
HAL Id: inria-00418930
https://hal.inria.fr/inria-00418930

Submitted on 22 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements on Learning Tetris with Cross Entropy
Christophe Thiery, Bruno Scherrer

To cite this version:
Christophe Thiery, Bruno Scherrer. Improvements on Learning Tetris with Cross Entropy. Interna-
tional Computer Games Association Journal, ICGA, 2009, 32. �inria-00418930�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50142966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00418930
https://hal.archives-ouvertes.fr

Improvements on learning Tetris with the Cross-Entropy method 23

NOTES

IMPROVEMENTS ON LEARNING TETRIS WITH CROSS-ENTROPY

Christophe Thiery1 and Bruno Scherrer2

Vandoeuvre-l̀es-Nancy Cedex, France

ABSTRACT

For playing the game of Tetris well, training a controller bythe cross-entropy method seems to be
a viable way (Szita and L̋orincz, 2006; Thiery and Scherrer, 2009). We consider this method to
tune an evaluation-based one-piece controller as suggested by Szita and L̋orincz and we introduce
some improvements. In this context, we discuss the influenceof the noise, and we perform experi-
ments with several sets of features such as those introducedby Bertsekas and Tsitsiklis (1996), by
Dellacherie (Fahey, 2003), and some original features. This approach leads to a controller that out-
performs the previous known results. On the original game ofTetris, we show that with probability
0.95 it achieves at least910, 000 ± 5% lines per game on average. On a simplified version of Tetris
considered by most research works, it achieves35, 000, 000 ± 20% lines per game on average. We
used this approach when we took part with the program BCTS in the 2008 Tetris domain Reinforce-
ment Learning Competition and won the competition.

1. INTRODUCTION

The Tetris game (see Fahey (2003) for a detailed description) was chosen as a benchmark problem by many
researchers because it is known to be computationally hard to solve. It contains a huge number (about2200 ≃
1059) of board configurations3 and finding the strategy that maximizes the average score is an NP-complete
problem (Demaine, Hohenberger, and Liben-Nowell, 2003). An overview of previous Tetris works such as hand-
written controllers, reinforcement learning approaches and optimization algorithms, as well as a list of all Tetris
features known from the literature, are provided in (Thieryand Scherrer, 2009). In this note, we explain how,
based on ideas from successful works, we built a performant Tetris controller, which in particular won the Tetris
domain of the 2008 Reinforcement Learning Competition.

The note is organised as follows. The rest of this section deals with the Tetris game rules usually considered by
the research works. Section 2 provides some insight into Dellacherie’s program, the best Tetris controller known,
which is a hand-written controller. In Section 3, we consider the recent work of Szita and Lőrincz (2006) about
the cross-entropy method for Tetris and deepen their empirical analysis. Eventually, Section 4 describes how we
combined the key features of Dellacherie and the method of Szita and L̋orincz in order to obtain a one-piece Tetris
controller that outperforms, to our knowledge, the currently known Tetris controllers. In Section 5, we provide
our conclusions and indicate directions for future work.

As most researchers, we focus on a simplified version of Tetris. First, we only considerone-piece controllers,
i.e., controllers that use knowledge of the current board and the current piece only. A controller that also uses
knowledge of the next piece, as it is possible in the originalTetris setting, can make decisions that take advantage
of the combination of pieces, and is called atwo-piece controller. It is relatively straightforward to extend works
on one-piece controllers in order to build two-piece controllers: experimental data suggests that the performance

1thierych@loria.fr
2LORIA - INRIA Lorraine, Campus Scientifique BP 239, 54506 Vandœeuvre-l̀es-Nancy CEDEX, FRANCE. Email: scherrer@loria.fr
3This number is an estimate because it includes a few impossible configurations (see Fahey (2003)).

24 ICGA Journal March 2010

of a controller is improved by several orders of magnitude (Fahey, 2003). In this note, for simplicity, we only
consider one-piece controllers.

