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Fingerprinting avané pour l'inventaire deséquipementsRésumé : L'identi�ation des équipements d'un réseau se révèle un atout in-téressant dans le domaine de la supervision et de la séurité des réseaux. Cepapier introduit deux nouvelles méthodes de �ngerprinting reposant sur la on-strution et la omparaison d'arbres syntaxiques. La première met en ÷uvre lesmahines à veteurs supports néessitant une phase d'apprentissage alors quela seonde est totalement non supervisée et se base sur un nouvel algorithmede lassi�ation. De nombreuses expérimentations valident les di�érentes ap-prohes.Mots-lés : �ngerprinting, inventaire, mahines à veteurs de support, arbressyntaxiques



Advaned Fingerprinting For Inventory Management 31 IntrodutionAssuming a protool, devie �ngerprinting aims to determine exatly the devieversion or the protool stak implemented by equipment. It is a hallenging taskovering many domains like seurity or network management. Identifying thedevies helps to get a detailed view of alive equipments on a network for planningfuture ations when needed. For example, if a new seurity �aw is disoveredfor some devie types, pathing them has to be fast due to zero-day attaksbut loating them is not always obvious. Besides, deteting abnormal devieson a network is very useful for disonneting rogue equipment or for trakingopyright infringements. Furthermore, some authentiation systems hek thedevie type like for example on a VoIP (Voie over IP) operator allowing onlysome spei� hardphones. Classial management solutions like SNMP [1℄ byinstalling additional software on equipment (agent) are not always feasible sineoften some mahines are not owned by the ompany itself (personal or partnerompany devies) or their software does not support. Finally, �ngerprintingits ustomers ould be valuable for a ompany. For instane, a VoIP operatoran o�er additional servies to its ustomer partiularly appliations by sendingustomized advertisement based on the brand and the version of the phone.Most of the urrent approahes for devie identi�ation is related to somespei� �eld value of the protool grammar. For instane, the SIP [2℄ VoIPprotool inludes the devie identity in the User-Agent �eld whih an be easilyomitted or modi�ed by an attaker. Hene, new generi tehniques onsideringthe wole message are required. In this paper, eah entire message is onernedand represented as a syntati tree. Relying on underlaying di�erenes of theontent and struture of suh trees, the two main ontributions of this paperare :� a new supervised syntati �ngerprinting tehnique whih aims to preiselyidentify equipment (devie type) (Problem 1 ),� a novel unsupervised syntati �ngerprinting tehnique looking for thenumber of distint devie types running a given protool and its distribu-tion (Problem 2 )The seond method gives general indiation about the devie type distribu-tion for a given protool and an exhibit heterogeneity or homogeneity. Forinstane, when a new servie is deployed, proposing a support servie is a realbene�t for helping the users (ompany networks) or for doing business (oper-ator). Hene, unsupervised �ngerprinting helps to assess its omplexity andits feasibility (number of distint devie versions to support). Generally, fewsoftware are supported or proposed and most users install other ones. Thenumber of devie types used and their distribution is a good hint to evaluatethe seurity risk beause the higher the number of non supported version, thehigher beomes the risk. Moreover, these tehniques are passive i.e., withoutany interation with the �ngerprinted equipment whih avoids to be detetedand unneessary overloading of the network and �ngerprinted devies. Assum-ing majority of messages are not faked, unsupervised �ngerprinting an be thefoundation of the supervised system sine an user an identify manually someomponents of the disovered lusters.The next setion formally desribes the two problems. Setion III depitsthe general operation of our approah. The message representation is detailedRR n° 7044



4 J. François, H. Abdelnur, R. State, O. Festorin setion IV before giving the details of the lassi�ation methods in setion V.Setion VI is dediated to present extensive results. The related work are givenin setion VII before the onlusion and diretions for future work.2 Problem de�nitionWe onsider K di�erent devie types represented by the set D = {d1, . . . , dK}and a testing set of N messages T = {t1, . . . , tN}. If the training stage exists, Mmessages are olleted and labelled orretly to form the set: L = {l1, . . . , lM}.The funtion real(ti) : T ∪ L → D returns the real identi�er (devie type orimplementation stak) of a message.2.1 Problem 1The goal is to ompute the lassi�er ΩL : T ∪L→ D assigning the right devieidentity to eah li ∈ L i.e., ΩL(li) = real(li). The same funtion is then appliedto eah ti ∈ T and is expeted to return real(ti).2.2 Problem 2In this senario, no labelled messages are available and thus training is im-possible. The messages have to be diretly divided into groups by a lassi�er
ΨT : T → N. Beause no labels an be derived from a training proess, thegoal is to �nd the number of devie type, i.e., K, and reate onsistent groupsontaining in the optimal ase only messages of a single devie type. Thus, thetargeted result is :

|Ψ[T ]| = K

∀ < ti, tj >, real(ti) = real(tj)⇔ ΨT (ti) = Ψ(tj)

