
HAL Id: inria-00415118
https://hal.inria.fr/inria-00415118

Submitted on 10 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An incentive compatible reputation mechanism for
ubiquitous computing environments

Jinshan Liu, Valérie Issarny

To cite this version:
Jinshan Liu, Valérie Issarny. An incentive compatible reputation mechanism for ubiquitous computing
environments. International Conference on Privacy, Security and Trust : PST 2006, 2006, Markham,
Ontario, Canada. pp.36. �inria-00415118�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50145915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00415118
https://hal.archives-ouvertes.fr

An Incentive Compatible Reputation Mechanism for
Ubiquitous Computing Environments

Jinshan Liu
INRIA - Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105
78153 Le Chesnay Cedex, France

jinshan.liu@inria.fr

Valérie Issarny
INRIA - Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105
78153 Le Chesnay Cedex, France

valerie.issarny@inria.fr

ABSTRACT
The vision of ubiquitous computing is becoming a reality
thanks to the advent of portable devices and the advances
in wireless networking technologies. It aims to facilitate
user tasks through seamless utilization of services available
in the surrounding environments. In such distributed en-
vironments featuring openness, interactions, especially ser-
vice provision and consumption, between entities that are
unknown or barely known to each other, are commonplace.
Trust management through reputation mechanism to facil-
itate such interactions is recognized as an important ele-
ment of ubiquitous computing. It is, however, faced by the
problems of how to stimulate reputation information shar-
ing and honest recommendation elicitation. We present in
this paper an incentive compatible reputation mechanism to
facilitate the trustworthiness evaluation in ubiquitous com-
puting environments. It is based on probability theory and
supports reputation evolution and propagation. Our reputa-
tion mechanism not only shows robustness against lies, but
also stimulates honest and active recommendations. The
latter is realized by ensuring that active and honest recom-
menders, compared to inactive or dishonest ones, can elicit
the most honest (helpful) recommendations and thus suffer
the least number of wrong trust decisions, as validated by
simulation based evaluation.

Categories and Subject Descriptors
D.2.0 [SOFTWARE ENGINEERING]: General—Pro-
tection mechanisms; C.2.4 [COMPUTER COMMUNI-
CATION NETWORKS]: Distributed Systems—Distributed
applications

General Terms
Security

Keywords
Reputation mechanism, ubiquitous computing, incentive com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PST 2006 Markham, Canada
Copyright 2006 ACM 1-59593-604-1/06/00010 ...$5.00.

patibility, mobile ad hoc networks

1. INTRODUCTION
With the advent of portable devices (e.g., smartphones)

and the advances in wireless networking technologies (e.g.,
WLAN, GPRS, UMTS), the vision of ubiquitous computing
[29] is becoming a reality. It refers to the creation of environ-
ments saturated with a spectrum of heterogeneous comput-
ing and communication capabilities, which seamlessly inte-
grate with the physical world [27]. It aims to facilitate daily
tasks and enhance user productivity through the utilization
of those capabilities in an unobtrusive fashion, such that
they completely blend in the physical environment and be-
come “invisible”.

The heterogeneous capabilities available in the ubiquitous
computing environment can be generalized as services, lead-
ing to Service oriented Computing (SoC), which is a comput-
ing paradigm that utilizes services as fundamental elements
for developing applications [23]. A device carried by a user
can be a service client, which is an entity in need of ser-
vices; or a service provider, which is an entity that offers
services. SoC fits ubiquitous computing thanks to its min-
imalist philosophy [28], i.e., an entity only needs to carry a
small amount of codes locally and discover and exploit other
services to realize its tasks. A service, a set of functionalities
provided by one entity for the use of others [22], is charac-
terized by its functional and non-functional attributes.

The networking between devices can be through network
infrastructure (e.g., a home wireless LAN), which is as-
sumed to be always accessible for nomadic mobile devices.
However, it requires deployment and maintenance and can-
not assume to be always available. Therefore, in order to
achieve “all the time everywhere” access to services in ubiq-
uitous computing environments, it necessitates a more flex-
ible alternative for networking. Mobile Ad hoc NETworks
(MANET) pose as a good choice: mobile devices dynam-
ically establish connections with others when needed [17].
The devices (nodes) are free to move around and the net-
work can be reorganized arbitrarily. In contrast with in-
frastructured networks, MANETs are deployment-free and
realize spontaneous networking of devices. Thus they sup-
port impromptu interaction between entities, which is a de-
sirable feature for ubiquitous computing [12]. Hence, with
MANETs, a user equipped with her device, even when she is
moving, can dynamically find and exploit the services avail-
able in the surrounding environments, which are not neces-
sarily pre-deployed. In summary, MANET poses as a flexible
and suitable underlying networking paradigm for ubiquitous

1

computing environments. Therefore, in this paper, entities
are assumed to be connected via ad hoc networks. The terms
of device, node and entity are used interchangeably in the
rest of this paper.

Overall, the service provision in ubiquitous computing en-
vironments has the following characteristics:

• There does not exist any party that is centralized or
pre-trusted, due to the independence of any infrastruc-
ture to allow for more flexible interactions.

• The devices exhibit great mobility. It makes nodes’
joining and leaving of a network much more frequent
than in traditional wired networks, thus increasing the
network’s openness. Subsequently, it is very likely for
an entity to encounter others, which it has no or very
little knowledge of.

• Devices can be selfish because providing services con-
sumes limited resources. Therefore, services bear prices,
which are charged by service providers on clients, in or-
der to enforce cooperation between devices. Different
services have different prices depending on factors such
as the offered QoS.

