
HAL Id: inria-00415114
https://hal.inria.fr/inria-00415114

Submitted on 10 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards ad hoc contextual services for pervasive
computing

Damien Fournier, Sonia Ben Mokhtar, Nikolaos Georgantas, Valérie Issarny

To cite this version:
Damien Fournier, Sonia Ben Mokhtar, Nikolaos Georgantas, Valérie Issarny. Towards ad hoc contex-
tual services for pervasive computing. 1st Workshop on Middleware for Service Oriented Computing :
MW4SOC, 2006, Melbourne, Australia. pp.36-41. �inria-00415114�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50145918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00415114
https://hal.archives-ouvertes.fr

Towards Ad hoc Contextual Services for Pervasive
Computing

Damien Fournier, Sonia Ben Mokhtar, Nikolaos Georgantas,Valérie Issarny
INRIA

UR Rocquencourt
78153 Le Chesnay Cedex, France

{Damien.Fournier, Sonia.Ben Mokhtar, Nikolaos.Georgantas, Valerie.Issarny}@inria.fr

ABSTRACT
Context-awareness is a key challenge for pervasive comput-
ing, as it is a prime requirement towards delivering appli-
cations to users in a way that best matches user require-
ments, digital resources availability and physical conditions.
However, enabling anytime, anywhere context-awareness, as
targeted by pervasive computing, is further challenged by
the openness of the environment, which requires making
available context information in various computing envi-
ronments. This then calls for the ad hoc networking of
context sources and of context-aware applications, so that
applications may always benefit from a context knowledge
base, although it may be more or less rich, depending on
the specific environment. Building upon the context man-
agement literature, and the Service-Oriented Architecture
(SOA) paradigm that is a major enabler of open ad hoc
networking, this paper sketches key context-aware system
concepts that need be incorporated in the SOA style towards
enabling context-aware services for pervasive computing.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles; D.2.11
[Software Engineering]: Software Architectures

General Terms
Interoperability

Keywords
Context-awareness, Pervasive Computing, SOA.

1. INTRODUCTION
Context awareness and management are challenging re-

quirements for pervasive computing decisively affecting the
user’s experience [19]. Nowadays, many applications using
context information are proposed (e.g., healthcare monitor-
ing, personalized service delivery). Context management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-425-1/06/11 ...$5.00.

gives to applications the aptitude to be aware of user char-
acteristics, system behavior and state of the physical envi-
ronment [8]. These applications, qualified as context-aware,
are able to adapt dynamically their behavior according to
user requirements and/or environment.

Emergence of service-oriented computing as a well-serving
paradigm for pervasive environments has indicated a tight
association between pervasive context and services. To this
end, several service-oriented middleware architectures have
been proposed dealing with one or more of: context iden-
tification and description; context retrieval, processing and
storing; reasoning on context; context-aware service descrip-
tion, discovery and selection; and context-aware service adap-
tation (e.g., see [2] for a survey). In these architectures, a
number of functional entities have been identified participat-
ing in the generation, management and use of context. Con-
text sources (e.g., sensors) provide a specific type of context
information. Context aggregators and interpreters compile
and process context information to make it available in an
elaborated, added-value form. Context repositories organize
and make context information accessible, further support-
ing reasoning for answering complex context-related queries.
Context-aware services and their clients are matched and —
if needed — adapted to each other by context-aware service
discovery and adaptation mechanisms.

A key point to all aforementioned functionalities is the de-
scription of context, where the paradigm of choice in most
approaches is ontologies coming from the knowledge repre-
sentation domain. Ontology languages are employed to en-
able common understanding of context semantics and rea-
soning on complex relations between contextual concepts.
Further, of major interest is the distribution of context-
aware architectures. We observe two directions for man-
aging context information. First, context management sup-
port may be limited to a specific physical environment, such
as home or office. We define these physically delimited en-
vironments as pervasive spaces. In this case, context in-
formation is conveniently managed by a (logically) central-
ized system, while mobile devices (PDAs, smart phones)
supporting user applications are consumers of such informa-
tion. The second approach lies in delegating context man-
agement to (end-user) devices so that devices have access
to context information in any environment. In this case,
each pervasive device is responsible of its context. Each
device then supports local context management, indepen-
dent of any infrastructure, possibly collaborating in an ad
hoc way with peer devices to enrich its context knowledge.
Accordingly, context-aware service discovery, selection and

36

adaptation may be executed in a centralized or decentral-
ized way, where the former asks for a context management
infrastructure provided by the pervasive space, and the lat-
ter relies on the individual pervasive devices. Architectural
and functional distribution further affects consumption of
context information. RPC or event-based interaction may
be employed for retrieving specific context information and
for invoking context-aware services, while ontology-oriented
query languages may be employed for conveying complex
context-related requests (e.g., see [17]).

