
HAL Id: inria-00415927
https://hal.inria.fr/inria-00415927

Submitted on 16 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COCOA: COnversation-based service COmposition in
pervAsive computing environments with QoS support

Sonia Ben Mokhtar, Nikolaos Georgantas, Valérie Issarny

To cite this version:
Sonia Ben Mokhtar, Nikolaos Georgantas, Valérie Issarny. COCOA: COnversation-based service
COmposition in pervAsive computing environments with QoS support. Journal of Systems and Soft-
ware, Elsevier, 2007, 80 (12), pp.1941-1955. �inria-00415927�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50145578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00415927
https://hal.archives-ouvertes.fr

COCOA: COnversation-based Service COmposition
in PervAsive Computing Environments with QoS

Support

Sonia Ben Mokhtar, Nikolaos Georgantas and Valérie Issarny

INRIA Rocquencourt,
Domaine de Voluceau,

BP 105, 78153 Le Chesnay Cedex, France
{Sonia.BenMokhtar,Nikolaos.Georgantas,Valerie.Issarny}@inria.fr

Abstract

Pervasive computing environments are populated with networked services, i.e., autonomous
software entities, providing a number of functionalities. One of the most challenging ob-
jectives to be achieved within these environments is to assist users in realizingtasks that
integrate on the fly functionalities of the networked services opportunely according to the
current pervasive environment. Towards this purpose, we presentCOCOA, a solution for
COnversation-based service COmposition in pervAsive computing environments with QoS
support. COCOA provides COCOA-L, an OWL-S based language for thesemantic, QoS-
aware specification of services and tasks, which further allows the specification of services
and tasks conversations. Moreover, COCOA provides two mechanisms: COCOA-SD for
the QoS-aware semantic service discovery and COCOA-CI for the QoS-aware integration
of service conversations towards the realization of the user task’s conversation. The dis-
tinctive feature of COCOA is the ability of integrating on the fly the conversations of net-
worked services to realize the conversation of the user task, by furthermeeting the QoS
requirements of user tasks. Thereby, COCOA allows the dynamic realizationof user tasks
according to the specifics of the pervasive computing environment in terms of available
services and by enforcing valid service consumption.

1 Introduction

Pervasive computing environments are populated with networked services, i.e., au-
tonomous software entities, providing a number of functionalities. One of the most
challenging objectives to be achieved within these environments is to assist users
in realizing tasks that integrate functionalities of the networked services [28], so
that tasks may be requested anytime, anywhere, and realizedon the fly according

Preprint submitted to Elsevier 26 February 2007

to the specifics of the pervasive computing environment. To illustrate the kind of
situations that we expect to make commonplace through our research, we present
the following scenario (see Figure 1):
“...Today, Jerry is going to travel by train from Paris to London, where he is going
to give a talk in a working seminar. At the train station, Jerryhas the privilege
of waiting in the V.I.P. room. In this room, besides the wonderful French buffet, a
number of digital services are available, among which a streaming service used to
stream digital resources on users portable devices, and a large flat screen that con-
tinuously disseminates news. Today, exceptionally, Jerry has arrived early at the
train station. When he enters the V.I.P. room, nobody is there. He decides to watch
a movie while waiting for his train departure. Jerry uses thee-movie application
that he has on his PDA, to which he gives the title of the movie that he wants to
watch. Thise-movie application is able to discover video servers as well as dis-
play devices available in the reach of the user and to select the most appropriate
device. More precisely, if a larger screen than the user’s PDA screen is found in
the user’s reach, and if the user’s context allows it (e.g., nobody else is in the same
room), this application displays the movie on that screen. Furthermore, if the user’s
context changes (e.g., the user leaves the room or a person enters in the room), the
application is able to transfer the video stream to the user’s PDA. When the train
arrives at the station, Jerry gets on the train and continuesto watch the movie on
his PDA until the train departure...”.

Fig. 1. Scenario

Hardware resources like displays, and software resources like multimedia stream-
ing servers constitute networked capabilities that may conveniently be composed
to realizeuser tasksenabling, for instance, the entertainment of nomadic users.
Still, developing pervasive applications as user tasks that benefit from the open
networking environment raises major software engineeringchallenges. Functional
capabilities accessible in the specific networked environment must be abstracted in
an adequate way so that applications may specify declaratively required functional
capabilities for which concrete instances are to be retrieved on the fly. Furthermore,
consumption of networked capabilities shall be achieved ina way that guarantees
correctness of the application, both functionally and non-functionally. Another key
requirement to indeed enable pervasive applications is forthe network to be truly

2

open, with integration of most networked resources, without being unduly selec-
tive regarding hosted software and hardware platforms. Specifically, the pervasive
computing environment shall be able to integrate most networked resources, further
allowing the dynamic composition of applications out of capabilities provided by
resources, when applications get either requested by usersor proactively provided
by the environment.

The Service-Oriented Architecture (SOA) paradigm, and itsassociated technolo-
gies such as Web services, appears as the right paradigm to engineer pervasive
applications. Functional capabilities provided by networked resources may conve-
niently be abstracted as services. Specifically, a pervasive service corresponds to an
autonomous networked entity, which provides a set of capabilities. A service capa-
bility then corresponds to either a primitive operation of the service or a process
composing a number of operations (also referred to as conversation) [20]. Con-
sumption of services by client applications (which may themselves realize more
complex services available on the network) further requires service clients and
providers to agree on both the functional and non-functional semantics of capa-
bilities, so that they can integrate and interact in a way that guarantees depend-
able service provisioning and consumption. Such an agreement may be carried out
at the syntactic level, assuming that clients and providersuse a common service
description syntax for denoting, besides service access protocols, as well, service
semantics. This assumption is actually made by most software platforms for per-
vasive computing (e.g., Gaia [26], Aura [28], WSAMI [14]). However, such vi-
sion based on the strong assumption that service developersand clients describe
services with identical terms worldwide, is hardly achievable in open pervasive
environments. This raises the issue ofsyntactic heterogeneityof service descrip-
tions. A promising approach towards addressing syntactic heterogeneity relies on
semantic modeling of the services’ functional and non-functional features. This
concept underpins the Semantic Web [6]. Combined with Semantic Web technolo-
gies1 , notably ontologies, for the semantic description of the services’ functional
and non-functional features, Web services can be automatically and unambiguously
discovered and consumed in open pervasive computing environments. Specifically,
ontology-based semantic reasoning enables discovering networked services whose
published provided functionalities match a required functionality, even if there is
no syntactic conformance between them. A number of researchefforts have been
conducted in the area of semantic Web service specification,which have led to
the development of various semantic service description languages, e.g., OWL-S2 ,
WSDL-S3 , WSMO4 , FLOWS5 . Among these efforts OWL-S, which is based on

1 Semantic Web: http://www.w3.org/2001/sw/
2 OWL-S: http://www.daml.org/services/owl-s
3 WSDL-S: http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/
4 WSMO: http://www.wsmo.org/
5 FLOWS: http://www.daml.org/services/swsf/1.0/overview/

3

the Web Ontology Language (OWL)6 , a W3C recommendation, presents a number
of attracting features. Indeed, OWL-S supports the concise specification of service
functional capabilities in the service profile on the one hand, as well as the detailed
specification of the corresponding service conversations on the other hand, which
in turn provides a basis for Web service composition.