∀ < ti, tj >, real(ti) 6= real(tj)⇔ ΨT (ti) 6= Ψ(tj)3 Fingerprinting framework3.1 SIP overviewOur evaluation is based on SIP protool [2℄ sine this signaling protool is gain-ing support and the number of ompliant devies is skyroketing. Hene, �n-gerprinting ould support these new appliations as explained in the introdu-tion. In a few word, the SIP protool is a text protool with several primitives(INVITE, NOTIFY, REGISTER, ACK, CANCEL...) and response odes (three digitsnumber whose the �rst is between 1 and 6). SIP illustrates also the possibilityto develop reinfored �ngerprinting-based authentiation sine its omplexityentails some authentiation �aws [3℄.3.2 ArhitetureThe arhiteture is depited on �gure 1. The messages are olleted through SIPproxies. For eah of them, the syntati tree is onstruted based on the protoolgrammar. This tree represents its signature. In the ase of the unsupervisedINRIA



Advaned Fingerprinting For Inventory Management 5
Internet

Figure 1: Fingerprinting arhiteture�ngerprinting, these trees are diretly grouped by omputing the lassi�er Ψ.Otherwise, the supervised tehnique needs two stages :� the learning stage (1) : the signatures are stored in a database and usedfor omputing the lassi�er Ω;� the testing phase (2) : eah new generated signature is taken as an inputof Ω to assign a spei� label devie type to the message.Beause a �ngerprints of a devie type is its general haraterization, the pro-posed sheme implies the following de�nition : a �ngerprint of a devie type isthe set of signatures belonging to this type in the training set. For the unsu-pervised tehnique, the �ngerprint of a type is the entire orresponding lusterobtained after the lassi�ation.4 Attributed trees4.1 DistanesOur tehniques use the metris de�ned in [4℄ and this setion gives an overviewof the theory. An attributed graph is de�ned by the tuple G = (V, E, α) where Vare the di�erent nodes, E the di�erent edges and α is a funtion suh that α(s)gives some harateristis about the node s. A tree is a speial kind of graphwithout yle. Two trees T1 and T2 are onsidered isomorphi if there exists abijetion φ mapping every node in T1 to every node in T2 while keeping the samestruture (the nodes are onneted in the same way). The trees have a subtreeisomorphism φ if there exists two subtrees T ′
1 and T ′

2 whih are isomorphi.Their similarity is measured as :
W (φ, T ′1, T ′2) =

∑

u∈T ′

1

σ(u, φ(u))RR n° 7044



6 J. François, H. Abdelnur, R. State, O. Festor
Message =  Request  SP *Header SP 0*1Body

Request = Invite / Notify / Cancel

Invite = �34INVITE�35

Cancel = �34CANCEL�35

Notify = �34NOTIFY�35

Header = Accept / Date / Call−id / User−Agent

Body = *Alpha

Alpha = %x41−5A / %x61−7A         ; A−Z / a−z

HCOLON =  *SP ":" *SP

SP =  %x20                     ; space

 

Accept = "Accept" HCOLON *Alpha "."

Date = "Date" HCOLON *Alpha "."

Call−Id = "Call−Id" HCOLON *Alpha "."

User−Agent = "user−Agent" HCOLON *Alpha "."Figure 2: Grammar
Figure 3: Intersetion of anestor paths
Figure 4: Syntati trees of 2 messageswhere σ is the omparison funtion between the harateristis (α funtion)of two nodes. Furthermore W (φ12) is the maximum similarity between twoisomorphi trees of T1 and T2.Although lassial tehniques ompute the similarity between two trees byounting the number of transformations (delete, add or subsitute) required totransform the trees into isomorphi ones, the authors of [4℄ emphasize thatresolving this problem is NP-omplete unless adding some spei� onstraint(nodes ordering for instane) to get a polynomial-time omplexity. Hene, theypropose to de�ne four novel distane metris (two normalized and two non-normalized) between trees leading also to a polynomial omplexity. Keepingin mind to ompare the e�ieny of our tehnique with normalized and non-normalized metris, three of them were seleted after preliminary experimentssine they provided the best results :

d1(T1, T2) = |T1|+ |T2| − 2W (φMax_12) (non− normalized) (1)INRIA



Advaned Fingerprinting For Inventory Management 7
d2(T1, T2) = 1−

W (φMax_12)

max(|T1|, |T2|)
(normalized) (2)

d3(T1, T2) = 1−
W (φMax_12)