Understanding context-aware architectures for pervasive
computing with respect to all the above discussed features
is the main focus of this paper. First, we briefly survey
related research approaches, summarizing key aspects un-
derlying context awareness, from context sources to context
management (Section 2). A major outcome of our survey is
that all reviewed approaches commonly assume – each – a
homogeneous context-aware architecture, where immediate
compatibility of functional and knowledge-related entities is
assured by design. However, the openness and high dynam-
ics of pervasive environments make such an assumption too
restrictive. In these environments, heterogeneity may arise
in any of the above discussed features of context-aware archi-
tectures. Hence, we envision a service-oriented middleware
approach allowing for ad hoc context-awareness in pervasive
environments, where context-related entities – all taking the
form of contextual services – dynamically self-organize and
self-adapt to optimally exploit available, possibly heteroge-
neous, contextual resources at the specific time and place.
Major challenges in this approach are adequate semantic de-
scription of contextual services and principally of their role
in context awareness (i.e., from context source to context
consumer), and, based on this description, self-organization
including contextual service discovery, composition, adapta-
tion and interaction. As a first step towards this objective,
we elaborate a conceptual model in UML representing key
context-aware system concepts as elicited from our survey;
we further inject in this model our vision of ad hoc context-
awareness (Section 3). We finally conclude in Section 4 pre-
senting our plan of ongoing and future work.

2. CONTEXT AWARENESS
A context-aware pervasive environment is made of soft-

ware applications that execute opportunistically according
to user presence and networked resources. Applications are
further able to adapt to the physical space and to available
hardware and software resources, always aiming at providing
best user experience. Devices of the context-aware perva-
sive environment then exchange diverse context information
through the network.

2.1 Taxonomy of Context Information
Context information is usually classified in three subsets,

called context domains [20]: user domain, system domain
and physical domain. The user domain provides knowledge
enabling applications to adapt their behavior according to
the profile of their users. For example, if the user is blind,
applications can sense this information by getting the de-
scription of the user handicap and then adapt their user
interface so that speech is chosen as the interaction modal-
ity. As another example, a context-aware video player can
read the user profile to check if the user is allowed to watch
the video content according to the user’s age. User-related

context information further subdivides into subjective and
objective user context. The former defines the user’s person-
ality and psychology, corresponding to user mood and feeling
(fear, anger). The latter includes the following information:

• Personal information provides data allowing identifica-
tion of, and communication with, the user such as, first
name, last name, birth date, home address, etc. Com-
munication-related information accounts for the various
communication networks (providing, e.g., phone num-
ber, email address, instant messaging nickname), further
enabling to choose the most appropriate communication
means according to network connectivity and other rel-
evant context data.

• Physiology and condition information defines height,
weight, eyes color, health (ill, tired, stress), etc., which
may in particular be exploited by healthcare or diet
coach applications.

• Finally, agenda-related information defines user activi-
ties over time, enabling the system to adapt commu-
nication/interaction modalities (e.g., switching off ring
tone while attending a meeting), and in general inferring
various information and actions (e.g., knowing about the
user’s location).

The system domain describes digital, software and hardware
resources available to users. Applications use description of
devices features and resources characteristics to adapt sys-
tem behavior, alter content, or modify user interfaces [4].
For example, a video player application can display content
on the largest screen available in the room where the user is
located but once another user enters the room, the content
is displayed on the user’s mobile device and adapted ac-
cording to screen resolution. In order, to adapt application
behavior according to devices, the system domain usually
combines description of hardware and software components
available in the context-aware environment. Typically, this
description specifies:

• Processing power (e.g., CPU type and frequency, RAM
available, energy source and autonomy).

• Hardware components, including input/output peripher-
als attached to the device. Typically, their description
provides information about screen quality, printer and
scanner resolution, etc.

• Network interfaces to connect the device to the various
networks, both wired and wireless. This description in-
cludes network interface name, network type, available
protocols, hardware and logic address, and bandwidth.

• Storage system (e.g., partitions, files system, capacity).

• Software components like operating system and virtual
machines.

