
HAL Id: hal-00418717
https://hal.archives-ouvertes.fr/hal-00418717

Submitted on 21 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Hybrid Data Transfer Optimization Technique for
GPGPU

Eric Petit, François Bodin, Romain Dolbeau

To cite this version:
Eric Petit, François Bodin, Romain Dolbeau. An Hybrid Data Transfer Optimization Technique
for GPGPU. Compilers for Parallel Computers workshop (CPC2007), 2007, Lisbon, Portugal. �hal-
00418717�

https://hal.archives-ouvertes.fr/hal-00418717
https://hal.archives-ouvertes.fr

An Hybrid Data Transfer Optimization Technique for GPGPU∗

Eric Petit, Francois Bodin† and Romain Dolbeau‡

eric.petit, francois.bodin@irisa.fr, romain.dolbeau@caps-entreprise.com

25/04/2007

Abstract

Graphical Processing Units (GPU) can provide tremendous computing power. Current NVidia and
ATI hardware display a peak performance of hundreds of gigaflops. However, because of the data
transfer speed between CPU and GPU is limited, those devices are difficult to use to accelerate numerical
applications. In this paper we propose a software hybrid technique for automatically optimizing data
transfer based on static and dynamic information on data accesses.

1 Introduction

Because of their high potential computing power, the use of graphical processing units (GPUs) looks very
attractive to speed up programs. Furthermore new programming environments such as Cuda [5], Rapid-
Mind [6], PeakStream [7] or CTM [10] have made the use of GPUs for general purpose programming easier
and more efficient (but not portable). These devices achieve high performance with highly parallel microar-
chitecture and fast internal memories. This is illustrated in Figure 1. Data transfers are implemented using
the PCI express bus or in more coupled systems via the Hypertransport channel [8].

Currently, the use of GPUs as hardware accelerators to speedup applications is limited by the commu-
nication involved between the main memory and the GPU memory. The communication overhead is so
high that it is not worthwhile to remotely execute a computation intensive kernels on a GPU. The issue of
optimizing the communication is usually left to the programmer in an error prone process. The programmer
must decide when to prefetch, update or download the remote data while ensuring that the GPU data are
up to date when the remote procedure call is performed on the GPU.

In this paper, we study an automatic technique for software advance data uploads insertion for kernel
that are remotely executed on a GPU. The proposed technique relies on an hybrid approach that mixes
speculative data collected via the thread analysis environment Astex [1] and usual static program analysis.
We apply this technique to C programs and deal with pointer aliasing issues.

This technique is implemented using an API denoted Heterogeneous extension to OpenMp [2] (HOMP).
HOMP allows to specify remote data upload and remote procedure call to GPU implemented functions in
a portable fashion, keeping the user program independent from the hardware accelerator used. We assume
that the computation intensive kernels remotely executed on the GPU has been provided via specialized
code generation [11, 1] or hand programmed using the GPU specific programming environment.

The paper is organized as follow. In Section 2 we present the programming interface based on pragma
HOMP. This API described, via pragma, which functions can be executed on the GPU. These functions
exist in two versions. The regular C versions with the pragma and a GPU versions that can be remotely
called via HOMP runtime. Starting from the application program enhanced with pragma we use Astex,
described in Section 3, a speculative thread extraction environment to compute speculative data on the

∗This work is partially funded by the SARC, FAME2 and PARA projects
†Irisa, campus universitaire de Beaulieu, 35042 Rennes, France
‡Caps entreprise, Immeuble Gallium, 80, avenue des Buttes de Coesmes, 35700 Rennes, France

1

remote functions parameters. Using these speculated data, we show in Section 4 how they can be used to
automatically optimize data transfers. In the next section, we report preliminary results obtained using this
technique.

General
purpose
 processor
cores

Main
memory GPU

Memory

GPU
cores

Remote
dataApplication

data

upload
remote
data

dowload
remote
data

Remote
procedure

call

Figure 1: Use of GPU as an hardware accelerator for general purpose applications.

2 HOMP API

Homp [2] is an extension to OpenMP [9] pragma to handle hardware accelerators. It allows using OpenMP
to exploit general purpose multicores while simultaneously using GPUs or other hardware accelerators. The
use of pragma helps to keep the program portable. The Homp pragma are translated into calls to the Homp

runtime that deals with resource allocation, data transfers and the remote procedure calls on the GPU. This
runtime is compatible with OpenMP runtime.