|T1|+ |T2| −W (φ12)
(normalized) (3)where |T | is the number of nodes of the tree T .4.2 Syntati treesA syntati tree is an attributed tree built from a message and the AugmentedBakusNaur Form (ABNF) [5℄ protool grammar. The �gure 2 shows a partialgrammar of a simple protool (far from SIP). The non-terminal elements arethose whih an be derived into other ones (Message, Request) ontrary toterminals representing a �xed sequene of or a range of possible haraters(terminal values are real values in the message). The elements pre�xed by �*�are repeated whereas those separated by �/� are alternatives. Otherwise, thedi�erent elements form a sequene.Thus, eah message is mapped to a syntati tree like in �gure 4. A nodeis reated from eah terminal value and linked to a parent node representingthe sequene, the repetition or the non-terminal from whih it is derived. The�gure 4 shows two partial syntati trees.The syntati trees are rooted. Thus, two trees are isomorphi if the rela-tionship between parent and hild nodes is also kept. Furthermore, terminalvalues are not taken in aount beause the ontaining information is highlydependent of a spei� session (all-id, date...).Some potentially large struture an be derived for many grammar rules asfor example the onstrution of a harater sequene built by the expression*Alpha. Thus, two subtrees with di�erent Request or Header branhes anontain suh a struture whereas their meaning is probably di�erent. Hene,these relatively large strutures ould bias the similarity measure. The solutionis to onsider the path of a node to evaluate their similarity. The path isall the nodes between the root node and the onsidered node. Therefore, theharateristis of a node n de�ned by α(m) is the tuple <namem, pathm > with

pathm the path. The name of a node is its non-terminal name or �?� otherwise(sequene or repetition). We propose a binary similarity (σ) between two nodesimposing that two similar nodes have to share similar anestor nodes, i.e., thesame path, and the same name. Assuming that parn returns the parent node of
n and r the ommon root of the trees, the similarity between two nodes u and
v an be totally de�ned as:

σ(u, v) =







1 if u = r ∧ v = r
1 if nameu = namev ∧ σ(paru, parv) = 1
0 else

(4)If messages an be derived from di�erent �rst rule, adding a generi root node r isfeasible but leading to a similarity equals zero. Three subtree isomorphisms arerepresented in �gure 4. The subtrees assoiated to the �rst ones ontain exatlythe same node and so WΦ1
= 4. Beause sequene and repetition are equivalentin the anestors path (question mark), the seond isomorphism generates twoRR n° 7044



8 J. François, H. Abdelnur, R. State, O. Festortrees sharing one similar node. However, Wφ2
= 0 due to di�erent anestorspath. Finally, W (φ3) = 8 beause the subtrees ares the same exept for twonodes (Aept and user-Agent). The Call-Id are mathed beause there isno order on the nodes.Though, the �rst isomorphism is learly suboptimal as the the subtrees arenot rooted on the global root node while the pair of nodes share the sameanestors. Hene, �nding the isomorphism andidates has to onsider the pathsof all node of a tree as illustrated in �gure 3. The reation of the lists ontainingthese paths an be done easily during the reation of the trees. The optimalisomorphi subtree is built from all shared paths by the messages. Thus, thesubtrees are the intersetion ∩paths of similar paths alulated by the algorithm1 whose the design is straightforward. Indeed, one iteration loops over all pathsof the �rst tree t1 and looks for the same path in the seond one t2. The line 15is extremely important for avoiding to take in aount the same path twie. Forinstane, inverting the messages on 3 implies three paths Message.?.?.headerwithout this line. Sine this algorithm iterates over eah path of t2 for eahpath of t1, the omplexity is in O(t1t2)Beause all paths are rooted on the same node, the pre�x of eah path (allnodes exept the last one) always equals another one. Hene, the similarityis exatly the number of elements in the intersetion1 : | ∩paths |. Thus, thesimilarity between the example messages is eight.Algorithm 1 similar_paths(t1,t2)1: res = [ ] is the intersation of shared path initialized to an empty list2: paths(t) return the paths list of the tree t3: l.add(e) adds e to the list l4: l.remove(e) remove e from the list l5: len(l) is the length of the list l6: c1 = paths(t1)7: c2 = paths(t2)8: for c ∈ c1 do9: i← 110: bool ← TRUE11: while bool ∧ i < len(c2) do12: if c = c2[i] then13: bool = FALSE14: res = res.add(c)15: c2.remove(c)16: end if17: i← i + 118: end while19: end for1This is not a mathematial intersetion sine a path an be represented several times

INRIA



Advaned Fingerprinting For Inventory Management 95 Fingerprinting approahes5.1 Supervised lassi�ationSupervised learning tehniques are potential solutions for resolving the Problem1 sine some of the training samples are available. We hose to arry out thereent support vetor mahines (SVM) tehnique beause it outperforms thelassi�ation auray in many domains with limited overhad [6℄. SVM werealready exhibited in network seurity monitoring and intrusion detetion [7, 8℄.However, none of them introdues the ombination of SVM and syntati trees.Basially designed for two lasses lassi�ation, SVM tehniques were rapidlyextended to multi-lass problems like the Problem 1. One-to-one lassi�ation[9℄ is known for providing a good auray with a low omputational time [10℄.The method strives to �nd an hyperplane to highly separate the data points(trees) of di�erent lasses (devie types). For the one-to-one method, an hyper-plane is onstruted for eah pair of distint lasses as illustrated by the simpleexample on �gure 5 where Hi−j is the hyperplane separating points from lass iand j. Then, when the new point $ has to be assigned to a lass, its side-positionfrom eah hyperplane is omputed to judge the more suitable lass. Consideringthe example, the following results are obtained for eah hyperplane :� HU−X : $ lass is U ,� HO−U : $ lass is O,� HO−X : $ lass is O.The �nal deision relies on a voting mehanism where the most representedlass, O, is hosen.Most of the time, the data points are not linearly separable, so they areasted in high dimensional feature spae using a mapping funtion ϕ. Deter-mining the hyperplanes is the main task. Assuming the notations introduedin previous setions, for eah pair of devie types <dl, dp >, the orrespondinghyperplane is spei�ed by the vetor wlp and a salar blp. It has to separate andto be as far away as possible from the trees belonging to dl and dp denoted as :
Tl = {ti|real(ti) = dl}

