 
execution 
confidence 
service-delivery 
no-comp-faults 
no-node-faults 

Range 
vote/comp. / acceptance 
parallel/sequential 
absolute/relative 
continuous/suspended 
Integer 
Integer 

Associated ADL Element 
Component 

4.3 Tools 

The quantitative analysis of DS is supported by our environment with automated 
procedures, which take as input, architectural specifications defined using the 
basic concepts discussed so far, and generate traditional quality attribute models. 
The specific tool integrated into our environment for reliability analysis is called 
SURE-ASSIST [21]. The tool calculates reliability bounds given a state space 
model describing the failure and repair behavior of the inspected system. The 
tool was selected because it is very highly rated compared to other reliability 
tools [2] and because it is available for free. However, the automated support 
provided by our environment for reliabihty analysis can be coupled with any 
other tool that accepts as input state space models. 

A state space model consists of a set of transitions between states of the 
system. A state describes a situation where either the system operates correctly, 
or not. In the latter case the system is said to be in a death state. The state 
of the system depends on the state of its constituent elements. Hence, it can 
be seen as a composition of sub states, each one representing the situation of 
a constituent element. A state is constrained by the range of all possible situ
ations that may occur. A state range can be modeled as a composition of sub 
state ranges, constraining the state of the elements that constitute the system. 
A transition is characterized by the rate by which the source situation changes 
into the target situation. If, for instance, the difference between the source and 
the target situation is the failure of a component, the transition rate equals to 
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the failure rate of the component. The specification of large state-space models 
is often too complex and error-prone. The approach proposed in [22] alleviates 
this problem. In particular, instead of specifying all possible state transitions, 
the authors propose specifying the following: (i) the state range of the system, 
(ii) transition rules between sets of states of the system, (iii) the initial state of 
the system, and (iv) a death state constraint. In a transition rule, the source and 
the target set of states are identified by constraints on the state range (e.g., if the 
system is in a state where more than 2 subsystems are operational, then the sys
tem may get into a state where the number of subsystems is reduced by one). A 
complete state space model can then be generated using the algorithm described 
in [22]. Briefly, the algorithm takes as input an initial system state. Then, the 
algorithm applies recursively the set of transition rules. During a recursive step, 
the algorithm produces a transition to a state derived from the initial one. De
pending on the rule that is applied, in the resulting state, one or more elements 
are modeled as being failed, or operational, while in the initial state they were 
modeled as being operational or failed, respectively. If the resulting state is a 
death state, the recursion ends. 

Complete state space models are automatically generated from DS architec
tural descriptions embedding the specification of reliability stimuli and parame
ters, by following the steps below. 

First, a state range definition for each collaboration belonging to a given 
service profile is generated. The state of a collaboration is composed of the 
states of the component and connector instances used within the collaboration 
and the state of nodes on top of which the component instances execute. If a 
component is composite, its state is composed of the states of the constituent 
elements. The range of states for a component/connector/node depends on the 
kind of faults that may cause failures. At this point, the generation procedure 
is customized accordingly. In the case of permanent faults for instance, a com
ponent/connector/node may be either in an OPERATIONAL, or in a FAILED 
state. In the case of intermittent faults, a component/connector/node may be in 
an OPERATIONAL state, or it may be in a FAILED-ACTIVE or in a FAILED-
BENIGN state. The range of states for a component further depends on the kind 
of redundancy used. Again, the generation procedure is customized accordingly. 

After generating the state range definition for a collaboration coUab, the 
step that follows comprises the generation of transition rules for components/ 
connectors/nodes used in the collaboration. These rules depend on the kinds of 
faults of the corresponding architectural element. For instance, for permanent 
faults, the rules follow the pattern given in Table 5. What is left at this point 
is to generate the definition of the initial state of the collaboration, and the 
definition of the death state constraint. The initial state is a state where all 
of the elements used in the collaboration are operational. A collaboration is in 
death state if any of the architectural elements used within it is not operational. 
Hence, the death state constraint consists of the disjunction of base predicates, 
each one of which defines the death state constraint for an individual element 
used in the collaboration. More specifically, the base predicate for a component. 
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connector, or a node states that the element is in a FAILED state. The base 
predicate for a redundancy schema is the disjunction of two predicates. The first 
one states that the number of failed redundant component instances is greater 
than the number component faults that can be tolerated. Similarly, the second 
one states that the number of failed redundant nodes is greater than the number 
of node faults that can be tolerated. 

Table 5. Transition Rules for Permanent Faults 

A D L 
Element 

Rule 

Component For all instances of primitive components, c: 

— If collab is in a state where c is in an OPERATIONAL state st, then collab 
may get into a state st' where c is FAILED. The rate of these transi
tions is equal to the arrival rates of the faults that cause the failure of c, 
c. Faults .arrival-rate (see Table 3). 

For all instances of composite components, c: 

- If collab is in a state st where c is OPERATIONAL, then collab may get 
into a state st' where c is FAILED due to a failure of a constituent element 
c'. The rate of these transitions is equal to the arrival rates of the faults that 
cause the failure of c', c'.Faults.arrival-rate. 