Building upon semantic Web services, and particularly OWL-S,we present CO-
COA, a solution for QoS-aware COnversation-based service COmposition in per-
vAsive computing environments. COCOA allows the dynamic realization of user
tasks from networked services available in the pervasive computing environment.
A preliminary effort for defining COCOA has been presented in [20]. In this ar-
ticle, we present the extension of COCOA with support of Quality of Service
(QoS). COCOA is part of a larger effort on the development of an interoperable
middleware for pervasive computing environments investigated in the IST Amigo
project7 . COCOA is composed of three major parts. First, COCOA-L, is an OWL-
S based language for semantic specification of services and tasks in pervasive en-
vironments. COCOA-L allows the specification of requested andadvertised ser-
vice capabilities, service conversations, as well as service QoS properties. Second,
COCOA-SD realizes the discovery and selection of networked services candidate
to the composition. Thanks to the semantic reasoning enabled by the use of on-
tologies, COCOA-SD enables a thorough matching of service functionalities com-
plemented with QoS-based matching. Finally, COCOA-CI performs dynamic QoS-
aware composition of the selected services towards the realization of the target user
task. The distinctive feature of COCOA-CI is the integration ofservices modeled as
conversations, to realize a user task also modeled as a conversation. This provides
a mean to deal with the diversity of services in pervasive computing environments.
Indeed, as shown in Figure 2, integrating service conversations for the realization
of a user task’s conversation enables the same user task to beperformed in different
environments by means of several composition schemes (e.g., by binding to a sin-
gle service, by composing individual service capabilities, by composing fragments
of service conversations or finally by interleaving fragments of service conversa-
tions). Thus, the realization of the task’s conversation isadaptive according to the
specifics of the environment in terms of available networkedservices and their pro-
vided conversations. Moreover, our approach enforces a valid consumption of the
composed services, ensuring that their conversations are fulfilled.

To evaluate our approach, we have implemented a prototype ofCOCOA; exper-
imental results allow us to validate the relevance of the employed paradigms in
pervasive computing environments.

The remainder of this paper is structured as follows. First,we present related re-

6 OWL: Web Ontology Language. http://www.w3.org/TR/owl-ref/
7 Amigo: ambient intelligence for the networked home environment.
http://www.extra.research.philips.com/euprojects/amigo/

4

Fig. 2. Flexibility enabled by COCOA

search efforts in the area of dynamic composition of user tasks in pervasive com-
puting environments, as well as conversation-based service composition (Section
2). Then, we introduce COCOA-L, our language for semantic, QoS-aware speci-
fication of services and tasks (Section 3). Building on COCOA-L,we present for-
malisms enabling the realization of COCOA in Section 4, and themechanisms
constituting COCOA in Section 5. More specifically, the latterconcerns COCOA-
SD our approach to semantic service discovery, and COCOA-CI ourapproach to
conversation integration. In Section 6, we assess our approach based on its perfor-
mance evaluation. Finally, we conclude with a summary of ourcontributions and
future work in Section 7.

2 Service Composition in Pervasive Computing Environments: State of the
Art

As introduced in the previous section, a user task is a software application avail-
able on the user’s device that is abstractly described in terms of functionalities to be
integrated. These functionalities have then to be dynamically provided by the envi-
ronment. Dynamic realization of user tasks is one of the major challenges in mobile
environments, as it allows users to perform potentially complex software applica-
tions opportunely according to the surrounding environment. A number of research
efforts have been conducted in the area of dynamic realization of user tasks in per-
vasive computing environments. The Aura project [28] defines an architecture that
realizes user tasks in a transparent way. The user tasks defined in Aura are com-
posed of abstract services to be found in the environment. Gaia [26] is a distributed
middleware infrastructure that enables the dynamic deployment and execution of
software applications. In this middleware, an applicationis mapped to available re-
sources of a specificactive space. This mapping can be either assisted by the user or
automatic. Gaia supports the dynamic reconfiguration of applications. For instance,
it allows changing the composition of an application dynamically upon a user’s re-
quest (e.g., the user may specify a new device providing a component that should
replace a component currently used). Furthermore, Gaia supports the mobility of

5

applications between active spaces by saving the state of the application. Both of
the previous platforms introduce advanced middleware to ease the development of
pervasive applications composed out of networked resources. However, they are too
restrictive regarding the networked resources that may be integrated since resources
have to host the specific middleware to be known by pervasive applications. Fur-
thermore, both approaches assume framework-dependent XML-based descriptions
for services and tasks. In other words, both approaches assume that services and
tasks of the pervasive computing environment are aware of the semantics under-
lying the employed XML descriptions. However, in open pervasive environments
it is not reasonable to assume that service developers will describe services with
identical terms worldwide. This raises the issue of syntactic heterogeneity of ser-
vice interfaces. Indeed, while building upon service oriented architectures (e.g.,
Web services) resolves the heterogeneity of services in terms of employed tech-
nologies, interaction with services is based on the syntactic conformance of service
interfaces, for which common understanding is hardly achievable in open pervasive
computing environments. A key requirement for enabling thedynamic realization
of user tasks in pervasive environments concerns expressing the semantics of ser-
vices and tasks.

A promising approach addressing the semantic modeling of information and func-
tionality comes from the Semantic Web paradigm [6]. There, information, origi-
nally comprehensible only by humans, is enriched with machine-interpretable se-
mantics, so as to allow its automated manipulation. Such semantics of an entity
encapsulate the meaning of this entity by reference to a structured vocabulary of
terms(ontology)representing a specific area of knowledge. Ontology languages
support formal description and machine reasoning on ontologies; the Web Ontol-
ogy Language (OWL)8 is a recent recommendation by W3C. These notions come
from the knowledge representation field and have been applied and further evolved
in the Semantic Web domain. Then, a natural evolution has been the combination
of the Semantic Web and Web Services into Semantic Web Services [9]. This ef-
fort aims at the semantic specification of Web services towards automating Web
services discovery, invocation, composition and execution monitoring. Hence, a
number of research efforts have been proposed for the semantic specification of
Web services. For instance, the latest WSDL (2.0) standard does not only sup-
port the use of XML Schema, but also provides standard extensibility features for
using, e.g., classes from OWL ontologies to define Web services input and out-
put data types. A recent proposal for the semantic specification of Web services is
the Web Services Modeling Ontology (WSMO), which is specifiedusing the Web
Service Modeling Language (WSML). Besides service specification, this ontology
provides support formediators, which can resolve mismatches between ontologies
or services. METEOR-S [25] is another proposal for enhancingWeb service de-
scriptions and enabling Web service composition. METEOR-S uses DAML+OIL9

8 OWL: http://www.w3.org/TR/owl-ref/
9 DAML+OIL: http://www.w3.org/TR/daml+oil-reference

6

(the direct precursor to OWL) ontologies to add semantics to WSDL and UDDI.
The Web Service Semantics (WSDL-S) proposal, coming from theMETEOR-S
project, also annotates Web services with semantics, usingreferences to concepts
from, e.g., OWL ontologies, by attaching them to WSDL input, output and fault
messages, as well as operations. The First-Order Logic Ontology for Web Services
(FLOWS) is a recent proposal for the semantic specification ofWeb services. It has
a well defined semantics in first-order logic enriched with support of Web based
technologies (e.g., URIs, XML). FLOWS encloses parts of otherlanguages and
standards (e.g., WSMO, OWL-S, PSL (ISO 18629)) and supports a direct mapping
to ROWS, another language from the same consortium based on logic program-
ming (i.e., rules). OWL-S is a Web service ontology specified in OWL, which is
used to describe semantic Web services. A service description in OWL-S is com-
posed of three parts : theservice profile, theprocess modeland theservice ground-
ing (see Figure 3). The service profile gives a high level description of a service

Fig. 3. OWL-S top level ontology

and its provider. It is generally used for service publication and discovery. The pro-
cess model describes the services behavior as a process. This description contains
a specification of a set of sub-processes coordinated by a setof control constructs.
These control constructs are:Sequence, Split, Split + Join, Choice, Unordered, If-
Then-Else, Repeat-While, andRepeat-Until. The sub-processes can be either com-
posite or atomic. Composite processes are decomposable intoother atomic or com-
posite processes, while atomic ones correspond to WSDL operations. The service
grounding specifies the information necessary for service invocation, such as com-
munication protocols, message formats, serialization, transport and addressing in-
formation. The service grounding uses WSDL binding information. More precisely,
it defines mapping rules to link OWL-S atomic processes to WSDL operations.