Tp = {ti|real(ti) = dp} (5)Hene, the resulting problem onstraints is de�ned as :
∀ti ∈ {Tl ∪ Tp}

〈ϕ(ti) · w
lp〉+ blp ≥ 1− ξlp

ti
, if real(ti) = dl

〈ϕ(ti) · w
lp〉+ blp ≤ −1 + ξlp

ti
, if real(ti) = dp

(6)where ξ are slaks variables allowing some misplaed points when a total sepa-ration is not possible. For example, on �gure 5, if a point O in the surroundingof points X , it is impossible to really separate them.The optimization problem implies that the points have to be as far away aspossible from the hyperplane :
min

wlp,blp,ξ
lp
ti

1

2
||wlp||+ C

∑

ti∈{Tl∪Tp}

ξlp
ti

(7)RR n° 7044



10 J. François, H. Abdelnur, R. State, O. Festor
Figure 5: SVM one-to-one lassi�ation, $ is anew point to assign
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Figure 6: Common las-si�ation problems Figure 7: Rok lassi�a-tionwhere C is onstant representing the trade-o� between the minimum lassi�a-tion errors and maximal margins.The funtion ϕ is essential but de�ning it is often hard. That is why the ker-nel trik is usually exploited by de�ning a funtion K(x, y) diretly omputablebetween two trees and also equals to 〈 ϕ(xi).ϕ(xj) 〉. Then, the optimizationproblem is turned into its dual by introduing the Lagrangian for omputingthe vetor wlp :
max

∑

ti∈{Tl∪Tp}

αlp
ti
−

1

2

∑

ti∈{Tl∪Tp}
tj∈{Tl∪Tp}

αlp
ti

αlp
tj

ρlp
ti

ρlp
tj

K(ti, tj) (8)subjet to:
∑

ti∈{Tl∪Tp}

αlp
ti

ρlp
ti

= 0

0 ≤ αlp
ti
≤ C, ti ∈ {Tl ∪ Tp}

(9)with :
ρlp

ti
= 1 if ti ∈ TL,−1 if ti ∈ TP (10)The salar blp is alulated thanks the support vetor trees (SV lp) whihorresponds to the points on the border of eah group mathematially de�nedas the trees tsv suh that αlp
tsv 6= 0 :

blp =
1

|SV lp|

∑

ti∈SV lp

(ρlp
ti
−

∑

tj∈{Tl∪Tp}

αlp
ti

ρlp
tj

K(tj , ti)) (11)One the learning phase has solved this optimization problem, eah testedtree lm is given as the input of the deision funtion :
flp(lm) =

∑

ti∈{Tl∪Tp}

αlp
ti

ρti
K(ti, lm) + blp (12)Then, the sign of the result indiates the likelyhood of lm to belong to dp or dl.Sine, only one hyperplane is de�ned for eah pair of lass, these funtions aresymmetrial flp = −flp. So only K(K − 1)