For all instances of composite components re representing a redundancy schema 
of k components. 

If collab is in a state st where re is OPERATIONAL, and the number of 
failed redundant component instances if/c, then collab may get into a state 
st' where the number of failed components of re is fc + I. The difference 
between st and st' is I redundant component instances of the same type 
t, which in st were OPERATIONAL and in st' are FAILED. The rate of 
these transitions is equal to the fault arrival rate specified for t. This rule 
captures failure dependencies among redundant component instances of the 
same type. These components are used in the same conditions and with the 
same input. Hence, if one of them fails due to a design or an operational 
fault, all of them will fail 

Connector For all instances of primitive connectors see the case of primitive components. 
For all instances of composite connectors, see the case of composite components. 
We assume that nodes fail independently from each other. Hence, for all nodes 
in collab: 

— If collab is in a state st where a node n is in an OPERATIONAL state, then 
collab may get into a state st' where « is in a FAILED state. 

— Moreover, in st', all instances of components c deployed on n are in a FAILED 
state. 

— Finally, in st' all instances of redundancy schemas re, built out of m com
ponents deployed on n, have fc -|- rn failed components and fn -i- I failed 
nodes. 

The rate of these transitions is equal to the arrival rate of the faults that caused 
the failure of ra, n.Faults.arrival-rate. 

Node 
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4.4 Example 

To demonstrate the automated quantitative analysis detailed in the previous 
subsection, we use the TA case study. The goal of our analysis is not to obtain 
precise values of the reliability measure since this would require to precisely 
model the Internet, which in general is considered as rather unrealistic [23]. For 
that reason, we concentrate on comparing different scenarios towards improving 
the design of our system, while assuming certain invariants for modeling issues 
related to the Web. Our objective is to try to improve the reliability of TA while 
keeping the cost of the required changes in the TA system low. 

The scenario shown in Figure 2 gives a typical use case of TA. This scenario 
constitutes the basic service profile used for the reliability analysis, i.e., the 
provided scenario is processed for the automatic generation of the state space 
model analyzed by the SURE-ASSIST tool. According to the scenario, one or 
more customers use an instance, ta, of the TravelAgentFrontEnd to request the 
reservation of a flight ticket, a hotel room and a car. The ta component instance 
breaks down such a request into 3 separate requests. The first one relates to the 
flight ticket reservation and is sent to an instance, fr, of the FUghtReservation 
component. The fr component instance uses this request to generate a new set 
of requests, each one of which is specific to an air company that collaborates 
with the TA system. The set of specific requests are finally sent to an instance, 
ac, of the AirCompanies composite component, which represents the current set 
of collaborating air companies. Similarly, the second and the third requests are 
related to the hotel and the car reservations, respectively. These requests are sent 
to instances of the HotelReservation and CarReservation components, which 
reproduce them properly and send them to the current sets of collaborating 
hotels and car companies. 

The component instances used in the scenario may fail to give answers to 
customers. Component failures are manifestations of design faults. We assume 
that these faults are accidental, created by the component developers. Moreover, 
component faults are all permanent and their arrival rates vary depending on 
the type of the components. More specifically, the fault arrival rates for the 
components that represent component systems supporting hotels, air companies 
and car companies are much smaller compared to the faults arrival rates of 
the rest of the components that make up the TA system. The reason behind 
this is that the component systems supporting hotels, air companies and car 
companies have already been in use and their implementations axe quite stable. 
On the other hand, the TA front end and reservation components are still under 
development. The nodes used in our scenario may fail because of permanent 
faults. HTTP and RFC connectors may also fail, however, in this case it is more 
pragmatic to assume that we deal with temporary faults, which may disappear 
with a certain rate. The arrival rates of node faults are much smaller than the 
arrival rates of component faults. This also holds for the RFC connector. On 
the contrary, the HTTP connector is expected to be quite unreliable, with a 
failure rate greater than that of the components used in the TA (specific failure 
rates for the individual entities that constitute the DS can be obtained using 
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measurement based techniques; for the ones we assume here we rely on measures 
presented in [24,25]). For illustration, Figure 2 shows the detailed specification 
of the reliability stimuli and parameters that are given for the FlightReservation 
component. 
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Fig. 2. A generic scenario for TA 

By taking a closer look at the architecture of the TA system, we can de
duce that some sort of redundancy is used. In particular, the Hotels, AirCompa-
nies and CarCompanies components are composite, consisting of A; components 
that represent the dependable systems supporting hotels, air companies and car 
companies. The reservation components request from them, room, ticket and 
car reservations. For the scenario to be successful, we need answers from at 
least one hotel, one air company, and one car company. Hence, Hotels, Air-
Companies, and CarCompanies can be seen as ad hoc redundancy schemas 
with the following properties: the execution of redundant elements is parallel 
(redundancy.execution = parallel), the number of component and node faults 
that can be tolerated is fc — 1 (redundancy.no-camp-faults and redundancy.no 
-node-faults = k — 1). 