In the area of ontology-based dynamic service composition in pervasive environ-
ments, an effort based on OWL-S has been proposed in [18]. In this approach called
Task Computing, services of the pervasive computing environment are described as
semantic Web services using OWL-S. Each user of the pervasivecomputing envi-
ronment carries a composition tool that discovers on the fly available services in
the user’s vicinity and suggests to the user all the possiblecompositions of these
services based on their semantic inputs/outputs. While thisapproach validates the
relevance of semantic Web technologies in pervasive computing environments, it

7

presents some drawbacks. For instance, suggesting to the user all the possible com-
positions of networked services requires that the user selects the right composi-
tion among the suggested ones, which can be inconvenient formobile users of the
pervasive computing environment. Indeed, the pervasive computing environment
should minimize the users’ distractions by enabling the automatic and transparent
deployment and execution of user tasks. Furthermore, the services to be composed
are considered as providing a single functionality, while more complex services
(e.g., composite services specified with their corresponding conversation) are not
considered for the composition. Such composition, involving services or realizing
tasks described with their conversations, identified as conversation-based service
composition, allows the realization of more complex user tasks.

In the last few years a number of research efforts have been conducted in the area
of conversation-based service composition [1,2,17,4,7].For instance, Kleinet al. in
[1] propose to describe services as processes, and define a request language named
PQL (Process Query Language). This language allows finding in a process database
those processes that contain a fragment that corresponds tothe request. While this
approach proposes a process query language to search for a process, it does not
handle process integration. Thus, the authors implicitly assume that the user’s re-
quest is quite simple and can be performed by a single process. On the contrary,
in our approach a composition effort is made to reconstruct atask conversation by
integrating services conversations.

Aggarwalet al. propose to describe a task conversation as a BPEL4WS10 work-
flow [2]. This description may contain both references to known services (static
links) and abstract descriptions of services to be integrated (service templates). At
execution time, services that match the service templates are discovered, and the
task’s workflow is carried out by invoking the selected services. This approach pro-
poses a composition scheme, in which a set of services are integrated to reconstruct
a task’s conversation. However, the services being integrated are rather simple. In-
deed, each service is described at the interface level without describing the service
conversation. On the contrary, we consider services as entities that can behave in
a complex manner, and we try to compose these services to realize the user task’s
conversation.

Another conversation-based matching algorithm is proposed by Majithia et al. in
[17]. In this approach, the user’s request is specified at theinterface level and is
mapped to a workflow. Then, service instances that match the ones described in the
workflow, in terms of inputs, outputs, pre-conditions and effects, are discovered in
the network, and a concrete workflow description is constituted. As for the previous
approaches, the service composition scheme that is proposed does not involve any
conversation integration, as the Web services are only described at the interface-
level.

10 BPEL4WS: http://www-128.ibm.com/developerworks/library/ws-bpel/

8

The work proposed by Bensal and Vidal in [4] uses the OWL-S process model
to match services. In their approach, the authors consider auser request in the
form of required inputs/outputs, and assume a repository ofOWL-S Web services.
Then, they propose a matching algorithm that checks whetherthere is a process
model in the repository that meets the desired inputs/outputs. Brogi et al. in [7]
have proposed an enhancement of this last algorithm by performing a composi-
tion of services’ process models to respond to inputs/outputs of the user’s request.
This last effort is close to our work, as an effort of integrating conversations is
investigated. However, some differences remain. The main difference is that the
authors consider that the user request can be expressed in the form of a list of in-
puts/outputs. While this is an interesting assumption, thisimplicitly prevents the
user from performing complex conversations. Indeed, the algorithm composes in a
pipe and filter like-way, atomic processes that are compatible in terms of provided
outputs and requested inputs (signatures). While this strongly guarantees that the
composed services will be able to exchange information, it weakly guarantees that
the resulting composition will provide the user with the expected semantics. On the
contrary, we consider that the user’s request is expressed as a conversation, which
guarantees that the resulting composition will indeed meetthe user task’s expected
behavior.

The QoS-aware dynamic realization of tasks in pervasive computing environments
through the integration of service conversations calls fora language that allows the
semantic-aware description of services and of tasks’ functional and non-functional
capabilities, as well as of services’ and tasks’ conversations. For this purpose, we
present in the following section COCOA-L, a language for specification of services
and tasks of the pervasive environment.

3 COCOA-L: an OWL-S Based Service and Task Description Language

We describe herein COCOA-L, an OWL-S based language for the specification of
networked services and user tasks in pervasive environments. This language ex-
tends OWL-S in order to fit the requirements of service composition in pervasive
computing environments. Specifically, COCOA-L allows the specification of:

(1) Services’ and tasks’ advertised and requested functional capabilities;
(2) Services’ and tasks’ conversations for modeling their behavior; and
(3) Services’ and tasks’ QoS properties.

The UML diagram depicted in Figure 4 represents the main conceptual elements
of COCOA-L with respect to (1), (2) and (3). These elements are further detailed
in the following three sections. Note that in this diagram, colored boxes are those
corresponding to reused OWL-S elements.

9

3.1 Requested and Advertised Capabilities

At the heart of COCOA-L, we distinguish the notion ofcapability. A capability
characterizes a functionality that might be requested or advertised by a service/task.
A capability is realized by the invocation of a set ofoperations, i.e., a sequence of
messages exchanged between a client and a service provider (e.g., WSDL opera-
tions). Arequested capabilityhas a set of providedinputs, a requiredcategory, and
a set of requiredoutputsandQoS properties; while anadvertised capabilityhas a
set of required inputs, a provided category, and a set of provided outputs and QoS
properties.

Fig. 4. COCOA-L

In COCOA-L, bothuser tasksandservicesare specified with aconversation, which
comprises respectively requested and advertised capabilities. When a user task is
being performed, its requested capabilities have to be bound to advertised capabil-
ities of networked services.

3.2 Service Conversation Specification

A conversationrepresents the coordination of a set of capabilities bycontrol con-
structs (e.g., Sequence, Parallel, Choice constructs). In COCOA-L, weuse the
OWL-S control constructs for coordinating capabilities of services and tasks. Due
to their involvement in a conversation, capabilities have data and control depen-
dencies between each other. Control dependencies are those due to the structure of
the conversation. Specifically, two capabilitiesC1 andC2 are said to have a control
dependency ifC1 is prior toC2 in the conversation, and in order to enforce a valid
service/task consumptionC1 must be performed beforeC2 when the service/task
is being performed. Nevertheless, when realizing user tasks, the interleaving of

10

multiple service conversations is supported as long as the services control depen-
dencies are fulfilled. For instance, if the user task conversation is a sequence of the
four capabilitiesSequence(C1, C2, C3, C4) and the two services to be composedS1

andS2 have respectively the two following conversations :Sequence(C1, C3) and
Sequence(C2, C4), a composition that interleavesS1 andS2 conversations, while
meetingS1 andS2 control dependencies, is given as follows:
Sequence(S1.C1, S2.C2, S1.C3, S2.C4).