2
hyperplanes and funtions have tobe found out. INRIA



Advaned Fingerprinting For Inventory Management 11The distane adaptation is ompulsory beause the kernel funtion is a sim-ilarity measure. For the normalized metri, the de�nition is straightforward asthe similitude is equivalent to one minus the distane. For the nonnormalized,we derived a kernel lose to the Gaussian one :
d′1 = e−0.01d1 d′3 = 1− d35.2 Unsupervised lassi�ation5.2.1 ROCK and QROCKWhereas our distane measures are based syntati trees whih an be viewedas ategorial data, most well known tehniques suh as K-means, K-medoidsor density based algorithms are suited for numerial values [11℄. Therefore, newkind of unsupervised approahes dediated to ategorial data an be found inthe literature as for instane the ROCK algorithm [12℄. This algorithm is basedon a graph representation where two nodes are linked if they share at least oneommon neighbor. Two points are neighbors if their inter-distane is less thana threshold τ . It is an agglomerative lustering tehnique and so eah uniquepoint is a luster at the beginning. Then, the lusters are grouped togetherbased on a sore measure whih measures the linkage degree (the number ofshared neighbors) omparing with the estimation of the maximal number ofpossible shared neighbors.Figure 6 highlights the results of main types of lustering. Figure 6 pointsout the bad auray of medoid lustering methods whih group points aroundanother one. The main disadvantage is that these tehniques assume similarpoints distributed within a ommon shape (spherial most of the time) loseto a medoid. Other well-known tehniques onsider eah point individually.For example, the nearest neighbors tehnique results is plotted on �gure 6: thelusters of the pair of losest points are merged until the orresponding minimaldistane is higher than a threshold. The main advantage is the disovery ofirregular shapes of luster. For example, in �gure 6, the distint shapes oflusters �t�, �u� and �x� are easily distinguished beause their losest nodes arewell separated. However for �x� and �o�, the boundary points are very loseand a lassi approah merges them. The ROCK algorithm looks for pointssharing ommon neighbors whih is not the ase for these points as shown on�gure 7. However in this ase, the points A and B should be linked beausethey a ommon neighbor. That is why a sore measure is introdued to join twolusters with the maximum number of neighbors. Here, the algorithm prefersto join C and D rather than A and B. Hene, the ROCK algorithm is apableto disover right lusters. Other suh methods exist like CURE for examplewhere eah luster is �xed by a limited number of points, so it is a tradeo�between one enter and all points. Density based lustering tehniques suh asDBSan are lose to ROCK whih is well suited for ategorial data like trees.The interested reader an read [11℄ for a good overview of these algorithms andtheir use ases.However, ROCK is heavy omputational [13℄ and a derived version, QROCK,was proposed in [13℄. The authors of QROCK observed that in many ases, theomputed lusters are equivalent to ompute the onneted omponents of thereated graph. Hene, the algorithm beomes very simple and is exeuted veryfast. The main disadvantage is that the points A and B in �gure 7 will beRR n° 7044



12 J. François, H. Abdelnur, R. State, O. Festorjoined due to their unique neighbor in ommon. In fat, QROCK does not takein aount the neighborhood density measured by the sore measure.5.2.2 CompromiseThe limitations of ROCK and QROCK imply logially to hoose a fair trade-o�between them with following ambitions :� keep the advantage of the neighborhood density (ROCK),� avoid too muh omputational metri (QROCK).The �rst idea is to hoose a simple sore measure. The most simple shouldbe to sum all links between eah pair of lusters but the authors of ROCKadvie against it. In fat, it often entails the reation of a single or few biglusters beause the bigger a luster is, the more neighbors it has. In thispaper, we present a new simple metri for evaluating the sore measure betweentwo lusters: the maximal number of shared neighbors between any pairs of twonodes from eah luster. Assuming, two lusters Ci and Cj , the sore measurebetween the lusters is:
good(Ci, Cj) = maxpt∈Ci,pl∈Cj

#neighbors(pt, pl)where #neighbors(pt, pl) returns the total number of shared neighbors between
pt and pl. This metri is very simple to ompute beause the distane betweentwo points does not vary whereas the original goodness of ROCK is updatedduring the lusters merging sine the metri is based on all shared neighborsbetween all points of two lusters. Moreover, estimating the total number ofpossible neighbors for normalizing this value against the size of the luster isunneessary with the new metri.The lusters are merged until this new sore reahes a threshold γ. Thus,the lustering has to join two points p1, p2 for whih good(p1, p2) > γ.Theorem 1 The results of the ROCK algorithm based the sore measure goodis independent from the order of merging points.The proof is diret as the de�nition of good is only dependant on the pointsthemselves and not on the lusters, i.e., other points. This theorem is veryimportant as there is no need to order points following the dereasing value ofthe goodness measure like in ROCK. Thus, the overall omplexity is very de-graded. Besides, it orresponds to the QROCK algorithm with one additionalonstraint. In fat, the graph links are weighted by the number of shared neigh-bors and the objetive is to determine the onneted omponents of vertieswith weighted links equal to at least γ to keep the neighborhood density as avaluable information. Hene, the algorithm design is straightforward and splitinto two main funtions :� the graph onstrution based on the neighborhood omputation;� the omputation of onneted omponents. INRIA



Advaned Fingerprinting For Inventory Management 13The �rst step is exeuted by algorithm 2 where Lij (the adjaeny matrix) isthe number of shared neighbors between i and j. In fat this algorithm iteratesover all pairs of points (trees in our ase). When two of them are neighbors, thealgorithm onsiders one as the shared neighbors and looks for its other neighborsto update the weighted adjaeny matrix (loop of the line 8).Algorithm 2 Link initialization1: T = {t1, . . . , tN} a set of tree2: Dij is the distane between the tree ti and tj3: τ the maximal distane between two neighbor trees4: Lij the number of neighbors between the tree ti and tj initialized to 05: for i← 1 to N do6: for j ← 1 to N do7: if Dij < τ then8: for k ← 1 to N do9: if Dik < τ then10: Lij = Lij + 111: end if12: end for13: end if14: end for15: end forThen, algorithm 3 omputes the onneted omponents having links with atleast of weight of gamma neighbors. At the beginning, eah tree is assoiatedto a label equals FALSE indiating that the tree is not in a luster yet. Thealgorithm iterates over all tree searhing non visited ones and reates a newluster. Then, the lustering reursive funtion is applied on the trees sharedthe minimum number of neighbors with the initial tree in order to add themand so on.The two metris hosen for testing this new algorithm are d1 and d2. Thelatter one is diretly applied but we do a simple transformation on d1 for havinga normalized value between 0 and 1:
d′1 = 1− e−0.01d16 Experimentations6.1 MetrisStandard metris for lassi�ation assessment presented in [14℄ are adapted toour terminology introdued in setion 2. Assuming xd, the number of treesorresponding to a partiular devie type d ∈ D, yd the number of trees lassi�edas d, zd2d1

the number of trees of types d2 whih were lassi�ed as d1, thesensitivity evaluates the number of trees of a given type d whih were assignedto the right luster:
sens(d) = zdd/xd (13)