Before interacting with a service provider, a client needs
to evaluate its trustworthiness, because a dishonest service
provider can cheat (e.g., exaggerate its offered QoS) for more
revenues. Traditional security mechanisms such as authen-
tication and access control (e.g., X.509 [2]) fall short for the
above purpose because of their reliance on security infras-
tructure such as Certificate Authority. More importantly,
as it is commonplace to interact with strangers in ubiq-
uitous computing environments, even with authentication
and authorization services at disposal, authenticating an un-
known entity does not provide any access control informa-
tion. Trust and reputation, on the other hand, can provide
protection against such threats. Trust deals with the esti-
mation of a node’s future behavior. For example, a client
trusts a service provider in that the latter will actually offer
the QoS as claimed. Trust is generally difficult to estab-
lish between strangers [25], because they do not have any
previous experiences and are not subject to a network of in-
formed entities about their behaviors. Reputation, which is
“perception that a node creates through past actions about
its intentions and norms” [21], is important for fostering
trust [25], because it dissuades entities to misbehave result-
ing from no fear for future revenge. It has been proved to be
a useful model and widely deployed in various scenarios such
as electronic market places (e.g., eBay1). The reputation
assessment of a trusted node, named trustee, by a trusting
node, named trustor are dependent on [31]: (i) the trustor’s
own direct experiences with the trustee; (ii) the trustor’s
indirect experiences, i.e., recommendations (also named rat-
ings) from other entities. The entities that give recommen-
dations are called recommenders. To prevent loops, recom-
mendations are only based on recommenders’ own direct
experiences.

Given the openness of the environments, it is very likely
that before interacting with an entity, the accumulated di-
rect experiences are too few or too old to derive a trust
decision. Recommendations are thus indispensable for alle-
viating the above problem. However, recommendations can

1http://www.ebay.com

be difficult to elicit, i.e., entities are reluctant to recommend.
This is because [20]: entities may be reluctant to give pos-
itive recommendations because they lift the reputation of
the trustees, which are potential competitors; entities may
be afraid of retaliation for negative feedbacks; last but not
least, the (truthful) recommendations only benefit others.
Meanwhile, recommendations are also subject to manipula-
tion and can be false, e.g., colluders give high recommenda-
tions for each other. A false recommendation is called a lie.
Since truthful recommendations are critical for a reputation
mechanism to operate effectively [25], the two above issues
pose obstacles for designing a reputation mechanism that is
capable of recognizing the real trustworthiness of an entity.

Existing reputation mechanisms (e.g., [10, 30, 24]) do not
solve the two aforementioned problems altogether. There-
fore, we propose a distributed reputation mechanism that
motivates entities to recommend truthfully and actively. Our
mechanism empowers an entity to distinguish (1) between
trustworthy and untrustworthy service providers and (2)
between honest and dishonest recommenders. It not only
shows robustness against lies, but also stimulates active and
truthful recommendations. The latter is achieved by enforc-
ing that honest and active recommenders can benefit more
from others, while liars are identified and isolated.

In the rest of the paper, Section 2 surveys related work
on distributed reputation systems. Section 3 shows the rep-
resentation of reputation based on Beta distribution. Then
we explain how the reputation is formed based on direct and
indirect experiences (i.e., recommendations) in Section 4. It
is followed by reputation evolution in Section 5. Then we
proceed to present the propagation of reputation and the in-
centives for active and honest recommendation provision in
Section 6. In Section 7, the proposed reputation mechanism
is evaluated with respect to its different treatment for rec-
ommenders of different honesty and activeness. This paper
finishes with concluding remarks.

2. RELATED WORK
Reputation mechanism has been widely used and deployed

in online service provision (e.g., ebay), peer-to-peer systems
(e.g., [11]) and mobile ad hoc networking (e.g., [19]). During
online service provision, especially e-commerce, it is com-
monplace for parties that are unknown to each other to in-
teract [25]. This opens up an issue of lack of trust between
two parties before an interaction takes place. P2P networks
(e.g., Gnutella2) are subject to attacks from anonymous ma-
licious peers, such as virus spreading and fake file attack [11].
In mobile ad hoc networks, since nodes rely on the service
of “packet forwarding” provided by their neighbors in order
to communicate with others that are out of their communi-
cation range, reputation is necessary for evaluating a node’s
degree of being cooperative (i.e., in forwarding packets). In
the following, we survey existing reputation mechanisms, es-
pecially focusing on their handling of recommendations.

Some reputation mechanisms do not distinguish between
reputation of providing a service and providing a recommen-
dation (e.g., [11]). They assume that trust on an entity’s
capability to provide services can be transferred to its opin-
ions. For example, in [11], a peer that provides authentic
files is trusted to give honest opinions. But such assump-
tion makes the reputation system vulnerable to reputation

2http://www.gnutella.com

2

manipulation. For example, a good service provider can ex-
ploit it to demote the reputation of its competitors, as its
opinions are considered as truthful as its services. There-
fore, it is necessary to distinguish the reputation for pro-
viding services and recommendations, namely service repu-
tation (SRep) and recommendation reputation (RRep) re-
spectively. A trustor can evaluate the trustee’s overall repu-
tation (ORep) based on its SRep and others’ recommenda-
tions. The latter is taken into consideration depending on
the recommenders’ RReps.

Due to the existence of lies, recommendations need to be
carefully incorporated towards the trust decision of whether
to interact with a service provider. In another word, a repu-
tation mechanism needs to be able to identify lies such that
it is robust against them. Yu and Singh [31] present a repu-
tation model that aims to detect lies in multiple agent sys-
tems. Recommendations are compared against the new di-
rect experience to evaluate the recommenders’ RReps, which
determine the credibility of their recommendations. Only
recommendations from helpful nodes (i.e., with high RReps)
are accepted and weighed corresponding to their RReps.
Similar approach is also taken in [8]. Although they are
capable of identifying lies, there is no penalty for either liars
or free-riders, which can always benefit from the recommen-
dations of others.

In [30], all recommendations are aggregated to derive the
public opinion. Each individual recommendation is then
compared against the public opinion; too much deviation
leads the recommendation to be considered false and thus
excluded. The public opinion is then recalculated and com-
pared against each remaining recommendation until no more
recommendation is filtered out. This kind of approaches to
identify lies are endogenous since the truthfulness of recom-
mendations is judged depending on the recommendations
themselves. In contrast, exogenous approaches use external
factors, such as RRep, for doing so. The implicit assump-
tion underlying endogenous approaches is that the majority
of recommendations are honest such that they dominate the
lies. Therefore, a recommendation that deviates from the
majority is considered a lie. This assumption is not solid
in open environments where recommendations can be very
few in number, most of which can be untruthful. A variant
of endogenous approach is used in [24], where each entity
records all the ratings and subsequent interaction experi-
ences. Assume node a receives a recommendation from rec-
ommender r, a first picks out all the entities whom r has
recommended with a similar value (e.g., within the range
[a..b]). The accumulated experiences with those entities are
calculated and compared against the rating range to obtain
r ’s RRep. Their approach is exogenous, because it is the ac-
cumulated direct experiences that are used to determine the
trustworthiness of a recommendation. Meanwhile, it is also
endogenous because such comparison is done only within
the range of recommendation values that are considered rel-
evant.