A data dependency between two capabilitiesC1 andC2 is specified when data pro-
duced byC1 must be consumed byC2 and only byC2. When a data dependency is
specified in a user task conversation, this means that the corresponding two capabil-
ities must be provided by the same service. For instance, when realizing a user task
comprising a booking and payment capabilities for a hotel room, one can imagine
that it is not possible to use the booking capability of a hotel reservation service
and the payment capability of another hotel reservation service. In the example of
Figure 5, a data dependency is specified between the capabilitiesBrowse andGet
Stream of thee-movie application, which means that these two capabilities must
be provided by the same networked service. If a data dependency is specified in a
service conversation, this means that the corresponding capabilities must be per-
formed in sequence without interleaving with other capabilities outside the service
conversation.

COCOA-L further supports the specification of data flow betweencapabilities.
Specifically, data flow specifies which output data produced by a capability may
be consumed by another capability. Data flow specification isnevertheless differ-
ent from data dependencies in the fact that it does not drive the service selection
process. For instance, if the user task contains the specification of a data depen-
dency between two capabilities, it will drive the selectionof services that provide
both capabilities in the same conversation, while specifying a data flow relation
does not lead to any constraint in service selection. Indeed, the selection of two
capabilities that belong to two different services may be performed, as long as the
selected capabilities are compatible in terms of inputs/outputs to be exchanged with
respect to the data flow specification.

Our objective is to realize user tasks based on their conversation specification
through the integration of services also specified with their conversation. This inte-
gration has to fulfill both data and control dependencies of user tasks and services.

3.3 Service QoS Specification and Measurement

3.3.1 QoS Specification

QoS specification associated with the dynamic composition of user tasks is con-
cerned with capturing the user tasks QoS requirements as well as services QoS

11

Fig. 5. The e-movie application

properties. QoS specification should: (1) allow the description of both quantitative
(e.g., service latency) and qualitative (e.g., CPU scheduling mechanism) QoS at-
tributes; and (2) be declarative in nature, that is, specifyonly what is requested, but
not how the requirements should be implemented by services [3].

In the following, QoScategoryrefers to a specific non functional property of a ser-
vice that we are interested in (e.g.,performance). Every category consists of one
or moredimensions, each representing one attribute of the category. For instance,
latencydefines a dimension of the performance category. Quantitative dimensions
in QoS specification, also referred to asmetrics, measure specific quantifiable at-
tributes of the service. Qualitative dimensions, referredto aspolicies, dictate the
behavior of the services. These dimensions are described inCOCOA-L with refer-
ences to ontology concepts. Sabataet al. further classify the metrics into categories
of performance, security levels, andrelative importance. Policies are divided into
categories ofmanagementandlevel of service[27].

Based on the aforementioned work, and the work introduced in [23], we introduce
a base QoS specification of services depicted in the UML diagram of Figure 6,
which is adapted to pervasive environments. Specifically, we notice that although
more QoS parameters yield more detailed description, the gain has to be put up
against the increased overhead. Usually, a small number of parameters (i.e.,≤ 5)
is sufficient to capture the dominant QoS properties of a system [10]. Along with
the factor of limited resources on mobile devices, we only take into account the
most dominant and descriptive dimensions in our base QoS specification, instead
of trying to incorporate every possible applicable dimension. However, it can be
easily extended with more dimensions, if requested by specific services or tasks,
by supporting the new dimensions in a way similar to the ones discussed in this

12

section.

In the latter diagram, dark colored boxes represent qualitative dimensions, whereas
light colored boxes represent quantitative ones. AQoS Property, is described based
on QoS dimensions and expressed as a boolean expression using the following op-
erators:and, or, not, equal, not-equal, is-a, is-exactly-a, is-not-a, more-than, less-
than, max-value-of, min-value-of. The operatorsis-a, is-exactly-aand is-not-aare
used to compare qualitative properties, whileequal, not-equal, more-than, less-
than, max-value-of, min-value-ofoperators are used to compare quantitative prop-
erties. Finally, theand, orandnotoperators are used to define composite properties.

Fig. 6. QoS Specification

According to our service model depicted in Figure 4, a user task has two kinds of
required QoS properties: QoS properties specified at the level of capabilities ex-
pressinglocal QoS requirements, and QoS properties specified at the level of the
whole task expressingglobal QoS requirements. Local QoS requirements have to
be satisfied by individual advertised capabilities of services, whereas global QoS
requirements has to be satisfied by the resulting service composition. The mecha-
nisms used to check the fulfillment of local and global QoS properties of user tasks
are further detailed in Sections 5.1 and 5.2, respectively.

13

3.3.2 Measurement of Quantitative QoS Dimensions

The specification of quantitative QoS dimensions in servicerequests and advertise-
ments requires providing dimension measuring as accurate as possible. Service-
level dimensions can be measured easily (e.g., off-line measurements using avail-
able quality analysis tools). Resource-related measures for the services are also
easy to obtainafterservice execution, using available utilities (e.g., pathchar11 for
bandwidth measurement). However, providing accurate metrics measures for the
selection of servicesprior to their execution requires special care, since this relates
to predicting the service’s resource consumption. The prediction of service met-
rics can be carried out based on histories [11,24,13], whichhas been proved to be
accurate and efficient [13].

In our case, while evaluating the QoS of a service composition, we provide two
estimations for each QoS dimension: (1) a history-based, probabilistic estimation;
and (2) a pessimistic estimation. The former corresponds toan average estimation,
while the latter corresponds to a worst case estimation. Actually, we consider both
the previous estimations, which depend on the user’s task requirement (e.g., deter-
ministic or probabilistic) in the user’s request. For example, if the user demands a
deterministic QoS, our approach compares the requested QoSwith the pessimistic
estimation of the composite service. If the user requires anaverage QoS, the lat-
ter is compared against the probabilistic estimation. Further details about how we
perform these estimations are given in section 4.2. Moreover, we userelative im-
portanceto characterize both the users’ preferences among the various QoS di-
mensions and the criticality of the hosts’ resources. Further details about the use of
relative importanceamong QoS dimensions are given in Section 5.2.

4 Formalisms for QoS-aware Dynamic Service Composition

In this section we introduce two formalisms enabling the integration of services’
conversations for realizing user tasks with support of QoS.

4.1 Modeling Service Conversations as FSA

In order to ease service composition by enforcing control and data dependencies
of services/tasks, we propose to model services and tasks conversations using fi-
nite state automata. Other approaches to formalizing Web services conversations
and composition have been proposed in the literature based on Petri nets [29], pro-
cess algebras [16] or finite state machines [12]. Figure 7 describes the mapping

11 http://www.caida.org/tools/utilities/others/pathchar

14

rules that we have defined for translating an OWL-S process model to a finite state
automaton. In this model, automata symbols correspond to capabilities described
using COCOA-L. The initial state corresponds to the beginningof the conversation,
and final states correspond to the end of a client/service interaction. Each control

.

.

Choice(P1,P2,...,Pn)

ε

ε

ε

P2

Pn

...

...

...

...

ε
...

P1 P2

ε
...

Pn

ε
...

Sequence(P1,P2,...,Pn)

... ...

P1 P2

ε

... ...

P2 P1

ε

ε

ε

Split(P1,P2), Split+Join(P1,P2),
 Unordered(P1,P2)

...