In the original game (as specified by Fahey (2003)), the current piece appears in the playing area and falls
gradually. The game is over when the piece has not enough space to appear in the top of the area. As in
most works (Tsitsiklis and van Roy, 1996; Bertsekas and Tsitsiklis, 1996; Kakade, 2001; Lagoudakis, Parr, and
Littman, 2002; Ramon and Driessens, 2004; Farias and van Roy, 2006; Szita and L̋orincz, 2006), we consider a
simplified Tetris setting: the controller only decides in which column and orientation he drops the piece. Doing
so, the game is slightly simplified since the piece does not appear in the playing area until the controller has
decided where to put it. This is as if there were always space above the playing area to set the orientation and
the column where one drops the current piece. It makes an important difference because the entire space of the
board becomes available, including the top most rows. Moreover, we avoid situations where a piece cannot move
from one side of the board to the other because the pile is too high. The simplified Tetris game is easier than the
original game, and a controller is likely to complete more rows.

For a human player, a difficulty of the Tetris game is the fact that the pieces fall quite fast from the top of the
playing area: the small amount of time often makes the decision process hard. This dimension of the problem
does not appear when dealing with artificial players. The controllers we study in this paper are able to play 50,000
to 100,000 moves per second on a nowadays desktop computer. As a consequence, the falling speed of the pieces
is negligible compared to the decision speed of the controllers. Again, as in most works (Tsitsiklis and van Roy,
1996; Bertsekas and Tsitsiklis, 1996; Kakade, 2001; Lagoudakiset al., 2002; Ramon and Driessens, 2004; Farias
and van Roy, 2006; Szita and Lőrincz, 2006), we will ignore the fall of the pieces and only focus on the real
problem, that is, decide where and how one should drop each coming piece.

2. DELLACHERIE’S CONTROLLER

In this section, we provide a brief overview of Dellacherie’s controller. As we will see in the rest of the note, we
used his efficient set of features to improve the results of Szita and L̋orincz (2006) regarding the cross-entropy
method. Dellacherie’s ideas are still valuable for the current researchers.

To our knowledge, the current best one-piece Tetris controller is due to Dellacherie (Fahey, 2003) and has been
tuned by hand. As in most works, his controller relies on an evaluation function that computes a weighted sum
of feature functions to select the best move. The feature functions are some basisfunctions that try to capture
the relevant aspects of a game configuration and they are designed by an expert. Thus, the problem of building a
Tetris controller consists in finding some feature functions and set their weights. Dellacherie created an efficient
set of feature functions, and contrary to reinforcement learning approaches and optimisation algorithms, which
attempt to set the feature weights automatically, he fixed the weights manually by trial and error (see Table
1). Surprisingly, this hand-written controller outperforms those works, including the high performance of Szita
and L̋orincz (2006) that we describe in Section 3. On a total of 56 games, Dellacherie’s algorithm completed
an average score of about660, 000 lines. As the source code of the algorithm is freely available, we reverse-
engineered it and determined the features and their weights. Dellacherie’s evaluation function is the following
linear combination of features:

−l + e−∆r −∆c− 4L−W

where the featuresl, e,∆r,∆c, L andW are detailed in Table 1.

Moreover, note that this measure of660, 000 lines per game was not made on the usual simplified Tetris setting
but on an implementation of the original Tetris game which, as mentioned in Section 1, is harder. On our
implementation of the simplified Tetris as considered by most researchers, Dellacherie’s controller reaches the
average score of5, 200, 000± 20% rows par game4.

4In the rest of the note, we use the notationm±c% to represent confidence intervals valid95% of the time, assuming Tetris scores follow
a geometric law (see Thiery and Scherrer (2009)).