Jurca and Faltings [10] propose an incentive-compatible
reputation mechanism to deal with inactivity and lies. A
client buys a recommendation about a service provider from
a special broker named R-nodes. After interacting with the
provider, the client can sell its feedback to the same R-node,
but gets paid only if its report coincides with the next client’s
report about the same service provider. One issue is that if
the recommendation from an R-node is negative such that

a client decides to avoid the service provider, the client will
not have any feedback to sell. Or in the existence of op-
portunistic service providers that, for example, behave and
misbehave alternatively, an honest feedback does not ensure
payback. This opens up the possibility of an honest entity to
have negative revenue and thus is unable to buy any recom-
mendation. Besides, the effectiveness of their work depends
largely on the integrity of R-nodes, which is assumed to be
trusted a priori.

In summary, although current reputation mechanisms are
capable of identifying lies, they lack measures to enforce vol-
untary and honest recommending. Therefore, they are not
incentive compatible, i.e., there does not exist any incentive
for entities to actively provide honest recommendations. As
there is no deterrent for liars, lies can be rampant and honest
recommendations can become difficult to acquire due to lack
of motivation. Therefore, a distributed reputation mecha-
nism for ubiquitous computing environments not only needs
to be robust against lies, but also needs to enforce both
active and honest recommendation. In the following, we
present such a reputation mechanism, starting with reputa-
tion representation.

3. REPUTATION REPRESENTATION
Since reputation essentially aggregates past experiences

and dynamically evolves, it bears great similarity with Bayesian
analysis, which is a statistical procedure that estimates pa-
rameters of an underlying distribution based on observa-
tions. An extensively used distribution in Bayesian analysis
is Beta distribution.

3.1 Beta Distribution
According to the probability theory, the posterior proba-

bility for binary events can be estimated by beta distribu-
tion. For example, given a process with two possible out-
comes (T , ¬T), let r, s be the observed number of T and ¬T
respectively, the Probability Density Function (PDF) of the
probability p of having the outcome T for the next time can
be given by beta distribution (with α = r+1 and β = s+1):

f(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1,

where 0 ≤ p ≤ 1, α, β ≥ 0

B(α, β) =

Z 1

0

tα−1(1− t)β−1dt

where α and β are two parameters used to index the con-
tinuous family of Beta distribution and B(α, β) is the beta
function. f(p|α, β) represents a probability distribution of p
in terms of integrals. Formally, the probability of p falling

into [a, b] is
R b

a
f(p|α, β)dp. The prior distribution (the ini-

tial state) is f(p|1, 1), leading to uniform distribution (Fig-
ure 1). It reflects the fact that without any knowledge, the
probability of having T for the next time can be any value
between 0 and 1 with equal possibility. New observations
are used to update the PDF of p. For example, having ob-
served 8 times T and 2 times ¬T , the PDF can be expressed
as f(p|9, 3), as plotted in Figure 1.

The expected (mean) value of the beta distribution f(p|α, β)
assumes a simple form:

E(p) =
α

α + β

3

It gives the mean value of p, based on (α+β−2) observations
accumulated so far. For example, in Figure 1, the expected
values of both f(p|9, 3) and f(p|21, 7) equal to 0.75. It can
be interpreted as that the probability of observing outcome
T in the future is uncertain, but the expected value is 0.75.
In addition, f(p|21, 7) has more confidence saying so (i.e.,
f(0.75|21, 7) > f(0.75|9, 3)), thanks to more accumulated
observations.

f(p)

p0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

f(p|9,3)

f(p|21,7)

f(p|1,1)

Figure 1: Beta Distribution values

3.2 Beta Reputation
As reputation is essentially an a posteriori estimation

based on historic experiences (either direct or indirect), beta
distribution has been recognized as a useful model to model
reputation [21, 9, 3]. Therefore, we represent reputation
based on beta distribution (abbreviated as beta reputation).
A reputation value assumes a tuple of (α, β) (α, β ≥ 1),
with α and β representing positive and negative experiences
respectively.

As beta distribution only considers binary events, it is not
enough to describe the experience of service consumption,
which can fall into the range between being completely satis-
factory and completely unsatisfactory. Therefore, an experi-
ence is evaluated with Quality of Experience (QoE), saying,
between 0 (completely unsatisfactory) and 1 (completely
satisfactory). This experience is split into two parts: QoE
contributing to the positive experience and (1−QoE) to the
negative experience. Therefore, beta reputation f(p|α, β)
gives the PDF of the probability of having a complete satis-
factory experience, i.e., the expected QoE.

Thanks to sound statistical properties of beta distribu-
tion, beta reputation has the following advantages:

1. It is easy to assess the trustworthiness of an entity with
reputation of (α, β), i.e., by calculating α

α+β
.

2. It is easy to evaluate how many experiences (i.e., α +
β−2) have contributed to the current reputation. The
larger this value is, the more probably the reputation
assumes the expected value. Only newcomers’ reputa-
tion is based on 0 experience.

3. It facilitates the combination of experiences from mul-
tiple sources, including the trustor itself and differ-
ent recommenders. This is because the add operation
of beta reputation is straightforward: f(p|α1, β1) +
f(p|α2, β2) = f(p|α1 + α2, β1 + β2).

4. It reflects the nature of reputation, which is the aggre-
gation of observations. An entity dynamically adjusts
the reputation with more experiences being accumu-
lated, which is similar to deriving posterior distribu-
tion after observations are made.

5. It captures the uncertainty of reputation. Beta distri-
bution only gives the PDF of the probability of having
an outcome, which matches the fact that reputation
can only give probabilistic estimation of an entity’s
future behavior.