P1

ε

Repeat-While(P1)

...

P1

ε

Repeat-Until(P1)

ap

Atomic Process ap

Start state

Final state

Former final state

Former start state

P1

Fig. 7. Modeling OWL-S processes as finite state automata

construct involved in a conversation is mapped to an automaton using the rules
depicted in Figure 7. Then, these automata are linked together in order to build a
global automaton. Further details about modeling OWL-S processes as automata
can be found in [5]. Figure 8 shows the automaton representing thee-movie ap-
plication. Both user tasks and networked services are modeled as finite state au-

Fig. 8. Automaton of the e-movie application

tomata. However, the user task’s automaton is enriched withadditional information
in some of its transitions, i.e., the probability for this transition to be selected. More
precisely, a probability value is introduced in the case of aRepeat-While, Repeat-
Until andChoice constructs. For the first two constructs (loops), the information
added is the probability for the corresponding process to beexecuted once again. In
the case of theChoice control construct, a probability is attached to each possible
choice of this construct. This information is necessary to calculate a probabilistic

15

QoS estimation of a composition, as further discussed in thefollowing section. For
instance, if a composition involves a loop, the QoS of this composition depends on
how many times the user will execute this loop. All these probabilities are evaluated
based on histories and are updated each time the user task is executed. In addition
to these probabilities, some other information is needed toestimate the worst case
value of QoS parameters. This information is attached to each loop construct in the
task’s process, and gives the maximum number of times the loop can be carried out
during the execution of a user task.

4.2 Evaluating the QoS of composed User Tasks

In our approach, as the task is abstract, i.e., do not refer tospecific services, we
need to extract the QoS formulae corresponding to each QoS metric. These formu-
lae are extracted in advance and stored with the task’s description. Then, during the
composition, each time an element is being composed, these formulae are used to
check the fulfillment of the task’s QoS requirements. A number of research efforts
propose reduction rules to compute the QoS of a workflow [8,19]. We use the model
proposed by J.Cardosoet al. in [8] to extract the formula of each QoS dimension,
corresponding to the task’s automaton structure. In this approach, a mathemati-
cal model is used to compute QoS for a given workflow process. More precisely,
an algorithm repeatedly applies a set of reduction rules to aworkflow until only
one atomic node remains. This remaining node contains the QoS formula for each
considered metric, corresponding to the workflow under analysis. The algorithm
uses a set of six reduction rules: (1) sequential, (2) parallel, (3) conditional, (4)
fault-tolerant, (5) loop and (6) network. However, as our automata model is an ab-
straction of the OWL-S workflow constructs, we only need to keep the reduction
rules for sequential, conditional, and loops systems.

As introduced earlier, we provide two estimations for each QoS dimension: (1) a
history-based probabilistic estimation and (2) a pessimistic estimation. Figure 9
and Tables 1 and 2 show how we perform these estimations. Figure 9 describes the
reduction rules to be applied for sequence, choice and both simple and dual loop
constructs. In this figure capabilities represented on eachtransition (namedoi) pro-
vides some QoS attributes (e.g., Availability (notedai), Latency (notedli), Cost12

(notedci)). Besides these attributes, some capabilities, i.e. thoseinvolved in the
choice and loops constructs, have additional information,i.e., the probability to be
selected (pi). These probabilities are only used in the case of a probabilistic average
estimation of QoS. The formulae to be applied in this case aredescribed in Table 1.
Note that in this Table, for each loop case, the probabilities pi described in Figure
9, are changing top′i after reduction, where:p′i = pi

1−p
. On the other hand, evalu-

ating a worst case estimation of QoS requires the use of the above reduction rules,

12 In the following we refer cost to any cost-related dimension, e.g., CPU load,memory.

16

by applying the formulae described in Table 2. In this case another information is
required for both loop cases, which is the maximum number of times a loop can be
executed, as described earlier. This information is represented byN in Table 2.

We focus on the QoS of a service composition with respect to the three dimensions:
availability, latency and cost, because they are considered as important QoS dimen-
sions of user tasks (e.g., [8]) and other quantitative dimensions can be calculated
in a similar way. For qualitative dimensions, their evaluation is trivial since it only
needs to ensure that the policy of each composed service is noweaker than the
user’s request. This is done by reasoning on the semantic concepts describing the
required policies and the provided ones.

.

.

.

o1 o2

o1,p1

o2,p2

on,pn

o1,p1

on,pn

.

.

.

.

.

.

o1,p1

on,pn

o

o',p

Sequence Reduction Choice Reduction

Simple loop Reduction Dual loop Reduction

Seq(o1,o2) Choice(o1,..,on)

o1,p1'

on,pn'

o1,p1'

on,pn'

(a) (b)

(b)(a)

(a) (a)(b) (b)

,pε

o

ε

 oi: operation
pi: probability before reduction
pi': probability after reduction

Fig. 9. Workflow Constructs

Seq Choice Simple Loop Dual Loop

Availability a1 ∗ a2
∑

aipi
(1−p)∗ao

1−pao

(1−p)∗ao

1−aoa
o′

Latency l1 + l2
∑

lipi
lo

1−p

lo+l
o′
−(1−pl

o′
)

1−p

Cost c1 + c2
∑

cipi
co

1−p

co+c
o′
−(1−p)c

o′

1−p

Table 1
History-based probabilistic average QoS evaluation

Seq Choice Simple Loop Dual Loop

Availability a1 ∗ a2 Min(ai) N ∗ ao ∗ Min(ai) N ∗ ao ∗ ao′ ∗ Min(ai)

Latency l1 + l2 Max(li) N ∗ lo + Max(li) N ∗ (lo + lo′) + Max(li)

Cost c1 + c2 Max(ci) N ∗ co + Max(ci) N ∗ (co + co′) + Max(ci)

Table 2
Pessimistic QoS evaluation

Having these two formalisms introduced, we present in the following two sec-
tions the two mechanisms constituting COCOA, i.e., QoS-awareservice discovery

17

(COCOA-SD) in Section 5.1, and QoS-aware conversation integration (COCOA-
CI) in Section 5.2.

5 Mechanisms for QoS-aware Dynamic Service Composition

5.1 QoS-aware Service Discovery: COCOA-SD

Service discovery allows finding in the pervasive environment, at the specific time
and place, service advertised capabilities that match service requested capabilities
towards the realization of user tasks. Service discovery decomposes into service
matching and service selection as described below.

5.1.1 Service Matching

Service matching allows identifying services that providesemantically equivalent
capabilities with those of the user task’s conversation. Furthermore, these capabil-
ities should fulfill the QoS properties required in the task’s requested capabilities.
We use the matching relationMatch(Adv,Req) to match an advertised capabil-
ity Adv against a requested capabilityReq. This relation extends the relation de-
fined in [21] with the matching of QoS properties. Specifically, theMatch relation
is defined using the functiondistance(concept1, concept2), hereafter denoted by
d(concept1, concept2), which gives the semantic distance between two concepts,
concept1 andconcept2, as given in the classified ontology to which the concepts be-
long. Precisely, ifconcept1 does not subsume13 concept2 in the ontology to which
they belong to, the distance between the two concepts does not have a numeric
value, i.e.,d(concept1, concept2) = NULL. Otherwise, i.e., ifconcept1 subsumes
concept2, the distance takes as value the number of levels that separate concept1
from concept2 in the ontology hierarchy obtained after ontology classification. In
this relation, we consider the case whereconcept1 is subsumed byconcept2 as a
mismatch and we assign the valueNULL to the relationd because such matching
implies that a client may be provided with an advertised capability that is more
specific than the requested capability, which may lead to a malfunction of the ad-
vertised capability. For instance, if the advertised capability translates onlyLatin
languages into otherLatin languages, and the client provides in its requested ca-
pability the conceptLanguage as input, which subsumes bothGreek andLatin
languages, the advertised capability will not work if the client invokes the corre-
sponding service with a text in Greek as input. Moreover, as we aim at the auto-
matic realization of user tasks we opt for the selection of only capabilities that are

13 Subsumption means the fact to incorporate something under a more general category.

18

equivalent or more generic than the requested capabilities, thus avoiding the risk of
malfunctioning capabilities.