Improvements on learning Tetris with the Cross-Entropy method 25

Feature Id Description Comments
Landing height l Height where the last piece is added Prevents from increasing the

pile height
Eroded piece cells e (Number of rows eliminated in the last

move) × (Number of bricks eliminated
from the last piece added)

Encourages to complete rows

Row transitions ∆r Number of horizontal full to empty or
empty to full transitions between the cells
on the board

Makes the board homogeneous

Column transitions ∆c Same thing for vertical transitions
Holes L Number of empty cells covered by at least

one full cell
Prevents from making holes

Board wells W
P

w∈wells
(1 + 2 + · · · + depth(w)) Prevents from making wellsa

Table 1: Features proposed by Dellacherie.

aA well is a succession of unoccupied cells in a column such as their left cells and right cells are both occupied. Deep wells are punished
because they force to wait for a vertical bar.

Feature Id Description Comments
Column height hp Height of thepth column of the board There are P such features

whereP is the board width
Column difference ∆hp Absolute difference|hp − hp+1| be-

tween adjacent columns
There areP − 1 such features
whereP is the board width

Maximum height H Maximum pile height:maxp hp Prevents from having a big pile
Holes L Number of empty cells covered by at

least one full cell
Prevents from making holes

Table 2: Features introduced by Bertsekas and Tsitsiklis (1996).

3. THE SZITA AND L ŐRINCZ APPROACH

Even with hand-chosen weights, Dellacherie’s controller has so far given the best results (Thiery and Scherrer,
2009). Then, a natural choice is to try to tune Dellacherie’sweights automatically and this is what we do with the
cross-entropy method.

The cross-entropy method currently seems to be one of the most efficient algorithms for tuning the weights of a
Tetris evaluation-based controller. Szita and Lőrincz (2006) showed that it outperforms the previous reinforce-
ment learning works by several orders of magnitude. In this section, we describe the cross-entropy method (in
Subsection 3.1) and then explain how Szita and Lőrincz applied it to Tetris (in Subsection 3.2). We reproduce
their experiment and make slightly different observationsabout the noise parameter, which is crucial for practical
efficiency.

3.1 The Cross-Entropy Method

We begin by presenting the principles of the cross-entropy method. The following overview is inspired by the
description made by Szita and Lőrincz (2006). A more in-depth description of this general purpose optimization
algorithm can be found in De Boeret al., (2004) and Chaslotet al. (2008). Cross-entropy is a general stochastic
iterative algorithm that tries to solve an optimization problem of the form:

w∗ = arg max
w

S(w)

whereS is a function we want to maximize andw is a parameter to optimize (typically a vector).

The principle of the cross-entropy method is to iterate on a distribution of solutions instead of a single solution.
We consider a family of parameterized distributionsF (for example the gaussian distributions) and we want to
determine a probability distributionf ∈ F which generates solutionsw close to the optimal onew∗. At each
iterationt, we consider a current distributionft ∈ F that generates random solutionsw and we want the next
distributionft+1 ∈ F to produce better solutions. To do this, we consider that a solutionw is a good solution if its

26 ICGA Journal March 2010

value is greater than a certain thresholdγt, i.e., if S(w) > γt. Let gγt
be the uniform probability distribution that

generates solutions with values greater thanγt. gγt
does not belong toF in general, so we search the distribution

ft+1 ∈ F being as close as possible togγt
, with respect to thecross-entropy measure5 (de Boeret al., 2004).

For many kinds of distribution familiesF , this distributionft+1 can be estimated from examples generated by
the current distributionft. For example, if we consider the case whereF is the family of gaussian distributions,
the gaussian distribution that is the closest togγt

is the one characterized by the mean and the variance of the
distributiongγt

. We can estimate these parameters if we draw samples from thedistributionft and select the ones
that are above the thresholdγt, that are the best ones.

The cross-entropy method we will consider in this note is detailed in Algorithm 1, and a graphical illustration is
shown in Figure 1. Overall, it consists of repeating the following steps.

• We generateN samples with the current gaussian distributionft.

• We evaluate each of theseN sampled vectors with respect toS.

• We select a proportionρ ∈ [0, 1] of the best solutions (this is equivalent to settingγt at a certain threshold).

• We set the parameters of the gaussian distributionft+1 to the empirical mean and variance of the selected
best solutions.