Alternatively, reputation can be also represented with a
single value from discrete (e.g., [1]) or continuous value space
(e.g., [18]). Compared to beta reputation, single-value based
reputation representation does not reflect the amount of ex-
periences that contribute to the reputation. In addition,
with single value based reputation, ignorance, which refers
to the reputation without any knowledge, generally bears
the value of 0. It can not be distinguished from the 0 rep-
utation values that result from a mixture of positive and
negative experiences (e.g, [18, 21]). While with beta repu-
tation, only newcomers have a reputation of (1, 1).

Beta distribution’s feature of easy experience aggregation
facilitates the derivation of an entity’s reputation, which is
formed based on the trustor’s direct experiences and others’
recommendations, as explained as follows.

4. REPUTATION FORMATION
Before we proceed to show how reputation is formed, we

first explain the notations to be used in the reputation mech-
anism. As reputation is always about an entity o (i.e.,
trustee) held by some entity a (i.e., trustor), we denote o’s
reputation from the point of view of a as Repa(o). Ta-
ble 1 lists the notations we use, including service reputa-
tion (SRep), recommendation (Rec), recommendation rep-
utation (RRep) and overall reputation (ORep). They are
expressed using beta reputation, with two parameters rep-
resenting positive and negative experiences respectively.

Table 1: Notations in the reputation mechanism
Label Value Range Meaning

SRepa(o) (sp, sn) a’s direct experiences with
o

Reca(o) (cp, cn) Recommendation made
by node a regarding node
o. Helpful recommenders
give recommendations
based on their own di-
rect experiences, i.e.,
Reca(o) = SRepa(o)

RRepa(o) (rp, rn) Recommendation reputa-
tion of node o held by
node a

ORepa(o) (op, on) Overall reputation of node
o held by node a

Each node keeps both SRep and RRep of its acquain-
tances, the entities with which it has interacted before (ei-
ther as a service client or a recommendation requester),
as shown in Table 2. This table of acquaintance records
is named acquaintance table. In the table, aID denotes

4

Table 2: An entry of the acquaintance table

aID
SRep RRep

sp sn ts rp rn tr

acquaintance ID and ts and tr represent respectively the
timestamps when the SRep(sp, sn) and RRep(rp, rn) were
updated last time.

ORep can rely solely on the trustor’s direct experiences
(i.e., SRep) if they are significant enough to derive a trust
decision. This can be judged by checking whether the to-
tal accumulated (sp + sn − 2) experiences reach a certain
threshold. Otherwise, it asks for recommendations from
others. The recommendations and the node’s own direct
experiences are then combined to evaluate the overall rep-
utation (ORep) of the trustee. Assuming a recommender r
gives a recommendation regarding o (i.e., Recr(o)) to client
c and RRepr(c) = (rp, rn), the recommendation is consid-
ered trustworthy and accepted if (1) r is honest enough, by
checking whether

rp

rp+rn
is high enough and (2) the RRep is

evaluated based on enough evidences by checking whether
(rp +rn−2) is large enough. If the recommendation is taken
into account, it is given a weight wr = E(Beta(rp, rn)) =

rp

rp+rn
.

The weights of different recommendations are further nor-
malized by dividing with the sum of all weights. Therefore,
ORep can be evaluated using SRep and the recommenda-
tions from helpful recommenders:

ORep = δ × SRep + (1− δ)×
P

r∈R(Recr(o)× wr)P
r∈R(wr)

(1)

where δ is the weight given to its direct experience (SRep)
and is generally greater than 0.5. The favor of direct experi-
ences over recommendations is due to the fact that entities
tend to rely on their own experiences more than on oth-
ers’ recommendations [13]. Therefore, an entity can make
a trust decision based on the overall reputation (ORep) of
the trustee. ORep is not kept as a field of the acquaintance
record, instead it is dynamically evaluated when needed,
since it evolves with time and new experiences.

5. REPUTATION EVOLUTION
An entity can change its behavior over time, making old

experiences become irrelevant for the actual reputation eval-
uation [9, 15]. This calls for discount of past, which gives
more weight to recent experiences than old ones. Such dis-
counting also prevents an entity from capitalizing on its pre-
vious good behavior forever. Hence, reputation fades with
time, as shown as follows.

5.1 Time Fading
Since both recent behaviors and past histories contribute

to the reputation, their assigned weights decide how fast
the reputation builds up. For example, if recent behavior is
assigned a very high weight, a node’s reputation tears down
very fast after a few misbehaviors. We assign more weight
to recent behavior, as suggested by the studies in [5].

Given the time interval of ∆t, the reputation (α, β) evolves
after every ∆t:

α′ = 1 + (α− 1)× ρ∆T

β′ = 1 + (β − 1)× ρ∆T

where ρ is time fading factor, whose value falls into the range
of [0..1]. The lower value ρ has, the more quickly histories
are forgotten. When ρ equals 0, histories are immediately
forgotten; while when ρ equals 1, the history is forever kept
and considered equivalent regardless of age.

As shown in the above equations, when ∆T → +∞,
ρ∆T → 0. It expresses the fact that inactivity between
two parties for a long time leads to complete discount of
experience, making its reputation the same as that of new-
comer. This is because the experiences can be too old to be
indicative of the trustee’s trustworthiness. Both SRep and
RRep fade according to the above equations. For simplicity,
the reputation value in the rest of this paper does not bear
a timestamp and it always refers to the current reputation
unless indicated otherwise.

Reputation also evolves with new experiences, as reputa-
tion aggregates the overall experiences with an entity. This
is reflected in both SRep and RRep, which aggregate the
experiences of consuming services and utilizing recommen-
dations respectively.