To further improve the architecture regarding the provided reliability, we 
designed three additional redundancy schemas. The first one contains k differ
ent versions of the HotelReservation component. Upon the instantiation of the 
schema, k component instances are created, one of each version. These instances 
execute in parallel and are deployed on k different nodes. The second schema 
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contains k versions of the FlightReservation component, the instances of which 
are also deployed on the k nodes, on top of which the instances of the Hotel-
Reservation component execute. Finally, the last schema contains k versions 
of the CarReservation component, the instances of which are also deployed on 
the nodes used to execute the instances of the HotelReservation component. At 
runtime, a customer request is broken down by the instance of the TravelA-
gentFrontEnd component into individual requests for flight ticket, hotel room 
and car reservation. Each one of these requests is replicated and sent to all the 
redundant instances of the corresponding reservation component. Each instance 
of the reservation component translates the request into specific requests for the 
corresponding available component systems and sends them. When the instance 
of the TravelAgentFrontEnd starts receiving offers for flight tickets, hotel rooms 
and cars, it removes identical reply messages and combines them into replies 
that are returned to the customer. We tried our scenario for n = 1,2,3 redun
dant versions. Given the aforementioned scenario and reliability parameters and, 
three complete state space models were generated and anal3^ically solved. The 
results obtained are summarized in Figure 3. For further detail about the sce
nario, including complexity of the generated state space models, the interested 
reader is referred to [15]. 
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Fig. 3. Results produced by the reliability analysis of TA 

The main observation we make is that the reliability of TA does increase. 
However, the improvement when we use redundant versions is certainly not 
spectacular. The explanation for this is simple. In our scenario, the most un
reliable element used is the HTTP connector. This is the main source causing 
the reliability measure to have small values. Any improvement in the rest of the 
architectural elements used shall not cover this problem, which unfortunately can 
not be easily alleviated. Hence, using multiple versions does not bring much gain. 
However, the good news are that regarding the cost of using multiple versions, 
we do not lose much. The elements for which we produced multiple versions just 
translate TA specific requests into component systems' specific requests. Since 
the functionality of these components is quite simple, re-implementing them 



216 Apostolos Zarras et al. 

differently (e.g., using different developers) is not a complex, neither a time-
consuming task. Note here that the fact that the functionality of the redundant 
components is simple does not mean that there can be no bugs in their imple
mentation. Actually, mistakes in the mapping of TA requests into component 
systems' specific requests can be quite often. Furthermore, the cost of developing 
multiple versions is low since we did not really use any strong synchronization 
among the different versions. 

5 Conclusion 

5.1 Summary 

In this paper, we presented an environment for the quality analysis of DS. The 
overall design and realization of our environment is guided by the needs of its 
current and potential users, imposing the simplification of certain extremely 
important and inevitable development activities related to the quality analysis 
and assurance of the DS. The quality analysis of systems is traditionally based on 
methods and tools that have a strong formal basis. We believe that the proposed 
environment brings everyday developers closer to such methods and tools. The 
environment relies on an architecture description language for the specification 
of DS architectures, which is defined based on UML, a standard and widely 
accepted notation for modeling software. Our environment further provides a 
certain level of automation that eases the development of traditional quality 
models from architectural descriptions. 

5.2 Evaluation 

Having reached into a stable prototype implementation of our environment, we 
now concentrate on testing it on real world case studies. So far, we used it 
successfully in the context of the DSoS 1ST project for the quality analysis of 
the Travel Agent system. Parts of the analysis was presented here in the form 
of demonstrating examples. We further used the basic ideas of our environment 
in the context of the C3DS 1ST ^^ project for the performance and rehability 
analysis of workflow based dependable systems [18]. The experimentation with 
the aforementioned systems led us into several useful remarks, which can become 
the milestones of a more concrete evaluation process which we plan as future 
work. 

More specifically, in the case of quantitative analysis, a high level of automa
tion can be achieved since the developer is requested only to specify quality 
attributes within the DS architecture specification. Formal models, processed by 
existing a.nalysis tools are, then, automatically generated from the architecture 
specification. However, an important question is: to what extend the generated 
models are representative of the system. Our experience with the performance 

http://www.newcastle.research.ec.org/c3ds/. 
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and reliability analysis of workflow-based systems showed t ha t the model gener
ation procedures we propose are helpful but quite generic. In order to generate 
models of good quality for workflow-based systems, we had to refine the archi
tecture description language we use, so as to provide constructs for modelling 
tasks and task dependencies. Moreover, we had to revise the model generation 
procedures to take into account specificities of the s tandard platform [18], on 
top of which the workflow-based systems were built. Hence, the lesson learned 
here is tha t the ADL must serve as a base for the specification of different ar
chitectural styles for different families of systems. Moreover, it is more realistic 
to build different model generation procedures for different families of systems. 
Those procedures are still reusable and produce more concrete models for quality 
analysis. 

In the case of qualitative analysis, the automation tha t can be achieved is 
more limited since the developer is requested to formally specify the behavior of 
architectural elements. This led us to carefully select an existing qualitative anal
ysis method and associated tool whose use is natural to the developers. Besides, 
we showed tha t there are benefits from automating the mapping between the ba
sic ADL constructs used for software architecture specification, into constructs 
of the formal notation used for behavioral analysis. 
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