Algorithm 1 Noisy cross-entropy method with a gaussian distribution
Inputs:
evaluate(): a function that estimates the function to optimizeS for some vectorw
(µ, σ): the mean and variance of the initial distribution
N : the number of vectors that are generated at each iteration
ρ: the fraction of vectors that are selected
Zt: the noise that is added at each iteration

loop
GenerateN vectorsw1, w2, . . . , wN fromN (µ, σ2)
Evaluate each vector usingevaluate()
Select the⌊ρ×N⌋ with highest evaluations
µ← (mean of the selected vectors)
σ2 ← (variance of the selected vectors)+Zt

end loop

In the detailed description of Algorithm 1, the functionevaluate() that is used to evaluate each of the vectors can
be set toS, or it can be an estimate ofS (if S takes too much time to compute exactly). Also, at each iteration, a
noise term Zt is added to the variance update. WhenZt is not zero, the algorithm is called noisy cross-entropy (de
Boeret al., 2004). In practice, one can see this noise term as a way to avoid too fast convergence to a bad local
optimum.

In spirit, cross-entropy is close to evolutionary algorithms. It is an iterative procedure that deals with a set of
candidate solutions, or individuals. At each iteration, the best individuals are selected, and new solutions are
generated from these ones. The main particularity of cross-entropy is the way the new individuals are generated.

3.2 Application to Tetris

Szita and L̋orincz (2006) applied the cross-entropy method with a gaussian distribution to the problem of Tetris.
They consider a evaluation-based controller based on a set of features introduced by Bertsekas and Tsitsiklis
(1996) since these features had already been used in severalworks (Bertsekas and Tsitsiklis, 1996; Kakade,
2001; Farias and van Roy, 2006). Such a controller bases its decisions on the following evaluation function:

10∑

i=1

wihi +

9∑

i=1

w10+i∆hi + w20H + w21L,

5The cross-entropy measure (orKullback-Leibler distance) defines a notion of distance between two probability distributions.

Improvements on learning Tetris with the Cross-Entropy method 27

1. Start with a gaussian distributionN (µ, σ2). 2. GenerateN vectors with this distribution.

3. Evaluate each vector withevaluate() and
select a proportionρ of the best vectors. These
vectors are represented in gray.

4. Calculate the mean and the variance of the
best vectors.

5. Add a noise term to the variance in order to
avoid too fast convergence to a local optimum.

6. These mean and variance characterize a new
gaussian distribution that will generate vectors
for the next iteration.

Figure 1: A graphical representation of the noisy cross-entropy method for optimizing a two-dimensional vector.
The gaussian distribution is represented with a black filledcircle for the mean and an ellipse for the variance.

28 ICGA Journal March 2010

where the featureshi,∆hi,H andL are detailed in Table 2, and wherew = (w1, . . . , w21) is the vector of
paramaters to tune. Naturally for this application, the functionw 7→ S(w) to optimize is the expected mean score
achieved by the corresponding controller. Szita and Lőrincz start with a gaussian centered atµ = (0, 0, . . . , 0)
with varianceσ2 = (100, 100, . . . , 100). At each iteration, they generateN = 100 vectors and evaluate each
of them by playing one game. They select the10 best vectors (ρ = 10%) in order to generate a new gaussian
distribution. After each iteration, they play30 games with the mean weights of the new distribution in order to
obtain a learning curve representing the evolution of performance.

In the experiment of Szita and Lőrincz, theevaluate() function is the score of asingle game. As stated in Thiery
and Scherrer (2009), Tetris scores have a large deviation, so it is clear that this evaluation is not accurate. With
our implementation, we tried to evaluate each vector by playing more games to see whether this was a crucial
choice, and we concluded that it was not. Although we observed that the number of iterations needed to reach
the maximal performance level is lower (which is natural since the selection process is more accurate), we also
noticed that doing so did not lead to better controllers eventually.