5.2 Evolution of Service Reputation (SRep)
Since SRep(sp, sn) combines all direct experiences, it is

updated whenever a new experience occurs. An experience
is described with the metric of Quality of Experience (QoE).
As the goal of the reputation mechanism is to identify dis-
honest service providers that do not comply with their ad-
vertised QoS, QoE is accordingly measured based on the
QoS conformance of the service provider. More specifically,
given n QoS dimensions of di (i = 1..n) (e.g., availability, la-
tency) which client a cares about, service provider o states
in its service advertisement (p1, p2, .., pn) in which pi is
the promised value for dimension di. After the service com-
pletes, the QoS that a receives is represented by (a1, a2, ..,
an), in which ai is the actual value for dimension di. The
QoEa(o) can be assessed by:

QoE =
X

1≤i≤n

comp(ai, pi)/n (2)

where comp(ai, pi) is a function to calculate one-dimension
degree of conformance between the actual and promised
QoS. Depending on the QoS dimension, it assumes the fol-
lowing forms:

1. comp(ai, pi) = MIN(1, ai/pi) when dimension i is
quantitative and stronger with larger values, for ex-
ample, availability.

2. comp(ai, pi) = MIN(1, pi/ai), when dimension i is
quantitative and stronger with smaller values, for ex-
ample, latency.

3. comp(ai, pi) = 1− (ai ⊗ pi) when dimension i is qual-
itative and bears Boolean values, for example, confi-
dentiality. ⊗ represents XOR function, i.e., x⊗ y = 0
if x equals y, and 1 otherwise.

4. For dimensions whose value space is literals (e.g., ser-
vice adaptation policy), comp(ai, pi) equals 1 when the
required policy is satisfied, 0 otherwise.

5

For example, given a service provider’s advertisement of
(latency = 0.8 ms, availability = 99%), a service client’s
actual experienced QoS is (latency = 1.0 ms, availability =
100%), then QoE = (MIN(1, 0.8/1.0)+MIN(1, 100%/99%))/2 =
0.9.

With a new QoE, the SRep(sp, sn) is updated as described
in Section 3.2: (i) s′p = sp + QoE; (ii) s′n = sn + (1−QoE).

5.3 Evolution of Recommendation Reputation
(RRep)

Similarly, RRep dynamically evolves with recommenda-
tions being elicited and services being consumed. A recom-
mendation bears the form of (cp, cn), which is equal to SRep
for an honest recommender. Given a new QoE of e ∈ [0..1],
the honesty of a recommender is adjusted according to the
helpfulness of its recommendation.

∆e =

Z MIN(e+0.4,1)

MAX(0,e−0.4)

f(p|cp, cn)dp

At first, ∆e evaluates the probability of having a QoE in
the range of [MAX(0, e− 0.4), MIN(e + 0.4, 1)], according
to the recommendation of (cp, cn). For example, in Figure
2, if a new experience e equals 0.8 and the recommendation
is (4, 2), ∆e is equal to the size of the shaded area. It is com-
pared against the probability if the trustor has no knowledge
about the trustee, i.e.,

Figure 2: Calculation of ∆e

∆min =

Z MIN(e+0.4,1)

MAX(0,e−0.4)

f(p|1, 1)dp (3)

Therefore, a recommendation with ∆e larger than ∆min is
considered helpful, and unhelpful otherwise. The helpfulness
of the recommendation can be evaluated with

e′ = MAX(MIN(∆e−∆min + 0.5, 1.0), 0.0)

where the MAX and MIN operators are used to ensure that
e’ falls into [0..1]. The RRep(rp, rn) is then updated accord-
ingly: (i) r′p = rp + e′; (ii) r′n = rn + (1− e′).

Assume that before a client c has a new experience (e) of
0.8 with service provider o, it has received recommendations
of (2, 4) and (4, 2) from two recommenders a and b respec-
tively. As ∆min = 0.6 (using Equation 3), the helpfulness
of a’s recommendation is e′ = 0.24 and b’s recommendation
leads to e′ = 0.81. It thus enables distinguishing between
honest and dishonest recommenders, as well as different de-
gree of honesty/dishonesty.

Based on the features of beta reputation, the value of
(rp + rn − 2) is high if an entity is active in providing rec-
ommendations; the expected value of f(p|rp, rn) is high if
an entity is honest in doing so. With two values δh and δa

defined as threshold trustworthiness and activeness in pro-
viding recommendations, a recommender with RRep(rp, rn)
is considered active if rp + rn − 2 ≥ δa, and inactive oth-
erwise; it is considered honest if

rp

rp+rn
≥ δh, and dishonest

otherwise. It leads to 5 possible states of a recommender:
active truth-teller (AT), inactive truth-teller (IT), active liar
(AL), inactive liar (IL) and newcomer (Figure 3).

Active TruthTeller

In
ac

tiv
iti

tyLying
Truth−telling

Inactive Liar

Truth−telling

Lying

Ly
in

g

Active Liar

Truth−telling

Inactivitity

Inactivity Inactivity

Lying
Truth−telling Truth−telling

Lying

Inactive Truthteller

Newcomer

Truth−telling Lying

InactivityInactivity

Figure 3: The states of a recommender

A recommender can convert from one state to another,
depending on its behavior. An active truth-teller enforces
its state by continuing recommending honestly and weakens
its state by lying. If it continues lying, with the fading of
previous good behavior, the accumulated experiences will
eventually work against it and degrade it to an active liar.
If a recommender has not provided any recommendation for
so long a time that its RRep decays, it is considered as an
inactive recommender and even a newcomer.

Note that an active and honest recommender can be con-
sidered inactive due to the fact that it does not have any
direct experience with the trustee being evaluated by the
recommendation requester. Therefore, although inactivity
can result from an entity’s withholding recommendations
on purpose, it does not necessarily infer free riding. But in
order to motivate a node to become an active truth-teller,
active and honest recommenders should be able to have bet-
ter success in identifying dishonest entities using the repu-
tation mechanism. This is realized during reputation propa-
gation, where different recommenders are treated differently
in terms of their accessibility to helpful recommendations.

6. REPUTATION PROPAGATION
Lack of enough direct experiences triggers a trustor’s elic-

itation of recommendations (e.g., by broadcasting the re-
quest) from nearby entities. Of all the collected recommen-
dations, only those from truth-tellers (i.e., honest recom-
menders) are taken into account. If there is no recommen-
dation from any truth-teller, the trustor takes into consid-
eration those from inactive and first-time encountered rec-
ommenders by calculating their average. With the recom-
mendations from others, the trustor evaluates the trustee’s
ORep using Equation 1. Otherwise, the trustor has to rely
on its direct experiences which are too few to make a sound
decision. The trust decision will then have to be made de-
pending on other factors, e.g., the trustor’s attitude towards
strangers. If the trust decision leads to a service consump-

6

tion and thus a new QoE, the latter is compared against all
recommendations to update the recommenders’ RReps.