Each kernel to be executed on the hardware accelerator is implemented as a codelet. A codelet is a pure

function (i.e. The function always evaluates the same result value given the same argument value(s). It
has no side effects, no I/O). It should also be suitable for the target hardware device capabilities (e.g. single
precision float data for GPU, etc.). Because argument values must be transfered to the hardware accelerator
there are constraints on the codelet arguments:

1. Arguments are scalars, arrays or pointers.

2. Array and pointer arguments are followed by an integer argument that gives the size of each dimension
of the array or pointer argument. For instance, an argument A[][] is followed by two integer arguments
that give the size of the first and second dimensions of A.

The codelet directive declares a function (mark 1 in Figure 2) that is to be performed by an available
hardware accelerator. If there are more than one hardware target, multiple codelet directives can be added.
The implementation of the codelet for the GPU is automatically or by hand produced. Data transfers and
synchronizations instructions does not have to be inserted close to the call to a codelet. A callsite directive
specifies where to use the hardware implementation of the codelet in a program point (mark 2 in Figure 2).

2

#pragma homp csmain codelet, target GPU, ...
void MxV(float *y, int n1,
 float *m, int n2, int n3,
 float *x, int n4){
 ...
}

void main(){
 float X[...][...], Y[...][...], M[...][...];
 int i;
 while(c1){
 ...
 while(c2){
 ...
 for (i=0; i < n;i++)){
 #pragma homp csmain callsite
 MxV(Y[i],n,M,n,n,X[i],n);
 }

 }
 M[...] = ...; // update M
 }

}

upload
X and M
in GPU

#pragma homp csmain codelet, target GPU, ...
void MxV(float *y, int n1,
 float *m, int n2, int n3,
 float *x, int n4){
 ...
}

void main(){
 float X[...][...], Y[...][...], M[...][...];
 int i;
#pragma csmain advancedload
 calleeArg=m asynchronous
 while(c1){
 ...
 while(c2){
 ...
 for (i=0; i < n;i++)){
 #pragma homp csmain callsite,
 advancedload:calleArg=m
 MxV(Y[i],n,M,n,n,X[i],n);
 }

 }
#pragma csmain advancedload
 calleeArg=m asynchronous
 M[...] = ...; // update M
 }

}

upload
X
in GPU

upload
M
in GPU

upload
M
in GPU

Non optimized code Optimized code

1

2

1

2

4

3

Figure 2: HOMP pragma example.

A label (csmain in blue in Figure 2)) is given by the codelet and the callsite directives to identify which
directives apply to which call site.

The advancedload directive shown on the marks 3 and 4 of Figure 2 is used to specify that the remote
data can be uploaded at the program point where the directive is inserted. If an advancedload is added the
data is not uploaded when reaching the codelet call. In this example, the matrix M is uploaded on the GPU
only when leaving the inner loops which are assumed not to modify matrix M.

In a similar way to the advancedload, getting data back from the hardware accelerator can be optimized.
The delegated-store directive aims at this purpose. It is placed into the code where the data transfer is
completed for one of the outputs of the codelet. In this paper we do not address the issue for delegated-store
and assume that the result is needed as soon as the codelet execution returns. However, the technique
presented in this paper can also be used to delay the synchronization with the end of the codelet execution.
The reader interested in more details about Homp can refer to [2].

In the remainder of the paper, we present a technique to automatically insert the advancedload directives
for all input parameters of a codelet.

3 Computing Speculative Data using Astex

Astex is a tool that computes ”speculative threads” in C programs, based on execution traces. Astex

3

does successive steps composed of instrumentation, execution, and profile analysis. In this study, we use the
memory access model built by Astex. This model has two main components:

1. Abstract memory sets describing data objects allocated by the program.

2. Memory access descriptions indicating to which abstract memory sets an access was made, and the
range of acceded data for each abstract memory set.

These data are collected on a program by instrumenting the source code and running the application for
some input data. As a consequence, when optimizing the code we have to treat those data as speculative 1.
In the remainder of this section we define these two components. The reader interested in more details can
refer to [1].

3.1 Astex Program Working Set and Access Description

A memory block b is defined by a memory address and a size denoted by a couple (@,S). A block is created
in the program whenever a new object is allocated.

To identify blocks in the program we use abstract memory sets (AMS) that are defined by a program
creation point, a content type, a free program point and a set of memory blocks. There is no overlap between
memory blocks and a block can only belong to one AMS. The content type can be value or address or both.

