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Abstract

Intrinsic motivation is a crucial mechanism for
open-ended cognitive development since it is the
driver of spontaneous exploration and curiosity.
Yet, it has so far only been conceptualized in
ad hoc manners in the epigenetic robotics com-
munity. After reviewing different approaches
to intrinsic motivation in psychology, this pa-
per presents a unified definition of intrinsic mo-
tivation, based on the theory of Daniel Berlyne.
Based on this definition, we propose a landscape
of types of computational approaches, making it
possible to position existing and future models rel-
ative to each other, and we show that important
approaches are still to be explored.

1. Introduction

Intrinsic motivation has been a topic of growing
interest in the developmental robotics and rein-
forcement learning communities in the recent years
(Barto et al., 2004, Oudeyer et al., 2007). This con-
cept comes from psychology, and has been argued
to be crucial for open-ended cognitive development
(Ryan and Deci, 2000). In particular, psychologists
have proposed that it is the mechanism that explains
the spontaneous exploratory behaviors observed in
humans, and infants in particular (Berlyne, 1965). Re-
searchers in developmental robotics and reinforcement
learning have proposed that intrinsic motivation might
allow the acquisition of general and re-usable skills
(Barto et al., 2004), increase the efficiency of learning
when considered as an active learning mechanism
(Thrun, 1995), guide and structure exploration in large
spaces (Oudeyer et al., 2007). Yet, intrinsic motivation
has been conceptualized rather differently by computer
scientists, through the implementation of a number of
ad hoc models, e.g. (Schmidhuber, 1991, Thrun, 1995,
Huang and Weng, 2002, Kaplan and Oudeyer, 2003,
Marshall et al., 2004, Andry et al., 2004,
Oudeyer and Kaplan, 2006, Barto et al., 2004,
Bonarini et al., 2006, Oudeyer et al., 2007,
Schembri et al., 2007, Merrick, 2008). For example,
intrinsic motivation has sometimes been confused with
internal motivations. In fact, a unified definition does
not seem to exist yet, and no framework exists that

∗This paper is based on (Oudeyer and Kaplan, 2007), but
presents a novel proposition to use Berlyne’s concept of “collative
variable” to define intrinsic motivation.

allows to relate easily different intrinsic motivation
mechanisms to each others. We propose in this paper to
come back thoroughly on the ways intrinsic motivation
has been approached in psychology, in order to extract a
principled definition. Based on this principled definition,
we will sketch a landscape of possible computational
approaches to intrinsic motivation. This will enable us
to show that most of this landscape is still unexplored,
and opens avenues for research in the future.

2. What is intrinsic motivation? The
psychologists’ point of view

2.1 Activities pursued for their own sake

According to (Ryan and Deci, 2000) (pp. 56),

Intrinsic motivation is defined as the doing of an
activity for its inherent satisfaction rather than
for some separable consequence. When intrinsi-
cally motivated, a person is moved to act for the
fun or challenge entailed rather than because of
external products, pressures or reward.

Intrinsic motivation is clearly visible in young infants,
that consistently try to grasp, throw, bite, squash or
shout at new objects they encounter. Even if less impor-
tant as they grow, human adults are still often intrinsi-
cally motivated while they play crosswords, make paint-
ings, do gardening or just read novels or watch movies.
Yet, to get a clearer picture of intrinsic motivation, one
needs to understand that it has been defined by contrast
to extrinsic motivation:

Extrinsic motivation is a construct that pertains
whenever an activity is done in order to attain
some separable outcome. Extrinsic motivation
thus contrasts with intrinsic motivation, which
refers to doing an activity simply for the enjoy-
ment of the activity itself, rather than its instru-
mental value. (Ryan and Deci, 2000)

Intrinsic is not a synonym of internal. We see
that, according to this approach, a central feature that
differentiates intrinsic and extrinsic motivation is instru-
mentalization. We also see that the concepts of intrin-
sic and extrinsic motivations form a different distinction
than the one between internal and external motivations
which is sometimes made in the cognitive robotics and
reinforcement learning literature. Moreover, in this com-
putational literature, “intrinsic” is sometimes used as a



synonym to “internal”, and “extrinsic” as a synonym
to “external”. Yet, it is in fact a confusion. Inter-
nal motivations involve reward that are produced within
the organism, whichever they are, and external moti-
vations involve rewards that are produced outside the
organism (e.g. coming from social partners). The intrin-
sic/extrinsic distinction, on the contrary, is not a distinc-
tion based on the location of origin of the reward, but on
the kind of reward, as it will become more clear below
with the approach proposed by Berlyne.

Let us give examples to be more clear. For example, a
child that does thoroughly his homework might be mo-
tivated by avoiding the sanctions that his parents could
give him in case he would not do it. The cause for action
is here clearly external, and the homework is not done for
its own sake but for the separate outcome of not getting
sanctions. Here the child is extrinsically and externally
motivated.