A trustor elicits recommendations indiscriminately but
accepts only those from honest recommenders. This is for
the purpose of ensuring robustness against lies, while em-
powering the trustor with the capability of recognizing new
recommenders and continuously updating a dishonest rec-
ommender’s RRep. More specifically, even though the rec-
ommendations from liars are not taken into account, they
are used to update the RReps of the recommenders, which
can be improving if they become honest or deteriorating if
they continue lying.

Whenever an honest recommender a receives a request
for recommendation regarding an entity o, it first checks
whether its direct experiences with o are significant enough
for recommending. If that is not the case, a does nothing
as it cannot be of any help. Otherwise, i.e., a has enough
direct experiences for recommending, it handles the request
depending on the state of the recommendation requester:

• If the requester is considered as an active truth-teller,
a sends back its SRepo(a) immediately.

• If the requester is considered as an active liar, a simply
ignores the request.

• If the requester is considered inactive, a gives back
its recommendation with a probability depending on
diff = δa − (rp + rn − 2). Inactive recommenders are
better treated than liars due to the fact that inactive
recommenders do not necessarily withhold their rec-
ommendations. To distinguish inactive truth-tellers
(IT), newcomers and inactive liars (IL), the IT and
IL’s probabilities are increased and decreased with an
small value of ε respectively. Therefore, the less active
an entity is, the less possible that it receives helpful
recommendations from others. Note that newcomers
also suffer from low probability of eliciting honest rec-
ommendations.

The reason of honest recommenders’ going through the
above process of treating different type of recommendation
requesters differently is that if honest recommenders are
over-generous by treating everybody alike, other entities are
not motivated to return the favor because doing that does
not give them any advantage. Eventually, rational entities
choose to withhold their recommendations while liars remain
unpunished. Honest recommenders will suffer by having less
and less useful recommendations from others and will even-
tually draw no favor back. Therefore, honest recommenders
have to assume the defensive strategy of holding ‘grudges’
against liars by keeping others’ RRep in order to guard
their own interests. In contrast, dishonest recommenders,
i.e., liars, treat all types of recommendation requesters alike
since their utmost goal is to spread lies as widely as pos-
sible to take advantages such as promoting their colluders’
reputation.

The deterrent for nodes to lie thus lies in the consequence
of lacking helpful recommendations from honest recommenders,
who hold grudges. At the same time, refusing to provide
recommendations leads to less accessibility to helpful rec-
ommendations. Lack of recommendations forces a trustor’s
trust decision to be solely dependent on its direct experi-
ences, which often can be too few or old to be helpful in

open environments. This causes wrong trust decisions, mak-
ing the client either interact with dishonest service providers
or avoid honest ones. It is more clearly demonstrated in the
next section, which evaluates the performance of our repu-
tation mechanism.

7. REPUTATION MECHANISM EVALUA-
TION

In this section, we evaluate the performance of our rep-
utation mechanism in helping nodes distinguish honest and
dishonest service providers, and to identify honest and ac-
tive recommenders, based on simulations.

7.1 Experiment Setting
The simulation is carried out with Network Simulator (ns-

2) with CMU wireless extensions [14]. Our simulated net-
work consists of 40 mobile nodes in an area of 400m × 400m,
with each node having a transmission range of 100m. We use
the Random Waypoint mobility model with each node mov-
ing at walking speed, i.e., between 0.5 m/s and 1.5 m/s, with
pause time of 0, i.e., nodes are always in motion. The Dis-
tributed Coordination Function (DCF) of the IEEE 802.11
protocol is used as the MAC layer protocol. The underlying
routing protocol is Optimized Link State Routing Protocol
(OLSR) [4]. The simulation parameters are summarized in
Table 3.

Table 3: NS-2 simulation parameters
Parameter Value

Mobility Model Random Way Point
Moving Speed 0.5 - 1.5 m/s
Pause Time 0

Transmission Range 100 m
Area 400m x 400m

Number of Nodes 40
Routing Protocol OLSR

The population of 40 nodes includes 8 types of entities
with different behavior in service providing (honest or not),
recommendation providing (honesty and activeness), as shown
in Table 4. Each type of entity has the same population, i.e.,
5 each (different settings with different population sizes will
also be studied later).

Table 4: The types of nodes with different behavior

Type Service Providing Honesty
Recommendation
Honest Active

1 + + +
2 + + −
3 + − +
4 + − −
5 − + +
6 − + −
7 − − +
8 − − −

For simplicity without losing generality, we assume that
every node can be the service provider for the other. Start-

7

ing from time 503, for every 1 second, a node makes a trust
decision whether to interact with a random node in its rout-
ing table, in a round robin way. A trust decision is made
as follows: (1) the service client first checks whether the
SRep of the service provider is based on enough experiences
(threshold δa = 1.0); (2) if yes, it calculates whether the ex-
pected value of SRep reaches a threshold value (δh = 0.6);
(3) if not, it elicits recommendations from its neighbors
(we set the request broadcast range to 2 hops). If the ag-
gregation of SRep and others’ recommendations are still
not enough for making a trust decision, the node decides
whether to interact with a service provider with a certain
probability. In our experiments, the probability is set to
1.0, assuming an optimistic attitude facing uncertainty.

A total of 60 rounds have been executed. An honest ser-
vice provider offers a QoE of 0.9, while a dishonest one of-
fers a QoE of 0.1. Honest recommenders recommend with
their SRep(sp, sn) regarding the trustee, while dishonest
recommenders send back lies which are complementary to
their SReps, i.e., a recommendation assumes the value of
(rp = sn, rn = sp). Active recommenders offer recommen-
dations with 90% probability, while inactive ones offer with
10% probability.