Finally, the environmental domain deals with the descrip-
tion of location and of conditions of the physical environ-
ment. User mobility or natural variation of physical con-
ditions (e.g., brightness or temperature) can impact appli-
cation behavior within a context-aware environment. The
environmental domain describes locations where users and
devices are physically situated. It allows retrieving the user
and possibly adapting the physical environment (with phys-
ical actuators) according to the user’s preferences. The en-
vironmental domain subdivides into three sets of context
information:

37

• Physical geography provides description of locations with
room name, building type, postal address, absolute co-
ordinate, for indoor environment, and GPS coordinate,
road, for outdoor environment.

• Physical conditions provide description of outdoor weather
condition (wind, sun, rain, temperature), and of sensing
conditions such as brightness, ambient noise, humidity.

• Chronology defines timing information such as time zone
and time of the day.

2.2 Context Representation
To be effectively managed, context information need be

modeled in a uniform way so that it can be unambiguously
interpreted and further combined. Six models dominate in
the literature for context representation [21]:

• Key-Value models represent context information using a
set of attributes and their associated values. It is the
most simple data structure used in context-aware appli-
cations.

• Markup models enable structuring context information
into a hierarchy. Tags describe context attributes and
associated values. Using tags recursively permit classi-
fying context into data subsets.

• Graphical models are suitable for expressing relation-
ships between context entities, as illustrated in [11].

• Object models take benefits of the object-oriented para-
digm to represent context information as object vari-
ables, and structure this information into object classes
[12]. Object oriented models add the possibility to mix
context processing with context data.

• Logic models represent context in terms of facts and
rules. They are used to infer new statements about con-
text information.

• Ontologies benefit of both logic and object orientation.
They enable representing context using classes and ex-
plicit relationships among them.

Basically, to structure sensed values into context informa-
tion, each piece of context data must be precisely charac-
terized. Context values are usually described with meta-
data [13]. Main attributes associated with a context value
are: (i) the context domain (see §2.1), and (ii) the context
type that refers to subsets belonging to the context domain.
Sometimes, the context type is written with a path expres-
sion, to describe the “type” attribute within a hierarchy [13,
7]. In order to add precision to context information, more
sensing details are needed such as:

• The context source attribute refers to the sensing service
that gives context values related to, e.g., physical sensor,
device or application.

• Related to the context source, the quality attribute gives
details about sensing mechanisms, usually related to ac-
curacy, timeliness or confidence of context source. It can
be used to adapt context processing and exclude inaccu-
rate sources.

• The metric attribute defines the data type and unit of
context values, enabling applications to instantiate and
process context information.

• The timestamp attribute is essential to capture history of
context values and infer information over a time period,
or to check up-to-datedness.

• The relationship attribute enables linking correlated con-
text information, making explicit impacts of sensed val-
ues on other context information, or defining interaction
between users, devices and the physical environment.
For example, when a user turns on his mobile phone,
interaction of the user with the mobile device can be
specified by the relationship “use”.

Associated with values, metadata gives details about the
nature of context information. Metadata is used by the
context management system to process and deliver context
information to applications. The context manager hides de-
tails of sensing to applications and provides valued context
attributes according to application requests.

2.3 Context Management
Initial research on context-aware systems focused on build-

ing applications for a specific scenario or a specific con-
text, leading to develop application-specific context man-
ager. This approach is often illustrated by location-aware
systems. For example, the Active Badge system forwards
phone calls according to the user location in the Olivetti re-
search laboratory [22]. Some of these applications are also
implemented as tourist guide, such as Cyberguide [1] and
the GUIDE project [6]. Due to their specific nature, these
solutions provide limited support to generic context manage-
ment that can be reused across context-aware applications.

To ease the development of context-aware applications,
dedicated frameworks have been proposed. Those frame-
works provide reusable context components that are respon-
sible of data acquisition, aggregation and interpretation.
Context components provide a public interface for access-
ing context data, while they hide details of context sens-
ing. For example, the Context toolkit introduces context
components, called context widget [8]. The contextor in-
frastructure further assists the composition of context com-
ponents [18]. Specifically, the context information is man-
aged by contextor components, which provide communica-
tion channels for the exchange and control of context data.
The assembly of contextors is ruled by a data-flow model.
The composition of contextors may be static (specified at
design-time), semi-static (specified at run-time), or tran-
sient. In general, framework-based approaches for context
management greatly ease development of context-aware ap-
plications. They abstract details of sensing and transform
observables into values that are processable by applications.
Still, making applications context-aware requires developing
applications with the specific frameworks and further hav-
ing the specific context components actually deployed in the
environment.