For global variables the program creation point is defined as the beginning of the main program, the free
program point is the end of the program. For dynamically allocated memory, the malloc statement is the
program creation point. If a unique free statement can be identified, it is the free program point otherwise
the end of the program is used.

For stack variables the program creation point and a free program point are respectively the function
entry and exit points for a given call site. The blocks corresponding to stack variables are also stacked in
the abstract memory sets.

The set of abstract memory sets available at a program point during the execution defines the program
working set. An abstract memory set which all memory blocks have been freed is removed from the program
working set.

3.2 Astex Memory Access Description

An access to memory, denoted (@,R|W, s), is defined by the address (@), the access mode (read or write,
R|W), and the size of the element (s). An abstract reference (AR), for a program statement is constructed
using the real accesses (obtained by instrumentation of the source code) . For each access, the AMS and the
corresponding memory block are determined. According to the block, the minimum and maximum offsets
are computed for the set. There is a unique abstract reference for each memory access expression in the
program. The abstract reference is defined by a tuple (id, {(abstract memory set, block, offset min, offset
max, R|W) }) where the id is the identifier of the expression.

In the Section 4, we show how, using these speculative data, we insert the advance load directive.

4 Data Transfer Optimization

Data transfer optimization aims at prefetching data as soon as possible and at avoiding to load data on the
GPU that are already up to date. Furthermore, updating multiple times the remote data before the codelet
is called must be avoided, to save memory bandwidth. This is a difficult task since data modifications (taking
into account pointer aliasing) and control flow must considered.

The technique we propose relies on an hybrid, pure software, scheme that mixes static analysis of data
accesses and speculative information provided by Astex. The proposed scheme mixes two policies:

1We assume here that the input data have a low impact on code behavior

4

LATE upload policy: This policy is used when the parameter upload has a strong chance to be redundant
(follows at runtime by another one).

ASAP upload policy: This policy aims at moving the upload point at the last more likely modification
of the remote data. It is used only if it does not increase the number of executed uploads.

To illustrate these policies, let us consider the example in Figure 3. We assume here, for the sake of
simplicity that the data structure corresponding to parameter M is unique2. The choices between LATE and
ASAP policy for each program point from 1 to 5 in this example are the following:

1: This is a sure modification of parameter M on an infrequent path. To avoid multiple uploading of the data
in 3, a LATE upload policy is chosen. It should be noted that when possible the upload is performed
asynchronously. The call to doUpload() is either implemented using Homp pragma or by direct call
to Homp runtime.

2: In this case, there may be a modification of M (this could not be determined statically and Astex did
not provide speculative information about it). Because this is an unfrequent path (uploading the
parameter just before doing the remote procedure call won’t have a large impact on performance) and
this upload may be redundant, because of upload 4, a LATE upload policy is chosen. Furthermore, the
LATE policy implementation reduces the runtime overhead. The change(M) condition is build using
the Astex AMS (See Section 3.1).

3: This is a sure modification of parameter M on a frequent path and there is a no further upload on one of
the path from 3 to the remote call, except 4 but with a very low probability as it is speculated M not
acceded. Indeed we can perform the upload ASAP.

4: In this case, we have speculative information indicating that M is not modified here. But because this
could not be proved statically, a LATE upload is inserted.

5: This is similar to case 3.

The proposed algorithm works in three steps. The first step inserts uploads according to a classification of
the memory accesses. The second step removed redundant uploads or moves them out of the loops. The last
step converts some ASAP upload to LATE upload to limit potential runtime overhead taking into account
paths probability in the program.

S Static Status D Dynamic Status

1 Access to the parameter 1 access to the parameter
2 No access to the parameter 2 Did not see an access to the parameter
3 undetermined 3 no information

Table 1: Static and dynamic status, not all association are possible, (1,2) and (2,1) are impossible

The classification of the memory accesses is performed according to the static and dynamic information
(see Section 3) collected on memory accesses for a given codelet parameter. Each access is characterized
with a pair: (Stat status, Dyn status). The values for Stat status and Dyn status are listed in Table 1.
The static data are collected using usual data flow analysis technique [13] For each possible pair, the first
step of the proposed technique performs the following actions:

1. (1, 1 or 3): Static information indicates that the parameter is modified, an ASAP upload is inserted
after the data access.

2. (2, 2 or 3): This access does not modify the parameter in any case. No action is performed.

2If this not the case, the call is duplicated and guards are inserted.

5

rcall funcHWA(M,...)