We investigate and compare the performance of the 4 dif-
ferent types of recommenders: active truth-teller (type 1 +
type 5 in Table 4), inactive truth-teller (type 2 + type 6),
active liar (type 4 + type 8) and inactive liar (type 3 + type
7). The advantage of being an active truth-teller is reflected
in the fact that they can elicit more honest recommenda-
tions, which help them make right trust decisions regarding
whether to interact with an entity or not. Therefore, we
show (1) the number of honest recommendations obtained
by the four types of recommenders respectively. When a
client fails to acquire any helpful recommendation, it has to
base its trust decision solely on its direct experiences, which
are not significant enough for a sound decision. Namely,
the client is subject to mistakes, i.e., wrong trust decisions,
which refer to either false positives (when an honest ser-
vice provider is identified as an untrustworthy one) or false
negatives (when a dishonest service provider is not identi-
fied as being so). Thus, (2) the number of mistakes made
by different recommenders are also displayed. These met-
rics are recorded every 200 seconds to show the evolution of
reputation. They are detailed below.

7.2 Evaluation Results

7.2.1 Elicited Honest Recommendations
Figure 4 shows the number of elicited honest recommen-

dations for different type of recommenders. It can be ob-
served that at the beginning (before time 500s), very few
recommendations are propagated and the four types of rec-
ommenders do not have much difference in the number of
obtained honest recommendations. With the accumulation
of experiences, the honest entities have enough experiences
to recommend. Recommendation reputation is gradually
recognized and the order of benefit (AT > IT > IL > AL)
starts to be established, from time 1500s in Figure 4.

7.2.2 Mistakes

3This aims to give OLSR enough time to build routing table,
as OLSR is a proactive protocol.

 0

 50

 100

 150

 200

 500 1000 1500 2000 2500

Nu
m

be
r

Transaction Time

Elicited number of recommendations for different type of recommenders

AT recommendations
IT recommendations

AL recommendations
IL recommendations

Figure 4: Number of elicited honest recommenda-
tions

 0

 5

 10

 15

 20

 25

 500 1000 1500 2000 2500

Nu
m

be
r

Time

Number of mistakes made by different type of recommenders

AT mistakess
IT mistakes

AL mistakes
IL mistakes

Figure 5: Number of made mistakes

Lack of honest recommendations can lead to mistakes.
Figure 5 presents the number of mistakes made by the four
types of recommenders. It can be seen that, at the begin-
ning, every type of nodes make mistakes as many as half of
the total transaction number. It is because most decisions
are blind and honest service providers occupy half of the
population.

With more accumulated experiences, every type of recom-
menders make less and less mistakes. Especially, with the
help of honest recommendations, AT nodes make the least
number of mistakes and AL nodes make the most (the order
of AT > IT > IL > AL is enforced). Note that dishonest or
inactive recommenders can also tell the honesty and active-
ness of a recommender using reputation system. However,
they have access to less number of truthful recommendations
for making the right trust decision.

In order to demonstrate more clearly the advantages brought
by useful recommendation, the percentages of mistakes out
of all transactions for different recommenders are shown in
Figure 6. It can be seen that, starting from time 1500s, ATs
make less than 5% of mistakes while ALs suffer more than
20% of mistakes.

7.2.3 Other Results
In the above simulations, we have set the population size

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 500 1000 1500 2000 2500

Pe
rc

en
ta

ge

Time

Percentage of mistaken decision for different type of recommenders

Percentage of wrong decisions for AT
Percentage of wrong decision for IT

Percentage of wrong decision for AL
Percentage of wrong decision for IL

Figure 6: Percentage of wrong trust decisions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Pe
rc

en
ta

ge

Time

Percentage of mistaken decision for different recommenders (population = 80)

Percentage of wrong decisions for AT
Percentage of wrong decision for IT

Percentage of wrong decision for AL
Percentage of wrong decision for IL

Figure 7: Percentage of wrong trust decisions with
larger population

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 500 1000 1500 2000 2500

Pe
rc

en
ta

ge

Time

Percentage of mistaken decision for different type of recommenders

Percentage of wrong decisions for AT
Percentage of wrong decision for IT

Percentage of wrong decision for AL
Percentage of wrong decision for IL

Figure 8: Percentage of wrong trust decisions with
different population composition

to be relatively small (40) to lessen the time for bootstrap-
ping (about 1500 seconds for 40 nodes), because nodes need
to acquire experiences to be able to give useful recommen-
dations. Basically, a larger population takes longer time to
bootstrap, but the reputation mechanism shows similar ef-

fects. We did similar simulations with larger population (80)
and the percentage of mistakes is shown in Figure 7. It can
be observed that the order of benefit is established eventu-
ally, although it takes more time than in a community of 40
nodes (about 3500 seconds into simulation).

The reputation mechanism also exhibits similar perfor-
mance with different population percentage of different rec-
ommenders. We have carried out the simulations by de-
creasing the population of active truth-teller (AT) to 10%
and increasing active liar (AL) to 40%. The percentages of
mistakes for different recommenders are presented in Figure
8. It shows that the order of the treatment (i.e., AT > IT
> IL > AL) is also established.

8. CONCLUDING REMARKS
In this paper, we have presented a distributed reputation

mechanism for recognizing the trustworthiness of a service
provider in ubiquitous computing environments, including
reputation representation, formation, evolution and propa-
gation. Our contribution includes: (1) proposing a simple
yet effective reputation mechanism that not only is lie-proof,
but also motivates active and truthful recommendation shar-
ing; (2) modeling a reputation that continuous evolves, with
time and with new experiences; (3) evaluating the effective-
ness and performance of the proposed reputation mechanism
via simulation tests.

As an entity has to handle the reputation independently
and autonomously, in our reputation mechanism, it stores
the reputation values of all of its acquaintances. This might
raise an issue if the population of the acquaintances is so
large such that it brings considerable overhead for reputa-
tion storage and manipulation. A possible solution is to
manage nodes by groups, each of which share a group rep-
utation [26, 21]. The reputation of an entity depends on
the group it belongs to; the behavior of a member affects
the reputation of its group. This requires strong group sup-
port [16], as the group members need to trust each other
and have common interests such that they are motivated to
protect the group’s reputation.