Availability of context information may greatly be im-
proved through the deployment of context servers within the
network(s). Context servers may be requested for context
information by any networked client application. Typically,
this solution is based on an infrastructure for sensing and
reporting context to the context server. The context server
then stores and interprets context information reported by
sensing applications deployed into a physical environment
(such as home, office, hospital). This approach eases sharing
of context information among applications, as illustrated by

38

Figure 1: Context Sources

SOCAM [10] and Cobra [5]. The COntext Broker Architec-
ture (CoBra) is composed of a context server and modules
responsible of data acquisition [5]. Similarly, the Service-
Oriented Context-Aware Middleware (SOCAM) introduces
an infrastructure to manage context; it further undertakes
a service-oriented approach with context acquisition and in-
terpretation being deployed on an OSGI-based residential
gateway [10].

We notice that more recent solutions extend the server-
oriented approach to context management to a P2P archi-
tecture. Every computing device (PDA as well as desktop)
becomes responsible of managing part of context informa-
tion and peering with others to enrich the context knowl-
edge base. This approach is illustrated by the AWARE-
NESS project1, where mobile and desktop devices are able
to acquire, interpret and exchange context data. Compared
to the base server-oriented approach, this empowers mobile
terminals with the ability to support context-aware appli-
cations even when no context server is available in the net-
worked environment.

3. CONTEXTUAL SERVICES
As surveyed above, context-awareness requires dealing with

diverse sources of context information and making avail-
able related knowledge to applications. Then, developing
context-aware applications can be tractable only if provided
with adequate middleware support for managing context in-
formation, from acquisition to storage. Also, key middle-
ware functions shall be made context-aware (e.g., context-
aware service discovery [17, 9] as well as context-aware in-
teraction). However, context-awareness shall not be bound
to a specific software infrastructure or physical environment.
Context-awareness shall be made available in most environ-
ments, thanks to the ad hoc networking of context sources
and consumers. Such open networking is enabled by the
service-oriented architecture paradigm, further backed by
semantic Web technologies for making services interoper-
able. In addition, semantic services may be conveniently
exploited in the pervasive computing environment through
adequate lightweight middleware for wireless, resource con-
strained devices [16]. Building upon the above effort, we
are investigating the development of contextual services for
pervasive computing. Specifically, we call contextual ser-

1AWARENESS Consortium. Context AWARE mobile NEt-
works and ServiceS, http://awareness.freeband.nl/

vice, a semantic service that realizes a context source and/or
a context consumer. A contextual service further oppor-
tunistically networks/composes with other contextual ser-
vices to offer a richer context knowledge base, as network
connectivity allows. Towards the development of a contex-
tual service-oriented architecture, and in particular related
middleware support, this section elicits key architectural ele-
ments underpinning context-awareness, i.e., context sources
(§3.1), context consumers and related communication pro-
tocols (§3.2), and context-aware services (§3). Elements are
further introduced using UML models so as to highlight the
relationships among them.

3.1 Context Sources
Figure 1 models major context sources, as identified in

Section 2.1. Specifically, context sources may provide infor-
mation relevant to the user, system and physical domains.

The physical domain is dependent upon physical sensing
of the environment by sensors, which may possibly be orga-
nized into dedicated networks. Sensed values related to the
same physical data (e.g., temperature in a building sensed
in various rooms) may further be aggregated (e.g., sum, av-
erage, . . .). Given some sensed value, the interpreter service
encodes it as a structured context data according to a tar-
get/reference ontology (see §2.2).

The context repository is the service responsible for the
storage of context information. It typically stores infor-
mation from the various context sources networked in the
environment. Additionally, the context repository possibly
manages a rich knowledge base by inferring new context in-
formation from the known context, thanks to the context
reasoner. Typically, a context reasoner uses logic inference
and reasoning mechanisms to deduce new context informa-
tion. In general, services implementing context sources shall
network and cooperate opportunistically so as to make the
knowledge base available to applications as rich as possible.
This may be coordinated by context repositories — if any —
for the sake of resource savings. However, the actual coop-
eration protocol among context sources shall be determined
dynamically according to various non-functional attributes,
like availability, performance and privacy. All the context
sources, i.e., user profiling, system profiling, interpreter, con-
text repository, and context reasoner services, handle con-
text requests. Such requests may simply provide context
types as input. Alternatively, they may express complex

39

queries over the knowledge base using, e.g., SPARQL2.