Formally, let the advertised capabilityAdv be defined by the set of required inputs
Adv.In, a set of provided outputsAdv.Out, a provided categoryAdv.Cat, and a
set of provided QoS propertiesAdv.P . On the other hand, let the requested capa-
bility Req be defined by a set of provided inputsReq.In, a set of required outputs
Req.Out, a required categoryReq.Cat and a set of required QoS propertiesReq.P .

The relationMatch is then defined as:

Match(Adv,Req) =∀in′ ∈ Adv.In,∃in ∈ Req.In : d(in′, in) ≥ 0 and
∀out′ ∈ Req.Out,∃out ∈ Adv.Out : d(out, out′) ≥ 0 and
d(Adv.Cat, Req.Cat) ≥ 0
∀p′ ∈ Req.P,∃p ∈ Adv.P : (p ⇒ p′)

From the above, the relationMatch(Adv,Req) holds if and only if all the required
inputs ofAdv are matched with inputs provided byReq; all the required outputs of
Req are matched with outputs provided byAdv; the category required byReq is
matched with the category provided byAdv and all the required properties ofReq
are matched with properties provided byAdv.

5.1.2 Service Selection

Service selection allows identifying which services from those that offer semanti-
cally equivalent capabilities to the capabilities of the user task are potentially useful
for the composition. The selection of services is based on the control dependencies
that are inherent to their conversation specification. For instance, a service that pro-
vides a semantically equivalent capability to one of the requested capabilities of the
user task, could not be useful for the composition if the latter capability has data or
control dependencies with capabilities that are not requested at all in the user task.
To perform this selection we use regular expressions. Specifically, we extract from
the task automaton the regular expression that represents the language generated
by this automaton. For each term of this regular expression,which corresponds to
a capability from the task description, we introduce the quantifier ? that indicates
that there is0 or 1 occurrence of this term. For example, the regular expression
extracted for the automaton of thee-movie application presented in Figure 8 is
given by :
(Browse)? (SearchDisplay)? (GetStream)? (GetContext)∗ (LocalDisplay)?
|
(SearchDisplay)? (GetStream)? (GetContext)∗ (LocalDisplay)? |
(LocalDisplay)?

19

Let’s note byL the language generated by the extracted regular expressionand by
L1, L2, ..., Ln the languages generated by the automata of the pre-selectedservices
S1, S2, ..., Sn respectively. COCOA-SD selects all the servicesSi such thatL ∩
Li 6= ∅. For example, a service that provides a sequence of capabilities that match
semantically the capabilitiesBrowse andGetStream of the user task, is selected.

This allows the selection of services that meet the control dependencies of the user
task by enabling the potential interleaving of their conversations. Furthermore, if
a data dependency is specified between two capabilities of the user task, only ser-
vices that provide both these capabilities in their conversation are kept from the
previously selected services.

Service selection is also based on QoS specifications. Particularly, if local QoS
requirements are specified in some capabilities of the user task, service capabilities
that do not fulfill the latter requirements are not selected for the composition.

5.2 QoS-aware Conversation Integration: COCOA-CI

Once semantic-aware service discovery is achieved, the next step towards dynamic
composition of user tasks, is the integration of the conversations of the selected ser-
vices. COCOA-CI integrates the conversations of services selected using COCOA-
SD, to realize the conversation of the target user task. Moreover, COCOA-CI sup-
ports interleaving of these conversations. COCOA-CI integrates the conversations
of discovered services to realize the user task, based on associated state automata.

COCOA-CI first integrates all the automata of selected servicesin one global au-
tomaton. The global automaton contains a new start state andempty transitions
that connect this state with the start states of all selectedautomata. The automaton
also contains other empty transitions that connect the finalstates of each selected
automaton with the new start state. Consider the automaton representing the con-
versation of the target user task depicted in Figure 10, lefthigher corner, and the
automata representing the conversations of the selected services, Figure 10, right
lower corner. In this figure, all the automata of the selectedservices are connected in
a global automaton, in which all the added transitions are represented with dashed
lines.

The next step of COCOA-CI is to parse each state of the task’s automaton starting
with its start state, and following its transitions. Simultaneously, a parsing of the
global automaton is carried out in order to find for each stateof the task’s automaton
a state of the global automaton that cansimulateit, i.e., a task’s automaton state
is simulated by a global automaton state when for each incoming symbol14 of the

14 Incoming symbols of a state correspond to the labels of the next transitions ofthis state.

20

former there is at least one semantically equivalent15 incoming symbol of the latter.
For example, in Figure 10, the statet1 of the task’s automaton can be simulated by
the initial state of the global automaton because the set of incoming symbols oft1,
is a subset of the set of incoming symbols of the global automaton initial state.

COCOA-CI allows finding service compositions with possible interleaving of con-
versations of the involved services. Indeed, this is done bymanaging service ses-
sions. A service session characterizes the execution stateof a service conversation.
A session is opened when a service conversation starts and ends when this con-
versation finishes. Several sessions with several networked services can be opened
at the same time. This allows interleaving the interactionswith distinct networked
services. Indeed, a session opened with a serviceA can remain opened (temporary
inactive) during the interaction of the client with anotherserviceB. An example
of managing sessions is given in Step (1) of the composition.In this step, the ca-
pability Browse of the task’s automaton has been matched against the capability
Browse of the global automaton. The next step is to find the capability Search
Display of the task’s automaton (Step (2)). However, this capability is not avail-
able in theVideo Streaming Service. This leads to open another session with the
Display Service as this service provides the sought capability. In Step (3) after
matching the capabilitySearch Display, the capabilityGet Stream is sought. A
semantically equivalent capability, i.e., theSend Stream capability, is accessible
in theVideo Streaming Service from the previously opened session.

An important condition that has to be observed when managingsessions is that
each opened session must be closed, i.e., it must arrive to a final state of the service
automaton. During the composition process, various paths in the global automaton,
which represent intermediate compositions, are investigated. Some of these paths
will be rejected during the composition while some others will be kept (e.g., if a
path involves a service in which a session has been opened butnever closed, this
path will be rejected).

In addition to checking for each state the equivalence between incoming capabil-
ities, a verification of the conformance to the QoS constraints of the user task is
performed. This is done by using the QoS formulae that have been extracted from
the task’s automaton structure as described in Section 4.2.Thus, we start with the
QoS formula for each QoS dimension, in which we initially assume that all capa-
bilities will provide the best value of the considered QoS dimension (for example,
latency = 0, availability = 1). Then, each time we examine a service capability, we
replace the corresponding best value in the formula of the considered dimension,
with the real QoS value of the capability. This allows evaluating at each step of the
integration the values of all QoS dimensions in the case thatthe current capability
is selected. These values are then compared to the corresponding values required

15 We recall that equivalence relationship between capabilities is a semantic equivalence
that have already been checked by COCOA-SD.