On the other hand, it is possible that a child could do
thoroughly his homework because he is persuaded that
it will help him get the job he dreams of, later when
he will be an adult. In this case, the cause for action
is internally generated, and the homework is again not
achieved for its own sake but because the child thinks it
will lead to the separate outcome of getting a good job.
Here the child is internally and extrinsically motivated.

Finally, it is also possible that a child does thoroughly
his homework for the fun of it, and because he expe-
riences pleasure in the discovery of new knowledge or
considers for example its math problem just as fun as
playing a video game. In this case, his behavior is intrin-
sically and internally motivated.

These different kinds of motivations can also some-
times be superposed or interleaved in the same global
activity. For example, it is quite possible that a child
doing his homework is partly extrinsically motivated by
getting a high grade at the exam and partly intrinsically
motivated by learning new interesting things. Thus, the
same activity can be at the same time intrinsically and
extrinsically motivating. Also, for example, imagine a
child that is intrinsically motivated by playing tennis but
has to ride its bicycle to get to the tennis court (and
does not like particularly riding bicycles). In this case,
the riding of the bicycle is an internal and extrinsically
motivated behavior that spins out of the intrinsically mo-
tivated behavior of playing tennis.

2.2 What makes an activity intrinsically moti-
vating?

Given this broad distinction between intrinsic and extrin-
sic motivation, psychologists have tried to build theories
about which features of activities make them intrinsically
motivating for some people (and not all) at some times
(the same activity might be intrinsically motivating for
a person at a given time, but no more later on). They
have studied how these motivations could be functionally
implemented in an organism, humans in particular, and
several theoretical directions have been presented.

Drives to manipulate, drives to explore In the
1950s, psychologists started by trying to give an account
of intrinsic motivation and exploratory activities on the
basis of the theory of drives (Hull, 1943), which are spe-
cific tissue deficits like hunger or pain that the organisms
try to reduce. For example, (Montgomery, 1954) pro-
posed a drive for exploration and (Harlow, 1950) a drive
to manipulate. This drive naming approach had many
short-comings which were criticized in detail by White in
1959 (White, 1959): intrinsically motivated exploratory
activities have a fundamentally different dynamics. In-
deed, they are not homeostatic: the general tendency to
explore is not a consummatory response to a stressful
perturbation of the organism’s body.

Reduction of cognitive dissonance Some re-
searchers then proposed another conceptualization. Fes-
tinger’s theory of cognitive dissonance (Festinger, 1957)
asserted that organisms are motivated to reduce disso-
nance, which is the incompatibility between internal cog-
nitive structures and the situations currently perceived.
Fifteen years later a related view was articulated by Ka-
gan stating that a primary motivation for humans is the
reduction of uncertainty in the sense of the ”incompat-
ibility between (two or more) cognitive structures, be-
tween cognitive structure and experience, or between
structures and behavior” (Kagan, 1972). However, these
theories were criticized on the basis that much human be-
havior is also intended to increase uncertainty, and not
only to reduce it. Human seem to look for some forms of
optimality between completely uncertain and completely
certain situations.

Optimal incongruity In 1965, Hunt developed the
idea that children and adult look for optimal incongruity
(Hunt, 1965). He regarded children as information-
processing systems and stated that interesting stim-
uli were those where there was a discrepancy between
the perceived and standard levels of the stimuli. For
Dember and Earl, the incongruity or discrepancy in
intrinsically-motivated behaviors was between a per-
son’s expectations and the properties of the stimulus
(Dember and Earl, 1957). Berlyne developed similar no-
tions as he observed that the most rewarding situations
were those with an intermediate level of novelty, be-
tween already familiar and completely new situations
(Berlyne, 1960).

Motivation for effectance, personal causation,
competence and self-determination Eventually, a
last group of researchers preferred the concept of chal-
lenge to the notion of optimal incongruity. These
researchers stated that what was driving human be-
havior was a motivation for effectance (White, 1959),
personal causation (De Charms, 1968), competence and
self-determination (Deci and Ryan, 1985). Basically,
these approaches argue that what motivates people is
the degree of control they can have on other people, ex-
ternal objects and themselves, or in other words, the
amount of effective interaction. In an analogous man-
ner, the concept of optimal challenge has been put for-



ward, such as for example in the theory of “Flow”
(Csikszentmihalyi, 1991).