Szita and L̋orincz ran the cross-entropy method in three conditions: without any noise (Zt = 0), with a constant
noise (Zt = 4), and with a linearly decreasing noise (Zt = max(5 − t/10, 0)). The resulting experimental data
suggest that the performances were significantly improved when using noise. Their best controller was obtained
with the decreasing noise, reaching an average score of 350,000±37% rows. As the noise parameter seemed to
be crucial for the performance, we conducted some extra experiments, which we discuss now.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 s
co

re
 o

f 3
0

ga
m

es

Iteration number

Reproducing original experiment

Constant noise
Linear decreasing noise

No noise

Figure 2: Our implementation of Szita and Lőrincz’s experiment. Each curve represents the average learning
curve of 10 executions with a given kind of noise (note the logscale). We observe that adding noise improves
significantly the performances. The best average learning curve is obtained with the constant noise.

Szita and L̋orincz executed each of the three experiments (no noise, constant noise, and decreasing noise) only
once because it took a very long time. They report a total execution time of one month. We took a great care
in implementing our Tetris simulator, particularly in terms of optimization, so that we could reproduce their
experiments several times. Indeed, our preliminary tests showed that several executions of the cross-entropy
method with the same parameters could give very different results. We thus decided to run each of the three
experiments by Szita and Lőrincz 10 times. With our Tetris implementation, this took about a week.

The results we obtained are shown in Figures 2 and 3. Figure 2 shows for each kind of noise the average
learning curve of the 10 runs. Our experimental results confirm the observation by Szita and Lőrincz that adding
noise significantly improves the performance. However, we observe that the average performance is the best for
constant noise. Figure 3 shows, for each kind of noise, the detail of the 10 executions. The best performance is
reached with linearly decreasing noise: one of the 10 executions obtains a controller which achieves an average

Improvements on learning Tetris with the Cross-Entropy method 29

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 s
co

re
 o

f 3
0

ga
m

es

Iterations

10 executions without noise

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 s
co

re
 o

f 3
0

ga
m

es

Iterations

10 executions with constant noise

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 s
co

re
 o

f 3
0

ga
m

es

Iterations

10 executions with decreasing noise

Figure 3: The 10 executions of each experiment from Figure 2 (note thelog scale). Without noise (top):
the learning curve stabilizes after iteration 20. The average score reached changes with the executions (100 to
3,000 rows completed).Constant noise (middle):the 10 executions reach equivalent performances eventually,
between 100,000 and 200,000 rows.Linearly decreasing noise (bottom):the 10 executions reach very different
values, from 5,000 to 250,000 rows.

30 ICGA Journal March 2010

score of240, 000±37% rows. With the confidence interval, the results we obtained are consistent with the original
result by Szita and L̋orincz (350, 000 ± 37%). Examining Figure 3 gives more insight into the choice of noise:
all of the 10 executions with constant noise reach similar performances eventually (100, 000 to 200, 000 ± 37%
rows) while with the decreasing noise, the performances seem to vary considerably between several executions
of the cross-entropy method. This suggests that if one only runs once the cross-entropy method (this was the case
in the original work by Szita and L̋orincz and this will be the case in the next section because webuild controllers
that play very long games), the constant noise is more reliable.

4. TOWARDS AN EFFICIENT TETRIS CONTROLLER

We have seen that cross entropy is an efficient method for optimizing the relative weights of a set of features.
As we saw when we mentioned Dellacherie’s performance, it isalso essential to choose a relevant set of features
in order to capture the important aspects of the Tetris game (see Thiery and Scherrer, 2009). Thus, a natural
approach, which we follow in this section, is to consider more elaborate Tetris features than the ones of Bertsekas
and Tsitsiklis (Table 2).

We tried several combinations of features, including Dellacherie’s (Table 1) since they are part of the best Tetris
controller. We also introduced two original features: thehole depth and thenumber of rows with holes. The hole
depth indicates how far holes are under the surface of the pile: it is the sum of the number of full cells above each
hole. This feature aims at removing the holes faster, by punishing for putting a piece above a hole. Our second
original feature counts the number of rows having at least one hole (two holes on the same row count for only
one).