M[]=

?

M[]=

?

frequent
paths
in red

if (needUpload){
 doUpload() // late upload
} else {
 checkUploadCompletion()
}

doUpload()

doUpload()
// ASAP
// upload

M[]=

if (change(M))
 needUpload = true

if (change(M))
 needUpload = true

needUpload = true

loop entry

1

23

4

5

program
entry

program
exit

Figure 3: Upload strategy example.

3. (3,1): An ASAP upload with a dynamic check for the parameter is inserted, based on the speculative
data.

4. (3,2): The dynamic data does not report a change of the codelet parameter. A LATE upload of the
data with a dynamic check for the parameter access is inserted.

5. (3,3): We don’t know anything about this access, a LATE upload of the data with a dynamic check
for the parameter access is inserted.

6. (1,2) or (2,1): impossible case.

Once this initial step is performed, as illustrated in the left column of Figure 4, the second step moves
uploads outside loops and removes LATE and ASAP uploads that are redundant due to existing non con-
ditional ASAP uploads on the paths between the uploads to remove and the remote codelet call. This is
illustrated in the middle column of Figure 4. ASAP upload X and Y are moved at the exit of the loops
where they were.

The last step converts ASAP upload to LATE upload if there is a strong probability to encounter an
ASAP upload on the paths to the remote codelet call. The probability of encountering an ASAP upload is
obtained using profiling data such as presented in [12]. If the probability to have another upload at runtime
before reaching the codelet call is above a threshold (or instance 80%), the ASAP upload is converted to a
LATE upload. It should be noted that in these cases, the ASAP upload is not totally redundant since it

6

1 . I n i t i a l i s a t i o n 3 . R e p l a c e m e n t2 . S i m p l i fi c a t i o n

(3 , 3)

I n i t s t e p M o v e F i n a l s t e p

S u p p r e s s i o n
(2 , 2)(3 , 1) (3 , 3)(2 , 2)

(2 , 2)(3 , 1) C o d e l e tc a l l(1 , 1)(2 , 2)

A S A P 1 (2 , 2)
(2 , 2)(3 , 1) (3 , 3)(2 , 2)

(2 , 2)(3 , 1) C o d e l e tc a l l(1 , 1)(2 , 2)
p = 0 . 8 p = 0 . 2(2 , 2)L A T E 4 (2 , 2)(3 , 1) (3 , 3)(2 , 2) (2 , 2)(3 , 1) c o d e l e t(1 , 1)(2 , 2)

(2 , 2)
(2 , 2)(3 , 1) (2 , 2) (2 , 2)(3 , 1) c o d e l e t(1 , 1)(2 , 2)
(2 , 2)A S A P 2

A S A P 3
A S A P 2 L A T E 1

L A T E 4A S A P 1
A S A P 3A S A P 2
A S A P 1A S A P 2 L A T E 4
A S A P 3

X
X

Figure 4: Upload point simplification and LATE upload insertion.

exists paths reaching the codelet call that may not upload the new value of the parameter. This step of the
algorithm is illustrated in the right column of Figure 4.

7

5 Preliminary Experiments

To experiment the proposed strategy we use a simple benchmark based on a matrix times a vector kernel.
The GPU used is an NVIDIA 8800 board. The host machine is a Pentium D, 2.80GHz machine. The
connection between the GPU and the main processor is based on a PCIe bus. This benchmark is sketched
in Figure 5. On this Figure, at mark 1, is the matrix times a vector kernel. The GPU kernel is implemented
using CUDA [5]. At mark 2 is the main loop. At each iteration of this loop, the new vector is multiplied
by the matrix. The matrix is updated when cond1 or cond2 is true. For each remote call to the kernel,
the input and output vectors are respectively uploaded and downloaded. At mark 3, is the LATE upload
of the matrix. At mark 5 is an ASAP upload of the matrix because cond1 is frequently true. The update
performed in the conditional guarded by cond2 could not be resolved statically and no dynamic information
is available, the algorithm inserts a LATE upload.