2.3 Collative variables

These diverse theoretical approaches to intrinsic motiva-
tion and to the properties that shall make certain activi-
ties intrinsically interesting/motivating have been pro-
posed and published by diverse research communities
within psychology, in such a way that still today there
is no consensus among these communities on a unified
or integrated view of intrinsic motivation. Even more,
it could be argued that distinguishing intrinsic and ex-
trinsic motivation based on instrumentalization can be
circular (Oudeyer and Kaplan, 2007). Yet, a convincing
integrated non-circular view has actually been proposed
in the 60’s by Daniel Berlyne (Berlyne, 1965), and shall
be used as a fruitful theoretical reference for develop-
mental roboticists. The central concept of this integrated
approach to intrinsic motivation is that of “collative vari-
ables”, as explained in the following quotations:

The probability and direction of specific ex-
ploratory responses can apparently be influenced
by many properties of external stimulation, as well
as by many intraorganism variables. They can, no
doubt, be influenced by stimulus intensity, color,
pitch, and association with biological gratification
and punishment, ... [but] the paramount determi-
nants of specific exploration are, however, a group
of stimulus properties to which we commonly refer
by such words as “novelty”, “change”, “surpris-
ingness”, “incongruity”, “complexity”, “ambigu-
ity”, and “indistinctiveness”. (Berlyne, 1965),
pp. 245.

... these properties possess close links with the
concepts of information theory, and they can, in
fact, all be discussed in information-theoretic ter-
minology. In the case of “ambiguity” and “indis-
tinctiveness”, there is uncertainty due to a gap in
available information. In some forms of “novelty”
and “complexity”, there is uncertainty about how
a pattern should be categorized, that is, what la-
beling responses should be attached to it and what
overt response is appropriate to it. When one por-
tion of a “complex” pattern or of a sequence of
“novel” stimuli is perceived, there is uncertainty
about what will be perceived next. In the case of
“surprisingness” and “incongruity”, there is dis-
crepancy between information embodied in expec-
tations and information embodied in what is per-
ceived. For these reasons, the term “collative” is
proposed as an epithet to denote all these stim-
ulus properties collectively, since they all depend
on collation or comparison of information from
different stimulus elements, whether they be ele-
ments belonging to the present, past or elements
that are simultaneously present in different parts
of one stimulus field”.
It should be pointed out that the uncertainty we are
discussing here is “subjective uncertainty”, which

is a function of subjective probabilities, analo-
gous to the “objective” uncertainty (that is, the
standard information-theoretic concept of uncer-
tainty) that is a function of objective probabilities.
(Berlyne, 1965), pp. 245-246.

Drive increases when an organism is subjected to
a physiological disturbance, such as those accom-
panying hunger, thirst, and sexual excitement, or
to noxious external agents. It can also be raised by
stimuli, external or internal, that have been regu-
larly paired with such disturbances. These moti-
vating conditions, which involve organs other than
the sense organs and the nervous system, may be
called “sources of extrinsic motivation”. They can
undoubtedly actuate exploratory or epistemic be-
havior, as when as a person seeks information for
the solution of a practical problem or for the so-
cial status that erudition will bring him. There
are, however, other, “intrinsic” forms of motiva-
tion which collaborate with extrinsic motivation in
regulating exploratory or epistemic activity but are
also capable of actuating exploratory or epistemic
activity on their own. Intrinsic motivation de-
pends primarily on the collative properties of the
external environment. (Berlyne, 1965), pp. 252.

This leads us to the following characterization of
intrinsic motivation:

An activity or an experienced situation, be
it physical or imaginary, is intrinsically moti-
vating for an autonomous entity if its interest
depends primarily on the collation or comparison
of information from different stimuli and inde-
pendently of their semantics, whether they be
physical or imaginary stimuli (i.e. measured by
physical sensors or by internal “software” sen-
sors) perceived in the present or in the past (in
which case they will typically be internally rep-
resented and compressed by the brain through
learning) or stimuli that are simultaneously
present in different parts of one stimulus field.

Most importantly, the information that is com-
pared has to be understood in an information the-
oretic perspective, in which what is considered is
the intrinsic mathematical structure of the val-
ues of stimuli, independently of their meaning.
As a consequence, measures which pre-suppose
the meaning of stimuli, i.e. the meaning of sen-
sorimotor channels (e.g. the fact that a measure
is a measure of energy or temperature or color),
do not characterize intrinsically motivating activ-
ities or situations.

In practice, this means that a typical intrinsic mo-
tivation is for example a motivation to search for sur-
prising situations, whatever they are, and that a typical
non-intrinsic motivation is for example a motivation to
search for food or water in order to maintain the internal
metabolic equilibrium of the body.