We executed the noisy cross-entropy method with a10 × 20 board under the same conditions as Szita and
Lőrincz (2006). We started with a gaussian centred atµ = (0, 0, . . . , 0) with varianceσ2 = (100, 100, . . . , 100);
we generatedN = 100 vectors at each iteration, and we selected the10 best (ρ = 10%). In accordance with
the discussion in Section 3, each vector was evaluated by playing only one game, and we used the constant noise
(Zt = 4). We launched the algorithm with 4 different feature sets: Dellacherie (D), Bertsekas + Dellacherie (BD),
Dellacherie + Us (DU), and Bertsekas + Dellacherie + Us (BDU). As we expected, the performances achieved are
much better than with Bertsekas and Tsitsiklis’ features only. As the games are much longer, we could only make
one execution for each feature set: even though our implementation is optimized and each of the 4 experiments
was launched on a different machine, these experiments tookabout a month. Figure 4 provides the learning
curves for the 4 feature sets. As in the work of Szita and Lőrincz, the curves represent the average score of 30
games played with the mean controller generated after each iteration. The first observation that we can make is
that our original features have a significant impact on the scores: the corresponding curves (two dashed lines in
Figure 4) are the ones that go the highest. We also observe that when we remove the features of Bertsekas and
Tsitsiklis (the experiments without these features correspond to the two thick lines), the algorithm converges in
fewer iterations (this is not surprising since there are fewer parameters to tune) and reaches similar best scores:
this suggests that once we have Dellacherie’s features, Bertsekas and Tsitsiklis’ features are not informative any
more.

Note that the curves of Figure 4 represent the average score of only 30 games, so that the corresponding confi-
dence interval is quite large (±37%). To evaluate the controllers more precisely, we selected afew controllers
for each feature set (we picked a few weight vectors corresponding to high spikes in the curves of Figure 4) and
made them play more games. Table 3 reports, for the best controller of each feature set, the average score of 100
games in a10×20 board. This corresponds to a confidence interval of±20%. We also made the same controllers
play on a10 × 16 board to obtain a lower bound on the score they would achieve on the original Tetris game6.
On this reduced board, we played 1600 games, which leads to a confidence interval of 5%.

The use of the cross-entropy method for tuning the weight of Dellacherie’s controller is relevant: with respect
to the original hand-chosen parameters, the automaticallytuned parameters improve the performance by about
a factor 3. The best scores are reached with the BDU and DU features, which realize similar performances:
36, 000, 000±20% or35, 000, 000±20% rows on the10×20 board, and910, 000±5% rows on the10×16 board.
The two evaluation functions we obtained are thus better than the previous best playing algorithm, Dellacherie’s,

6Recall that we are playing on the usual simplified Tetris setting considered by most researchers (see Section 1). Playing ona 10 × 16

board with the simplified setting gives a lower bound on the score we would reach on a10 × 20 board of the original Tetris game, because
Tetris shapes do not exceed a height of 4 blocks.

Improvements on learning Tetris with the Cross-Entropy method 31

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 s
co

re
 o

f 3
0

ga
m

es

Iterations

Our controllers

Dellacherie + Us
Bertsekas + Dellacherie + Us

Dellacherie
Bertsekas + Dellacherie

Figure 4: Evolution of the mean score of 30 games with the noisy cross-entropy method with 4 feature sets:
Dellacherie, Dellacherie + Bertsekas, Dellacherie + Us, Dellacherie + Bertsekas + Us. Note the log scale. When
we add our original features (the two dashed lines), the performances are significantly increased. When the
features from Bertsekas are not present (this corresponds to the two thick lines), the algorithm converges much
faster and the (best) performances reached are close.

Features DU BDU D BD
10× 20 board 35, 000, 000 36, 000, 000 17, 000, 000 20, 000, 000
10× 16 board 910, 000 910, 000 530, 000 660, 000

Table 3: Average score of the best controller obtained with the noisy cross-entropy method for each feature set.
100 games were played on a10 × 20 board (the confidence interval is±20%) and 1600 games were played
on a10 × 16 board (the confidence interval is±5%). The features are represented by their first letter: D for
Dellacherie, B for Bertsekas, U for Us. The best performances are obtained with the DU and BDU features.