21

Fig. 10. Conversation Integration

by the user task, and if the constraints are not met, the path in the global automaton
that includes this capability is rejected.

COCOA-CI gives a set of sub-automata from the global automaton that conforms
to the task’s automaton structure (two sub-automata are depicted in the left lower
corner of Figure 10). Each of these automata is a compositionof networked services
that conforms to the conversation of the target user task, further enforcing valid
service consumption.

Once the set of possible compositions is given (See Figure 10where two composi-
tions are given by COCOA-CI), a last stage is to choose the best among resulting
compositions, on the basis of provided QoS. However, since different dimensions
are in different units, data normalization is needed. In ourcase, we apply standard

22

deviation normalization on the various dimensions as in [15]:

d′(ci) =



























2 if(d(ci) − m(d) > 2 ∗ δ(d))

0 if(d(ci) − m(d) < −2 ∗ δ(d))

d(ci)−m(d)
2∗δ(d)

+ 1 otherwise

(1)

whered(ci) is the value of dimensiond for the service compositionci, andm(d)
andδ(d) are the mean value and standard deviation for dimensiond, respectively.
Note that for QoS parameters that are stronger with smaller values (e.g., latency),
d′(ci) is further transformed byd′′(ci) = 2 − d′(ci), so that stronger values are
normalized to greater values.

With every dimension normalized, every service composition is evaluated based on
a benefit function like in [15]:

Overall Benefit=
n

∑

i=1

(d(ci) ∗ wi)/Service Composition Cost (2)

wherewi is the relative importance of the considered dimension.

Using the service composition that has been selected, the conversation description
of the user task is complemented with information coming from the composed ser-
vices. Specifically, each capability of the user task is replaced with the correspond-
ing capability of the networked services. This capability may correspond to either
one single or a sequence of client/service interactions. Furthermore, a grounding
description for the user task, which contains the binding information of the com-
posed services is generated.

The complemented task’s description and the generated grounding are sent to an
execution engine that performs the user task by invoking theappropriate networked
services.

6 Prototype Implementation and Performance Evaluation

COCOA decomposes into two main mechanisms, COCOA-SD for discovering com-
ponent services and COCOA-CI for integrating the conversations of selected ser-
vices. COCOA-SD relies on semantic reasoning on ontologies used to infer rela-
tions between semantic descriptions, which we have identified as a costly mech-
anism [22]. Nevertheless, semantic discovery of service capabilities can be per-
formed efficiently in pervasive computing environments upon the deployment of

23

appropriate solutions. Indeed, in [21] we present an efficient semantic service dis-
covery protocol for pervasive computing environments. Results show that rich,
semantic service discovery can be performed with response times comparable to
the syntactic WSDL-based service discovery. Furthermore, we define mechanisms
for structuring service repositories based on the semanticspecification of services,
which increases the scalability of our protocol. Further details about efficient se-
mantic service discovery in pervasive computing environments can be found in
[21].

In this article we are primarily interested in evaluating the performance of COCOA-
CI, which is at the heart of the composition process, as well asthe impact of sup-
porting QoS awareness.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120

T
im

e
(m

s)

Services’ Number of Operations

XML Parsing
Matching Algorithm (Fixed task depth = 1)

Fig. 11. Performance of COCOA-CI (increasing the number of semanticallyequivalent
capabilities provided by services)

We have implemented COCOA-CI in Java, on a Linux platform running on a laptop
with an Intel Pentium 4, 2.80 GHz CPU and 512 MB of memory. The performance
of COCOA-CI is proportional to the complexity of the task and services’ conversa-
tions. Specifically, the response time of the algorithm is proportional to the number
of possible (intermediate) composition paths investigated during the execution of
the algorithm. There are two main factors contributing to the increase of the inter-
mediate composition paths: (1) the number of semantically equivalent capabilities
provided by networked services; (2) the number of capabilities requested in the
task’s conversation. We have carried out two experiments, each evaluating the im-
pact of each factor on the performance of COCOA-CI. In both experiments, each
value is calculated from an average of 10 runs.

Figure 11 considers the first factor. In this figure, the number of capabilities pro-
vided by networked services is increasing from 10 to 100 capabilities that are se-
mantically equivalent. We compare the performance of COCOA-CIwith the XML
parsing of the services and task descriptions, which is inherent to the use of Web

24

services and semantic Web technologies. The resulting curves show that the cost
of our algorithm is negligible compared to the XML parsing time. Figure 12 con-
siders the second factor. In this figure, the number of capabilities provided by the
networked services is fixed to the worst case coming from the previous experi-
ment, i.e., 100 semantically equivalent capabilities, while the number of capabili-
ties requested in the task’s conversation is increasing from 1 to 20. The experiment
that is depicted in this figure corresponds to the comparisonof the performance
of COCOA-CI with the XML parsing of the services and the task conversation de-
scriptions. The figure shows an extreme scenario for our algorithm, as each capabil-
ity requested in the task’s conversation is matched against100 capabilities, and the
resulting number of possible compositions is equal to:100nb in each case, wherenb
is the number of capabilities requested in the task’s conversation. We can see that
for a number of possible compositions less than10010, our algorithm takes less time
than the XML parsing time. In realistic cases, both the user task and networked ser-
vices will contain various capabilities organized using various workflow constructs,
thus leading to the decrease of possible resulting compositions. Consequently, the
response time will be reasonable for the pervasive computing environment. Indeed,
we have applied our algorithm in a real case example in which the task’s conversa-
tion contains twenty requested capabilities and the selected services provide thirty
capabilities, including various control constructs (e.g.sequence, choice, loop). In
spite of the large number of capabilities requested in the task’s conversation, the
algorithm spent only 32 milliseconds to find the two resulting compositions among
36 intermediate compositions, against 152 milliseconds for the XML parsing time.

Figure 12 shows also another important result, which is the impact of introducing
QoS in our integration algorithm. This impact is amounts to asmall increase in
the XML parsing time, which is due to the addition of XML tags for describing
QoS, while at the same time to a considerable decrease of the execution time of our
algorithm. This is attributed to the rejection of a number ofpaths that do not fulfill
the QoS requirements of the user task during the integration.

7 Conclusion

The pervasive computing vision is increasingly enabled by the large success of
wireless networks and devices. In pervasive environments,heterogeneous software
and hardware resources may be discovered and integrated transparently towards
assisting the performance of users’ daily tasks. Building upon the service oriented
architecture paradigm and particularly Web services allows having a homogeneous
view of the heterogeneous services populating pervasive environments, as services
have standard descriptions and communicate using standardprotocols. However,
realizing such a vision still requires dealing with the syntactic heterogeneity of ser-
vice descriptions. Most existing solutions to dynamic composition of networked
services in pervasive environments poorly deal with such heterogeneity, since they

25

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

T
im

e
(m

s)

User Task’s Depth

Matching Algorithm
XML Parsing

XML Parsing with QoS
Matching Algorithm with QoS

Fig. 12. Performance of COCOA-CI with and without QoS (fixed number ofservice capa-
bilities, increasing the task’s number of capabilities)

assume that components being integrated have been developed to conform syntac-
tically in terms of interfaces.

Building upon semantic Web services, we presented in this article COCOA, our so-
lution to dynamic service composition in pervasive computing environments. CO-
COA presents a number of attractive features. Indeed, COCOA enables the inte-
gration of services having a complex behavior for the realization of user tasks that
also have complex behaviors. Specifically, the realizationof the user task varies
each time a user task is performed according to the specifics of services available
in the current pervasive environment. This realization mayvary from the integra-
tion of individual service capabilities, to the interleaving of potentially complex
service conversations. Furthermore, COCOA allows meeting QoS requirements of
user tasks.