RR n° 7044



14 J. François, H. Abdelnur, R. State, O. Festor

Algorithm 3 lustering1: T = {t1, . . . , tN} a set of tree2: Lij the number of neighbors between the tree ti and tj3: init(t) reates a luster with only the tree t4: c.add(t) add the tree t to luster c5: Labeli indiates if ti is already assigned to luster and is initialized to 06: for i← 1 to N do7: if not Labeli then8: c = init(ti)9: Labeli = TRUE10: for j ← 1 to N do11: if i 6= j and Lij > γ and Labelj = FALSE then12: lustering(j,)13: end if14: end for15: end if16: end for17: lustering(k,luster):18: Labelk = TRUE19: .add(Tk)20: for j ← 1 to N do21: if k 6= j and Lkj > γ and Labelj = FALSE then22: lustering(j,)23: end if24: end for

INRIA
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spec(d) = zdd/yd (14)The overall metri name auray is the proportion of trees whih are assignedto the orret type:
acc =

∑

d∈D

zdd/M (15)Furthermore, the average sensitivity and spei�ity value is easier and fasterunderstandable than multiple values:
avg_sens =

∑

di∈D

sens(di)/N

avg_spec =
∑

di∈D

spec(di)/N
(16)Assuming the following distributions X = xi/N , Y = yi/N , Z = zij/N , themutual information oe�ient (IC) is an entropy based measure de�ned as :

IC =
H(X) + H(Y)−H(Z)

H(X)
(17)where H is the entropy funtion. This ratio varies between 0 and 1 (perfetlassi�ation) and is a good omplementary metri from the overall aurayRR n° 7044



16 J. François, H. Abdelnur, R. State, O. FestorDevie Name #mesg height #nodesMax Min Avg Max Min AvgAsterisk_v1.4.21 1081 28 23 25 2517 883 1284Ciso-7940_v8.9 168 25 23 24 2784 812 1352Thomson2030_v1.59 164 28 23 24 2576 793 1391Twinkle_v1.1 195 25 23 23 2457 805 1299Linksys_v5.1.8 195 28 23 25 2783 852 1248SJPhone_v1.65 288 30 23 24 2330 951 1133Table 1: Testbed dataset � Tree statistisbeause it indiates if the auray value is not only due to one or few over-represented lasses. For example, assigning all messages to one lass an allowto reah 80% of auray if 80% of data points are of the same type. However,this ase implies IC = 0. Hene, this oe�ient re�ets the sensitivity and thespei�ity and is more severe than them.Although the supervised lassi�ation reates one labeled luster per devietype whih are �lled with testing trees, the unsupervised lassi�ation an reatean arbitrary number of lusters. Even if labeling unsupervised luster is not donein reality, the lassi�ation assessment proess begins by labelling eah lusterwith the most represented devie version in the luster. Then, only the largestluster of eah type is kept and the rest of the trees are assigned to an arti�ialgarbage luster. However, evaluation the mutual information oe�ient witha garbage luster is meaningless. So, the F-sore is another overall possiblemetri:
F − score =

2× avg_sens× avg_spec

avg_spec + avg_sens
(18)Like the mutual information oe�ient, F-sore is a ombined measure from sen-sitivity and spei�ity but does not re�et the messages distribution. However,if all messages are a�eted to few lasses, this sore will be very low too.6.2 DatasetThe main dataset having harateristis summarized in table 1 was generatedfrom our testbed with 6 devie types (softphones,hardphones and proxy) witha total number of 2091 messages. The syntati trees are very big, their heightsare lose to 25-30 and the minimal number of nodes in a tree is more than 800.Therefor illustrating a real example in the paper is impossible.6.3 Supervised lassi�ation6.3.1 Learning perentageThe �rst experiment evaluates the e�ieny of our supervising method in par-allel with the proportion of extrated trees for the learning proess (learningperentage). In fat, the messages are randomly seleted and eah experimentis run ten times to improve the fairness of our results. Considering the distane