Feature Symbol Weight
Landing height l -12.63
Eroded Piece Cells e 6.60
Row transitions ∆r -9.22
Column transitions ∆c -19.77
Holes L -13.08
Board wells W -10.49
Hole depth D -1.61
Rows with holes R -24.04

Table 4: The weights of our DU controller (Dellacherie + Us). Average score:35, 000, 000 ± 20% rows. See
Section 4 and Table 1 for the feature definitions.

which makes an average score of5, 200, 000 ± 20% rows on the10 × 20 board. While the BDU controller
contains 28 features, the DU controller only contains 8 features; it is simpler and faster, and thus to be considered
as better. For completeness, we give its weights in Table 4.

32 ICGA Journal March 2010

5. CONCLUSION AND FUTURE WORK

We have revisited the application of the cross-entropy method to the Tetris game as proposed by Szita and Lőrincz.
By reproducing 10 times their original experiment, we have deepened their experimental analysis: in particular,
we observed that the constant noise seems more reliable thanthe linear decreasing noise. Using the expert
knowledge (the feature functions) designed by Dellacherie(Fahey, 2003) and two original features, we built a
Tetris controller that outperforms the previous works.

We used this approach when we took part with our program BCTS in the 2008 Tetris domain Reinforcement
Learning Competition. Our team (“LORIA INRIA - Maia”) won the competition7 with BCTS (Building con-
trollers for Tetris Systems).

Further improving the performance of our controller may be achieved through the design of more complex or
more expressive evaluation functions. A first natural direction could be to exploit other feature functions of
the literature (for instance those of Xtris (Llima, 2005) orFahey (2003)) or to design new ones. A particularly
interesting research direction is to consider the problem of automatically selecting and combining “basic features”
in order to build “high level” efficient features. For instance, one could make such possible combinations part of
the search space, as in the recent genetic programming approach of Girgin and Preux (2007).

In general, an important issue regarding the game of Tetris is the long running time for playing a game (which
is part of the inner loop of the algorithms that tunes the weights). This is more important when the performance
improves, as the games last longer. We see three ways to deal with this problem by reducing the duration of a
game or the number of games played. The first two points may be generalized to other games that Tetris.

• A first idea would be to launch the algorithm on a reduced-sizeboard in order to learn the weights. Doing
so, the games are shorter, we can generate more vectors, evaluate them more carefully and the iterations
can be faster. However, it is not clear whether a controller built on a small board will perform well on
the standard board (10 × 20). We have made a few preliminary experiments, and the performances of
controllers built by playing on smaller boards (like10 × 16) seem to be slightly lower than the scores
achieved by controllers directly built on large boards (10× 20).

• We have seen that to evaluate how good a controller is, it is better to play many games. Instead of playing
random games, we could play a small set of predetermined games, with some sequences of pieces previ-
ously generated. Thus, with this method, we would use the same sequences of pieces to compare different
controllers. In the selection phase of the cross-entropy method, this might select the best samples in a more
reliable way, because we would use the same training set. This training set would have to be representative
of all possible games, so that a controller tuned this way canbe efficient on tests sets.

• To reduce the time needed to evaluate a controller, a promising idea comes from a conjecture by Fahey
(2003). He claims that the length of a Tetris game (and, consequently, the score) can be estimated from
the very first moves. Indeed, consider for each heighth (i.e. h = 0 to 20) the frequency of h, that
is the proportion of time when the pile height was exactlyh, during then first moves. With a good
controller, whenh is big, the frequency ofh is low since high piles are less likely to occur. Fahey observed
experimentally that with his controller this decrease is geometric, and we made experiments that confirm
his observation for other evaluation-based controllers. Consequently, it should be possible to estimate the
parameters of this geometric distribution (they differ foreach controller) by computing a regression, and
deduce the frequency forh = 21, which is related to the average length of the game. For a given controller,
we could thus estimate the mean duration of a game only by playing n moves instead of playing one or
several games. However, our preliminary experiments suggest that such a method has a large variance,
even if we play a large number of moves (such asn = 1, 000, 000 moves).