An important issue in reputation mechanism is identity
changing. Most online reputation systems protect privacy
and each agent’s identity is normally a pseudonym. It causes
problems because pseudonym can be changed easily [21].
When a user ends up having a reputation lower than that of
a new comer, she can discard her initial identity and start
from the beginning. This calls for the necessity of special
treatments of newcomers. We partly address this issue by
putting newcomers in a unfavorable position, such that they
have difficulties obtaining helpful recommendations, until
they accumulate enough good behavior. But to completely
solve this issue, it would have to rely on other mechanisms,
such as introducing an “entry fee” for each pseudonym or use
of once in a lifetime pseudonym that is bound to a real-world
entity [7]. A very related issue is called Sybil attack [6]: if
there is no control over creation of new entities, a real-world
entity can create as many identities as it wishes to challenge
the use of majority in reputation systems. The only chal-
lenge this attack can bring to our reputation system is when
there is no recommendation from an active truth-teller, the
trustor relies on the average of all recommendations from
unknown (or barely known) recommenders. The addressing
of these challenges will be part of future work.

9

9. ACKNOWLEDGEMENTS
This research is partially supported by the European IST

PLASTIC project4 (EU-IST-026955).

10. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. In Proc. Hawaii Int’l Conf.
System Science HICSS-33, 2000.

[2] C. Adams and S. Farrell. RFC2510 - Internet X.509
Public Key Infrastructure Certificate Management
Protocols, 1999.

[3] S. Buchegger and J.-Y. L. Boudec. A robust
reputation system for P2P and mobile ad-hoc
networks. In Proceedings of the Second Workshop on
the Economics of Peer-to-Peer Systems, 2004.

[4] T. Clausen and P. Jacquet. Optimized link state
routing protocol. IETF RFC 3626, 2003.

[5] C. Dellarocas. The digitization of word-of-mouth:
promise and challenges of online feedback
mechanisms. MIT Working Paper, March 2003.

[6] J. Douceur. The sybil attack. In Proc. of the IPTPS02
Workshop, 2002.

[7] E. Friendman and P. Resnick. The social cost of cheap
pseudonyms. Journal of Economics and Management
Strategy, 10(2), 2001.

[8] T. D. Huynh, N. R. Jennings, and N. Shadbolt. On
handling inaccurate witness reports. In Proc. 8th
International Workshop on Trust in Agent Societies,
pages 63–77, Utrecht, The Netherlands, 2005.

[9] A. Josang and R. Ismail. The beta reputation system.
In Proc. of 15th Bled Conf. on Electronic Commerce,
2002.

[10] R. Jurca and B. Faltings. An incentive compatible
reputation mechanism. In Proc. of IEEE International
Conference on E-Commerce, 2003.

[11] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The EigenTrust algorithm for reputation management
in P2P networks. In Proceedings of the 12th
International World Wide Web Conference, 2003.

[12] T. Kindberg and A. Fox. System software for
ubiquitous computing. IEEE Pervasive Computing,
1(1):70–81, 2002.

[13] P. Kollock. The emergence of exchange structures: an
experimented study of uncertainty, commitment, and
trust. American Journal of sociology, 100(2), 1994.

[14] LBNL. Network simulator ns-2.
http://www.isi.edu/nsnam/ns, 2001.

[15] J. Liu and V. Issarny. Enhanced reputation
mechanism for mobile ad hoc networks. In Proc. of
Int’l Conf. on Trust Management (iTrust), 2004.

4http://www.ist-plastic.org

[16] J. Liu, F. Sailhan, D. Sacchetti, and V. Issarny. Group
management for mobile ad hoc networks: Design,
implementation and experiment. In Proc. of the 6th
Int’l Conf. on Mobile Data Management, 2005.

[17] IETF working group: Mobile ad hoc networks
(manet). http://www.ietf.org/html.charters/
manet-charter.html, 2005.

[18] S. P. Marsh. Formalising Trust as a Computational
Concept. PhD thesis, University of Stirling, 1994.

[19] P. Michiardi and R. Molva. CORE: a collaborative
reputation mechanism to enforce node cooperation in
mobile ad hoc networks. In CMS’2002, 2002.

[20] N. Miller, P. Resnick, and R. Zeckhauser. Eliciting
honest feedback in electronic markets. Working Paper,
August 2002.

[21] L. Mui, M. Mohtashemi, and A. Halberstadt. A
computational model of trust and reputation. In
Proceedings of the 35th HICSS, 2002.

[22] OASIS. Service oriented architecture reference model.
Working Draft,
http://xml.coverpages.org/SOA-RM-WD05.pdf,
2005.

[23] M. P. Papazoglou and D. Georgakopoulos.
Service-oriented computing. Communications of the
ACM, 46(10), 2003.

[24] J. Patel, W. L. Teacy, N. R. Jennings, and M. Luck. A
probabilistic trust model for handling inaccurate
reputation sources. In Proc. of 3rd Int’l Conf. on
Trust Management (iTrust 2005), 2005.

[25] P. Resnick, R. Zeckhauser, E. Friedman, and
K. Kuwabara. Reputation systems. Communications
of the ACM, 43(12):45–48, 2000.

[26] J. Sabater and C. Sierra. Regret: A reputation model
for gregarious societies. In Proc. 4th Workshop
Deception, Fraud, and Trust in Agent Societies, 2001.

[27] M. Satyanarayanan. Pervasive computing: vision and
challenges. IEEE Personal Communications, 2001.

[28] R. Sen, R. Handorean, G.-C. Roman, and C. Gill.
Service-Oriented Software System Engineering:
Challenges and Practices, chapter Service Oriented
Computing Imperatives in Ad Hoc Wireless Settings,
pages 247 – 269. Idea Group, 2005.

[29] M. Weiser. The computer for the 21st century.
Scientific American, September 1991.

[30] A. Whitby, A. Josang, and J. Indulska. Filtering out
unfair ratings in bayesian reputation systems. In
Proceedings of the 7th Int’l Workshop on Trust in
Agent Societies, 2004.

[31] B. Yu and M. P. Singh. Detecting deception in
reputation management. In Proceedings of the Second
International Joint Conference on Autonomous Agents
& Multiagent Systems (AAMAS), pages 73–80, 2003.

10