d1, the �gure 8 plots the auray metris using a quartile representation. Theextrema values are plotted and the box delimits 50% the observations with themedian value as the horizontal bar. The rest of the observations are outsidethe box (25% below, 25% above). The overall auray shown in �gure 8(a)highlights that our approah is very e�etive beause with only 10% of learning,the auray is onentrated around 90%. Obviously, inreasing the number ofINRIA
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18 J. François, H. Abdelnur, R. State, O. Festor� reating small lusters of messages sharing the same IP address and portwithin a small interval of time ρ (few seonds). This assumption is realistias these harateristis will not hange frequently for a piee of equipment.6.4.1 Grouping messagesIn the �rst experiment, ρ is set to 5 seonds and the goal is to determine whatare the best parameters of the new version of ROCK algorithm :� τ : the maximal distane between two neighbors,� γ the minimum number of shared neighbors between to messages for merg-ing them.With ρ = 5, an average of 2.8 messages are grouped in the same luster be-forehand. Exept in four ases highlighted by boxed values on table 2, all thedi�erent kind of devies are disovered. The shading key helps to rapidly dis-ard bad on�gurations like the light olumn (τ = 0.01, 0.15, 0.2) highlightingthe great impat of τ . Thus, the auray is not a monotoni funtion of τ .In the same way, it is not a monotoni funtion of γ and 87% of messages areorretly lassi�ed by using a neighbored distane of 0.1 and a minimal of tenshared neighbors for grouping two messages. Moreover, it is ten points betterthan the best result of the �rst row whih is equivalent to the QROCK algo-rithm (one shared neighbor only). The high value of F-sore indiates that thisresult is not only due to few devie types rightly identi�ed. However, the beston�guration seems to �x γ = 15 and τ = 0.1 with a slightly lower aurayand a higher F-sore. We will onsider this on�guration for the remainingexperiments exept when mentionned. The table 3 and 4 give the number oflusters and their sizes from this on�guration to another by varying these twoparameters. When τ inreases, more trees are merged and so less larger lustersare built ontrary to γ foring trees to have more ommon neighbors for beinglinked when it inreases. Some very small lusters are onstruted with onlyone tree (outlier) sine the minimum size is still zero. Furthermore, the originalQROCK algorithm orresponding to γ = 1 is learly unable to disover so manylusters as for γ = 15.The �gure 10 shows the evolution of the auray depending on the parame-ter ρ grouping the message arrived in the same interval of time. First, inreasing
ρ greater than �ve has no positive impat. Assuming same devie type for mes-sages from the same IP address and port within 5 seonds seems reasonable.Seond, the normalized distane (d2 for unsupervised �ngerprinting) is betterthan the nonnormalized one.6.4.2 Message typeOnly the most represented message types are onsidered : 100, 200, 401,OPTIONS, REGISTER, NOTIFY, INVITE and ACK. The �gure 11 plots the over-all auray and the F-Sore of the lassi�ation results depending the typeonsidered. One again, best results are obtained with the normalized distane.Moreover, this graph points out that some types ontains more valuable informa-tion than others. For instane OPTIONSmessage inludes equipment apabilitieswhih is highly dependant on the devie type ontrary to the response 200 whihINRIA
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γ(#neighbors) τ (min distane)0.01 0.05 0.1 0.15 0.21 0.559 0.767 0.721 0.307 0.302(0.674) (0.805) (0.697) (0.339) (0.614)5 0.480 0.748 801 0.306 0.306(595) (0.787) (0.781) (0.336) (0.399)10 0.454 0.742 0.872 0.307 0.307(0.570) (0.784) (0.879) (0.293) (0.293)15 0.424 0.727 0.862 0.525 0.307(0.542) (0.767) (0.902) (0.489) (0.293)20 0.370 0.698 0.804 0.524 0.307(0.497) (0.744) (0.852) (0.488) (0.293)

< 40% 40-60% 60-70% 70-80% 80-85% ≥ 85%Table 2: Unsupervised �ngerprinting by grouping similar arrival time messages,distane d2 - Auray (F-Sore is put in brakets)
τ 0.01 0.05 0.1 0.15 0.2#lusters 314 108 61 33 14Min size 1 1 1 1 1Max size 126 218 222 480 720Avg size 2.33 6.79 12.02 22.212 52.357Table 3: Cluster harateristis with γ = 15