Further investigations remain to be done in these directions in order to reduce the execution time of the algorithm.

This paper confirms the efficiency of the cross-entropy method for Tetris. Then, a natural question is to determine
in what circumstances the cross-entropy method can performbetter than other optimization algorithms, for the
Tetris game or other problems as well. We are currently considering another optimization approach, the CMA-ES

7Seehttp://2008.rl-competition.org/content/view/51/79/ for a description of the competition andhttp://
2008.rl-competition.org/content/view/52/80/ for the results.

Improvements on learning Tetris with the Cross-Entropy method 33

algorithm (Covariance Matrix Adaptation Evolution Strategy) (Hansen and Ostermeier, 2001), which can be seen
as an alternative to the cross-entropy method. The main difference is that, with CMA-ES, the gaussian distribution
which generates weight vectors uses a covariance matrix. The gaussian distribution used in the cross-entropy
method corresponds to the case of a diagonal covariance matrix: on Figure 1, the axes of the ellipses represented
are always colinear to an axis of the coordinates system. With the CMA-ES algorithm, the ellipse axes may be in
any direction, so the search space of the gaussian distribution is more expressive and the search process may be
more efficient. The interest of using CMA-ES instead of cross-entropy is currently being investigated.

6. REFERENCES

Bertsekas, D. and Tsitsiklis, J. (1996).Neurodynamic Programming. Athena Scientific.

Boer, P. de, Kroese, D., Mannor, S., and Rubinstein, R. (2004). A tutorial on the cross-entropy method.Annals
of Operations Research, Vol. 1, No. 134, pp. 19–67.

Chaslot, G., Winands, M., Szita, I., and Herik, H. J. van den (2008). Cross-Entropy for Monte-Carlo Tree Search.
ICGA Journal, Vol. 31, No. 3, pp. 145–157.

Demaine, E. D., Hohenberger, S., and Liben-Nowell, D. (2003). Tetris is hard, even to approximate.Proc. 9th
International Computing and Combinatorics Conference (COCOON 2003), pp. 351–363.

Fahey, C. P. (2003). Tetris AI, Computer plays Tetris.http://colinfahey.com/tetris/tetris.
html.

Farias, V. and Roy, B. van (2006).Tetris: A study of randomized constraint sampling. Springer-Verlag, Heidel-
berg, Germany.

Girgin, S. and Preux, P. (2007). Feature Discovery in Reinforcement Learning using Genetic Programming.
Technical Report RR-6358, INRIA. http://hal.inria.fr/inria-00187997/fr/.

Hansen, N. and Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies.Evo-
lutionary Computation, Vol. 9, No. 2, pp. 159–195.

Kakade, S. (2001). A natural policy gradient.Advances in Neural Information Processing Systems (NIPS 14),
pp. 1531–1538.

Lagoudakis, M. G., Parr, R., and Littman, M. L. (2002). Least-squares methods in reinforcement learning for con-
trol. SETN ’02: Proceedings of the Second Hellenic Conference on AI, pp. 249–260, Springer-Verlag, London,
UK.

Llima, R. E. (2005). Xtris readme. http://www.iagora.com/˜espel/xtris/README.

Ramon, J. and Driessens, K. (2004). On the numeric stabilityof gaussian processes regression for relational
reinforcement learning.ICML-2004 Workshop on Relational Reinforcement Learning, pp. 10–14.

Szita, I. and L̋orincz, A. (2006). Learning Tetris Using the Noisy Cross-Entropy Method.Neural Computation,
Vol. 18, No. 12, pp. 2936–2941.

Thiery, C. and Scherrer, B. (2009). Building Controllers for Tetris. ICGA Journal, Vol. 32, No. 1, pp. 3–11.

Tsitsiklis, J. N. and Roy, B. van (1996). Feature-Based Methods for Large Scale Dynamic Programming.Machine
Learning, Vol. 22, pp. 59–94.