3.2 Context Consumption
As modeled in Figure 2, context sources may be accessed

by context consumers using various protocols:

• RPC-based interaction is the most basic type of inter-
action, with the consumer requesting for a given con-
text information. As such, it favors reactive context-
awareness. In this case, the dynamics of the context
information need be specified, using, e.g., timestamp at-
tributes (§2.2).

• Event-based interaction allows for both reactive and proac-
tive context-awareness, with the consumer being notified
of requested context information upon given conditions
(e.g., at regular time intervals, update since last notifi-
cation).

• P2P interaction allows for advanced distributed context
management, favoring ad hoc composition of context
sources.

Figure 2: Context Consumption

3.3 Context Aware services
By accessing context sources, services of both the appli-

cation and middleware layers may be made context-aware.
This is modeled in Figure 3, which highlights context-awareness
of the three base architectural components of SOA, i.e.,
service client and provider, and Service Discovery Protocol
(SDP). Note that although we abstract each component as
a single entity, they may be distributed as is in particular
the case of the SDP.

We distinguish two complementary approaches to context-
aware service discovery: explicit and implicit. In the former
case, the request for the service specifies contextual require-
ments for the service provision, hence leading to select ser-
vices according to applications requirements, as specified by
the service client and/or provider [3, 17, 9]. Typical example
of explicit context-aware service discovery is the case where
users request to print their documents on the closest printer.
In the implicit case, the context-aware SDP selects services
according to functional and non-functional properties spec-
ified by the client, and further tunes the selection according
to context knowledge. In both cases, the SDP needs to have
access to context sources relevant to the client and/or service
provider, which is to be enabled by the middleware. Then,
this knowledge may be obtained reactively, proactively or

2http://www.w3.org/TR/rdf-sparql-query/
sparql-defns.html

Figure 3: Context-aware Services

even via a cache, depending on its dynamics and the net-
worked environment.

Context-adaptive service adapt their behavior according
to context. We then distinguish 3 types of context-adaptive
services: (i) the context-specific service can only be cor-
rectly provisioned in the specified context, (ii) the context-
dependent service may be provisioned in various contexts
but is bound to a specific context during a session, i.e., the
service adapts its behavior at binding time, and (iii) the
context-aware service continuously adapts its behavior ac-
cording to context evolution. The third type of service re-
lates to the development of dynamically adaptive software
[23]. In all cases, the service interface must be enriched with
the specification of the context in which the service can be
correctly provisioned, which has to be matched against by
the SDP through access to relevant context sources. Fur-
thermore, the context may be monitored during the service
session by the middleware, for triggering adaptation — if
supported— or enforcing robustness of the system by detect-
ing that the service can no longer be provisioned as expected.
A context-adaptive service may be composite, in which case
it is able to compose services according to the context of
composition in addition to the functional and non-functional
properties of composed services [14]. For example, if the user
requests for a travel service, he can add constraint on the
global composition in order to select the cheapest travel, or
add constraint on composite flight services in order to select
only best ranked companies worldwide.

Note that being a service, a context source may itself be
developed as a context-adaptive service, possibly composite.
For instance, a context repository uses a context-aware SDP
for maintaining its knowledge base according to the context
sources that join and leave the network(s) in reach. Finally,
a context-adaptive client is dual to the context-adaptive ser-
vice; it makes explicit the context in which the requested
service is to be provisioned.

4. CONCLUSIONS
Service-oriented computing has emerged as a promising

paradigm for pervasive computing. In particular, seman-
tic services together with supporting lightweight middle-
ware enable abstracting and composing on the fly networked
resources, either wireless or wired, resource-constrained or
resource-rich, mobile or stationary [16]. As such, semantic
services enable a true interoperable, open network of ser-

40

vices that leave and join according to their mobility pattern.
However, several challenges remain towards fully pervasive
service-oriented computing. One such challenge is making
services contextual, so that the pervasive computing envi-
ronment gets knowledge about the context and the services
adapt their behavior accordingly. In this direction, this pa-
per has surveyed key architectural elements and in particular
middleware-related ones that need be deployed in the envi-
ronment for context-aware pervasive service-oriented com-
puting. These take the form of contextual services that may
be composed in an ad hoc way through opportunistic net-
working and combination of functionalities. We are now
refining the proposed SOA style so as to develop a service-
oriented context-aware middleware, which will enrich our
current interoperable middleware for pervasive services [15].