γ 1 5 10 15 20#lusters 18 38 47 61 82Min size 1 1 1 1 1Max size 353 224 223 222 220Avg size 40.72 19.29 15.60 12.02 8.94Table 4: Cluster harateristis with τ = 0.1
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Advaned Fingerprinting For Inventory Management 21based on the SIP User-Agent return sometimes an unknown type. Some kindof devies are too muh under-represented (less than 20 messages) while someothers generate 10.000 of the total of 96.000 messages from about 700 distintdevies. Hene, we disard four devie types and keep at most 100 messages foreah of them. The results are lower than for the testbed dataset. Indeed, thesupervised �ngerprinting tehnique is able to orretly identify 70% of equip-ment and the unsupervised tehnique groups rightly 90% of OPTIONS messageagain and 75% based when messages within the same time interval are groupedbeforehand. The �rst onlusion is that OPTIONS message is a very valuableone. By investigating the reason of the relatively limited auray in the otherases, we found that some kind of devies annot be well distinguished likeCisoATA186v3.1.0 and CisoATA186v3.1.1 due to small or lak of stak im-plementation modi�ations between the version 3.1.0 and 3.1.1. However, notdeteting minor variations is not ritial beause the �aws and the funtionali-ties of suh devies should be very similar. Furthermore, the orretness of thisdataset ould not be heked and the auray assessment is only based on theSIP User-Agent �eld whih an be easily faked.7 Related workNetwork and servie �ngerprinting tools are widely used attakers for designingustomized attaks or by network administrator to have a preise view of theirnetwork. The �rst work in this domain [15℄ highlights that unlear or permissivespei�ation entails implementation variations due to spei� hoies or misun-derstanding of the developers. Two lasses of methods exist. The �rst one isquali�ed as passive sine it only monitors the tra� without interating with the�ngerprinted mahines. For instane, [16℄ is based on rules assoiating spei�values in TCP �elds to an operating system (OS). Ative tehniques send spe-i� request to a mahine in order to get disriminative responses. This shemeis implemented by NMAP [17℄ for determining the OS. The auray of thesetehniques relies on the good de�nition of messages to send, whih is basiallydone manually. Therefore, [18℄ desribes a mehanism to learn them. Finger-printing is not limited to OS identi�ation and several works target to orretlydistinguish the di�erent kind of network tra� with di�erent granularity level.For instane, [19℄ gives a good overview of tehniques used for determining thedi�erent lasses of tra� (Web, P2P, Chat..) whereas [20℄ and [21℄ try to auto-matially identify a spei� protool. Our work is di�erent and omplementarysine its goal is to determine preisely whih implementation of a protool isused. This kind of methods was explored in [22℄ for determining the HTTP [23℄web server by observing the value or the order of some headers. Determiningthe version of a SIP equipment ould be based on the bad randomness valueof the Call-id �eld [24℄. As argued in the introdution, hanging these �eldsis very easy in order to ounter �ngerprinting. Our tehnique doesn't onsiderthe value itself or the �at struture of the message but all its hierarhial syn-tati struture related to the protool grammar whih ontains more valuableinformation and whih is more di�ult to fake while keeping a valid messagewith the same meaning. SIP �ngerprinting is also addressed in [25℄ with other�elds protool and an ative probing tehnique ontrary to those presented inthis paper whih does not need any interation with equipment. Our previousRR n° 7044



22 J. François, H. Abdelnur, R. State, O. Festorwork [26℄ relies only on multiple sessions of messages without syntati knowl-edge and is well designed for protools with partial or without spei�ation andgrammar. We also introdued the use of syntati information in [27℄ to re-ate one generi global tree per devie type. Even if the lassi�ation time areequivalent, the learning proess is very long and needs a grid of 10 omputersduring two days (with 2600 messages) ontrary to the urrent approah wherethe learning proess is very fast (few minutes). Thus, updating the system fre-quently is possible whih is primordial with dynami tehnology like VoIP withmany new devies appearing rapidly. Furthermore, our previous work did notdeal with unsupervised �ngerprinting.8 ConlusionThis paper proposes novel supervised and unsupervised devie �ngerprintingtehniques whih leverage the advantages of the SVM paradigm and the ROCKlassi�ation. A new version of ROCK was introdued taking advantages ofdi�erent pre-existing versions. The provided results show the viability of suh�ngerprinting shemes when used with syntati trees whih re�et both the on-tent of messages and their hierarhial strutures. Our future work will fousthe �ngerprinting of other protools like wireless protools beause their na-ture implies seurity problems as rogue mahines intruding the network. Otherdiretions inlude the automati monitoring of stak protool implementationevolution of a devie series.Referenes[1℄ SNMP and Researh, �The mid-level manager.http://www.snmp.om/produts/mlm.html (aessed on 07/30/07).�[2℄ J. Rosenberg, H. Shulzrinne, G. Camarillo, A. Johnston, J. Peterson,R. Sparks, M. Handley, and E. Shooler, �SIP: Session Initiation Proto-ol,� United States, 2002.[3℄ H. Abdelnur, T. Avanesov, M. Rusinowith, and R. State, �Abus-ing SIP Authentiation,� in Information Assurane and Seu-rity ( ISIAS) Information Assurane and Seurity, 2008. ISIAS'08. Naples Italie: IEEE, 2008, pp. 237�242. [Online℄. Available:dx.doi.org/10.1109/{IAS}.2008.29http://hal.inria.fr/inria-00326077/en/[4℄ A. Torsello, D. Hidovi-Rowe, and M. Pelillo, �Polynomial-time metris forattributed trees,� IEEE Transations on Pattern Analysis and MahineIntelligene, vol. 27, no. 7, pp. 1087�1099, 2005.[5℄ D. H. Croker and P. Overell, �Augmented BNF for Syntax Spei�ations:ABNF,� United States, 1997.[6℄ L. Wang, Ed., Support Vetor Mahines: Theory and Appliations, ser.Studies in Fuzziness and Soft Computing. Springer, 2005, vol. 177.INRIA
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