For the QoS-aware dynamic realization of tasks, we first presented COCOA-L,
an OWL-S based language enabling the specification of serviceadvertised and
requested capabilities, service conversations, as well asthe specification of QoS
properties. Then, we presented COCOA-SD, which enables QoS-aware semantic
service discovery and COCOA-CI, for the QoS-aware dynamic integration of the
selected service conversations.

To perform such a composition, COCOA introduces an abstraction of OWL-S
based conversations as finite state automata. This translates the difficult issue of
conversation integration to an automata analysis problem by further enabling the as-
sessment of services and tasks data and control dependencies. Furthermore, for en-
abling QoS-awareness, COCOA-L allows the specification of both local and global
QoS requirements of user tasks. Task’s local QoS requirements are those related to
particular requested capabilities of the user task, they are checked by COCOA-SD
when selecting service advertised capabilities that semantically match requested ca-
pabilities of the user task. On the other hand, global QoS requirements are checked

26

by COCOA-CI when integrating service conversations and require the aggregation
of QoS properties coming from the multiple advertised capabilities to be integrated.

We further presented in this article a prototype implementation and evaluation of
COCOA. In this article, we have been primarily interested in evaluating the perfor-
mance of COCOA-CI and the impact of introducing QoS-awareness in the com-
position process. Indeed, a preliminary solution for efficient semantic service dis-
covery in pervasive environment, has previously been introduced in [21]. For eval-
uating a prototype implementation of COCOA-CI, we have compared its response
time against the time spent for the XML parsing of services and task descriptions,
which is inherent to the use of Web services and semantic Web technologies. Re-
sults show that in more realistic cases, COCOA overhead is negligible compared to
XML parsing. We have further done experiments for evaluating the impact of in-
troducing QoS-awareness in COCOA. Results show the introduction of QoS con-
straints improves the performance of COCOA-CI. Our ongoing research efforts
include the deployment of COCOA-CI on top of an existing semantic service dis-
covery protocol for pervasive environments (e.g., [21]), such that the composition
of user tasks can be performed transparently and in a distributed manner by a set of
collaborating service directories of the pervasive computing environment.

References

[1] Bernstein A. and Klein M. Towards high-precision service retrieval.In Proceedings
of The First International Semantic Web Conference(ISWC’02), 2002.

[2] Rohit Aggarwal, Kunal Verma, John Miller, and Willie Milnor. Dynamic webservice
composition in meteor-s. Technical report, LSDIS Lab, Computer Science Dept.,
UGA, 2004.

[3] C. Aurrecoechea, A. T. Campell, and L. Hauw. A survey of QoS architectures.
ACM/Springer Verlag Multimedia Systems Journal, Special Issue on QoS Architecture,
3(6):138–151, May 1998.

[4] Sharad Bansal and Jose M. Vidal. Matchmaking of web services based on the daml-
s service model. InProceedings of the second international joint conference on
Autonomous agents and multi-agent systems, 2003.

[5] Sonia Ben Mokhtar, Nikolaos Georgantas, and Valerie Issarny. Adhoc composition of
user tasks in pervasive computing environments. InProceedings of the 4th Workshop
on Software Composition (SC 2005). Edinburgh, UK, April 2005. LNCS.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 2001.

[7] A. Brogi, S. Corfini, and R. Popescu. Composition-oriented servicediscovery. In
Proceedings of the 4th Workshop on Software Composition (SC’05), 2005.

27

[8] Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and KrysKochut. Quality
of service for workflows and Web service processes.Journal of Web Semantic, 2004.

[9] The DAML Services Coalition. Bringing semantics to web services: The owl-s
approach. InProceedings of the First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC’04), 2004.

[10] H. V. Dijk, K. Langendoen, and H. Sips. ARC: a bottom-up approach to negotiated
QoS. InIEEE Workshop on Mobile Computing Systems and Applications (WMCSA
2000), December, 2000.

[11] J. Flinn, S. Y. Park, and M. Satyanarayanan. Balancing performance, energy, and
quality in pervasive computing. InProceedings of IEEE ICDCS, 2002.

[12] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer.Model-based
verification of web service compositions. InIEEE International Conference on
Automated Software Engineering, 2003.

[13] S. Gurun, C. Krintz, and R. Wolski. NWSLite: a light-weight predictionutility for
mobile devices. InProceedings of ACM MobiSys, 2004.

[14] Valerie Issarny, Daniele Sacchetti, Ferda Tartanoglu, FrancoiseSailhan, Rafik
Chibout, Nicole Levy, and Angel Talamona. Developing ambient intelligence systems:
A solution based on web services.Journal of Automated Software Engineering, 2004.

[15] Valerie Issarny Jinshan Liu. Qos-aware service location in mobile ad-hoc networks.
In IEEE International Conference on Mobile Data Management (MDM’04), 2004.

[16] M. Koshkina and F. van Breugel. Verification of business processes for Web services.
Technical report, York University, 2003.

[17] Shalil Majithia, David W. Walker, and W. A. Gray. A framework for automated
service composition in service-oriented architecture. In1st European Semantic Web
Symposium, 2004.

[18] Ryusuke Masuoka, Bijan Parsia, and Yannis Labrou. Task computing - the semantic
web meets pervasive computing. In2nd International Semantic Web Conference
(ISWC2003), 2003.

[19] D. Menasce. Composing Web services: A QoS view.IEEE Internet Computing, Vol.
8.(No. 6), November/December 2004.

[20] Sonia Ben Mokhtar, Nikolaos Georgantas, and Valerie Issarny. Cocoa: Conversation-
based service composition in pervasive computing environments. InProceedings of
the IEEE International Conference on Pervasive Services (ICPS’06), 2006.

[21] Sonia Ben Mokhtar, Anupam Kaul, N. Georgantas, and Valerie Issarny. Efficient
semantic service discovery in pervasive computing environments. InProceedings
of ACM/IFIP/USENIX 7th International Middleware Conference (Middleware’06),
2006.

[22] Sonia Ben Mokhtar, Anupam Kaul, Nikolaos Georgantas, and Valerie Issarny. Towards
efficient matching of semantic web service capabilities. InProceedings of the
workshop of Web Services Modeling and Testing (WS-MATE’06), 2006.

28

[23] Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas, and ValerieIssarny. Qos-aware
dynamic service composition in ambient intelligence environments. InProceedings of
the 20th IEEE/ACM International Conference on Automated Software Engineering
(ASE’05), 2005.

[24] D. Narayanan and M. Satyanarayanan. Predictive resource management for wearable
computing. InProceedings of ACM MobiSys, 2003.

[25] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma. Meteor-s
web service annotation framework. InProceedings of the 13th conference on World
Wide Web, 2004.

[26] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H.
Campbell, and Klara Nahrstedt. Gaia: a middleware platform for active spaces.
SIGMOBILE Mobile Computing and Communication Review, 6(4), 2002.

[27] B. Sabata, S. Chatterjee, M. Davis, J. J. Sydir, and T. F. Lawrence. Taxonomy for QoS
specification. InProceedings of Workshop on Object-oriented Real-time Dependable
Systems (WORDS 97), Newport Beach, California, USA, 1997.

[28] Joao Pedro Sousa and David Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. InProceedings of the IFIP 17th
World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference onSoftware
Architecture, 2002.

[29] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another workflow language.
Information Systems, 2004.

29