5. ACKNOWLEDGMENTS
This work is supported by the IST PLASTIC Project —

http://www.ist-plastic.org

6. REFERENCES
[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long,

R. Kooper, and M. Pinkerton. Cyberguide: a mobile
context-aware tour guide. Wirel. Netw., 3(5):421–433,
1997.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems.

[3] T. Broens. Context-aware, ontology-based, semantic
service discovery, masters thesis, university of twente,
enschede, the netherlands, 2004.

[4] T. Chaari, F. Laforest, and A. Celentano.
Service-oriented context-aware application design. In
First International Workshop on Managing Context
Information in Mobile and Pervasive Environments,
Ayia Napa, CYPRUS, 2005.

[5] H. Chen, T. Finin, and A. Joshi. Semantic Web in in
the Context Broker Architecture. In Proceedings of the
Second Annual IEEE International Conference on
Pervasive Computer and Communications. IEEE
Computer Society, March 2004.

[6] K. Cheverst, N. Davies, K. Mitchell, and A. Friday.
Experiences of developing and deploying a
context-aware tourist guide: the guide project. In
MobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and
networking, pages 20–31, New York, NY, USA, 2000.
ACM Press.

[7] P.-C. David and T. Ledoux. Wildcat: a generic
framework for context-aware applications. In
Proceeding of MPAC’05, the 3rd International
Workshop on Middleware for Pervasive and Ad-Hoc
Computing, Grenoble, France, Nov. 2005.

[8] A. K. Dey. Providing architectural support for building
context-aware applications. PhD thesis, 2000.
Director-Gregory D. Abowd.

[9] A.-R. El-Sayed and J. P. Black. Semantic-based
context-aware service discovery in
pervasive-computing environments. In Proc. of the 1st
Workshop on Services Integration in Pervasive
Environments, 2006.

[10] T. Gu, H. K. Pung, and D. Q. Zhang. A
service-oriented middleware for building context-aware

services. J. Netw. Comput. Appl., 28(1):1–18, 2005.

[11] K. Henricksen and J. Indulska. A software engineering
framework for context-aware pervasive computing. In
PerCom, pages 77–86. IEEE Computer Society, 2004.

[12] T. Hofer, W. Schwinger, M. Pichler,
G. Leonhartsberger, J. Altmann, and
W. Retschitzegger. Context-awareness on mobile
devices - the hydrogen approach. In HICSS, page 292,
2003.

[13] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and
E.-J. Malm. Managing context information in mobile
devices. IEEE Pervasive Computing, 02(3):42–51,
2003.

[14] S. B. Mokhtar, D. Fournier, N. Georgantas, and
V. Issarny. Context-aware service composition in
pervasive computing environments. In N. Guelfi and
A. Savidis, editors, RISE, volume 3943 of Lecture
Notes in Computer Science, pages 129–144. Springer,
2005.

[15] S. B. Mokhtar, N. Georgantas, and V. Issarny. Cocoa:
Conversation-based service composition in pervasive
computing environments. In Proceedings of the IEEE
International Conference on Pervasive Services, June
2006.

[16] S. B. Mokhtar, A. Kaul, N. Georgantas, and
V. Issarny. Efficient semantic service discovery in
pervasive computing environments environments. In
Proceedings of Middleware, December 2006.

[17] P. Pawar and A. Tokmakoff. Ontology-based
context-aware service discovery for pervasive
environments. In Proc. of the 1st Workshop on
Services Integration in Pervasive Environments, 2006.

[18] G. Rey, J. Coutaz, and J. L. Crowley. The contextor:
a computational model for contextural information. In
Wokshop Building Bridges Interdisciplinary
Context-Sensitive Computing, 2002.

[19] D. Saha and A. Mukherjee. Pervasive computing: A
paradigm for the 21st century. Computer, 36(3):25–31,
2003.

[20] B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz,
CA, US, 1994.

[21] T. Strang and C. Linnhoff-Popien. A context modeling
survey. In Workshop on Advanced Context Modelling,
Reasoning and Management as part of UbiComp 2004
- The Sixth International Conference on Ubiquitous
Computing, Nottingham/England, September.

[22] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The
active badge location system. ACM Trans. Inf. Syst.,
10(1):91–102, 1992.

[23] J. Zhang and B. H. C. Cheng. Model-based
development of dynamically adaptive software. In
L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, ICSE, pages 371–380. ACM, 2006.

41