#pragma homp matvec codelet, output=outv, target GPU
void matvec(int n, int m,float *inv, int N1,
 float *inm, int N2,float *outv, int N3) {
 int i, j;
 ...
}
int main(int argc, char **argv) {
 ...

 for (k = 0 ; k < iter ; k++) {
 ...
 if (uploadmat) {
 #pragma homp matvec advancedload, calleeArg=inm
 uploadmat = 0;
 }
 #pragma homp matvec callsite, advancedload:calleeArg=inm,
 asynchronous
 matvec(n, m, (inc+(k*n)), n, inm, n*m, (outv+(k*m)), m);
 if (cond2){
 for (i=0; i<m; i++){ // update the matrix
 *pt= ...; pt++;
 }
 uploadmat = 1;
 }
 if (cond1) {
 for (i=0; i<m; i++) { // update the matrix
 inm[i*n +m] = ...;
 }
 #pragma homp matvec advancedload, calleeArg=inm
 uploadmat = 0;
 }

 }
 ...
 }

3

2

4

6

1

5

Figure 5: Synthetic benchmark based on a matrix times a vector kernel.

The performance of the code is given in Table 2. The matrix is a 4096x4096 single precision float-
ing point array. The code reference code (Pentium only column) is compiled with the Intel compiler
icc -O2 -march=pentium4 -mcpu=pentium4 -vec-report3 (vectorization was effective). When modifi-
cations of the matrix happen every 10 iterations (frequency 0.1 for the conditional cond1) there is a very
marginal performance gain (6%). The best speedup achieved is 1.9 when there is no modification of the ma-
trix. When modifications occur every 50 iterations (frequency 0.02 for the conditional cond1) the speedup
is 1.7. This is a good result since the matrix time a vector does not have a very high computing density

8

Matrix update fre-

quency with cond1

Matrix update fre-

quency with cond2
Pentium only GPU+Pentium

0.1 0.01 7.86 sec. 7.36 sec.
0.1 0.005 7.86 sec. 7.18 sec.
0.02 0.01 7.86 sec. 4.73 sec.
0.02 0.005 7.86 sec. 4.53 sec.
0. 0. 7.86 sec. 3.81 sec.

Table 2: Performance, in seconds, of the synthetic benchmark for 512 iterations of the outer loop.

compared to a matrix time a matrix kernel.

6 Conclusion

In this paper, we have presented preliminary work for automatically optimizing data transfers when using a
GPU as an hardware accelerator for numerical applications. This is a key issue for achieving performance
gain. We use Homp and Cuda as implementation layers for communication and exploitation of the GPU.
The proposed hybrid scheme can handle C code without requiring complex and unreliable pointer analysis
thanks to the use of speculative data. To our knowledge, very few previous works on the usage of GPU
in the context of general programming have considered the communication overhead issues. Preliminary
performance results show that it is possible to get speedup with the proposed strategy. However, the current
speed of the PCIe bus used to transfer the data between the CPU and the accelerator is still very slow and
limits the potential of the approach for most applications. Current trends in the multicore technology let us
believe that communication costs will be decreasing making the use of hardware accelerators efficient on a
large range of programs.

References

[1] Eric Petit and Francois Bodin. Astex project web site. www.irisa.fr/CAPS/projects/astex/index.htm.

[2] Romain Dolbeau and Francois Bodin. Homp description documentation. http://www.caps-
entreprise.com.

[3] J. D. Collins, H. Wang, D. M. Tullsen, C. Huges, Y. Lee, D. Lavery and J. P. Shen Speculative
Precomputation: Long-range Prefetching of Delinquent Loads. ISCA 01, ACM SIGARCH Computer
Architecture News, 2001.

[4] A. D. Brown and T.C. Mowry and O. Krieger, Compiler-Based I/O Prefetching for Out-of-Core
Applications. ACM Trans. Comput. Syst., vol. 19, New York, NY, USA, 2001

[5] NVIDIA devellopers site, CUDA homepage, http://developer.nvidia.com/object/cuda.html

[6] RapidMind Corp. home page, http://www.rapidmind.net/

[7] Peakstream Corp. home page, http://www.peakstreaminc.com/

[8] Hypertransport consortium home page, http://www.hypertransport.org/

[9] OpenMP web site: http://www.openmp.org/

[10] ATI CTM Guide, Technical Reference Manual,
http://ati.amd.com/companyinfo/researcher/documents/ATI CTM Guide.pdf

9

[11] Caps entreprise white paper, Build High Performance Libraries with Outstanding Stability,
http://www.caps-entreprise.com/documentation/capstuner libraries.pdf

[12] Thomas Ball and James R. Larus, Optimally profiling and tracing programs, POPL ’92 Proceedings of
the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Albuquerque,
New Mexico, United States, 1992

[13] Steven S. Muchnick Advanced Compiler Design and Implementation, Morgan Kaufmann, 1997

10