3. Carving the landscape of computa-
tional implementations of intrinsic
motivation

The characterization of intrinsic motivation based on
Berlyne’s theory can be used as a common conceptual
framework to interprete and compare the various
computational architectures that have been proposed
in the literature for implementing forms of intrinsic
motivation, e.g. (Schmidhuber, 1991, Thrun, 1995,
Huang and Weng, 2002, Kaplan and Oudeyer, 2003,
Marshall et al., 2004, Oudeyer and Kaplan, 2006,
Sporns and Lungarella, 2006, Barto and Simsek, 2005,
Schembri et al., 2007, Oudeyer et al., 2007,
Capdepuy et al., 2007, Merrick, 2008). Moreover,
while this characterization excludes a number of inter-
nal motivation mechanisms from intrinsic motivation
mechanisms, its generic formulation also encompasses
many mechanisms that have not been explored yet in
the computational literature.

The goal of this section is to present a landscape of po-
tential computational implementations of intrinsic moti-
vation, allowing us to set the basis of a typological and
formal framework that may allow researchers to under-
stand better and map the space of possible models. The
length of this article does not allow us to present exhaus-
tively this landscape, and thus we will focus on represen-
tative types of mechanisms.

This landscape consists in presenting and organizing a
set of measures, based on collative variables, that may be
used by an autonomous entity to evaluate the intrinsic
interestingness of an activity or a situation. One possible
cognitive architecture in which these measures could be
embedded is that of computational reinforcement learn-
ing (Sutton and Barto, 1998). In this case, these mea-
sures correspond to internally generated rewards that an
action selection system based on algorithms such as Q-
learning or Sarsa shall use as input (possibly together
with other sources of internal or external rewards) in
order to select actions that will maximize the expected
cumulated sum of these rewards obtained in the future.
For this reasons, measures of interestingness of a situa-
tion or activity ek at a given time t can be considered
as computational definitions of internal rewards gener-
ated upon the encountering of ek at time t, and will be
denoted r(ek, t).

Some of the types of mechanisms that will be pre-
sented have already been implemented in the literature,
in which case we will provide references to such imple-
mentations, and others have not been explored yet. In
all cases, the objective of this list is to show the variety
and interrelations of potential mechanisms, but not to
comment on the kind of behavior that might result from
using these measures of interestingness in an autonomous
entity, which has partially been done in other papers and
partially will have to be done in future research.

In the following, we organize the space of computa-
tional models of intrinsic motivation into three broad
classes that all share the same formal notion of a sen-
sorimotor flow experienced by a robot. We assume that
the typical robot is characterized by a number of sen-

sory channels, denoted si, and motor channels denoted
mi, whose values continuously flow with time, hence the
notations si(t) and mi(t). The vector of all sensorimotor
values at time t is denoted SM(t). Three features are
important for the following computational models:

1. these channels may correspond to any kind of physi-
cal or internal variable of a robot, which can be low-
level (e.g. the color values of the pixels of a camera,
the instantaneous intensity of sound perceived by a
microphone, the value of a motor joint, ...) or higher-
level (e.g. the presence or absence of a face in an im-
age or its position, the identity of a person speaking,
the triggering of a whole grasping movement, ...);

2. what these sensory channels actually are, i.e. their
“meaning”, is NOT taken into account;

3. the set of sensorimotor channels taken into account
in intrinsic motivation measures of a situation may
be smaller than the set of all sensorimotor channels
available to the robot.

We will now present three broad types of measures of
interestingness that can characterize intrinsic motivation
and are based on collative variables:

1. Knowledge based models, in which interesting-
ness is related to comparisons between the predicted
flow of sensorimotor values, based on an internal for-
ward model, with the actual flow of values; This
typically leads to adaptive motivation if the model
is learnt (adaptive motivation refers to mechanisms
that assign different levels of interest to the same sit-
uation/activity depending on the particular moment
in development where it is encountered).

2. Competence based models, in which interesting-
ness is related to comparisons between self-generated
goals, which are particular configurations in the sen-
sorimotor space, and the extent to which they are
reached in practice, based on an internal inverse
model that may be learnt. Thus, these comparisons
characterize the degree of performance/competence
of an agent and also typically lead to adaptive moti-
vation if the model is learnt.

3. Morphological models, in which interestingness is
related to measures of the immediate structural re-
lationships among multiple sensorimotor channels
which are not based on long-term knowledge or com-
petence previously acquired by the agent. This typi-
cally leads to fixed motivation.

3.1 Knowledge-based models of intrinsic moti-
vation

A first computational approach to intrinsic motivation
is based on measures of dissonances (or resonances) be-
tween the situations experienced by a robot and the
knowledge and expectations that the robot has about
these situations. Here the word “situation” might refer
as well to a passive observation activity in which a robot



does nothing but focus its attention on a particular as-
pect of the environment, as to an active activity in which
the robot performs actions and compares the actual out-
come of its actions to its knowledge and expectations
about these actions.

Within this approach, there are two sub-approaches
related to the way knowledge and expectations are rep-
resented: information theoretic/distributional and pre-
dictive.

3.1.1 Information theoretic and distributional
models

This approach is based on the use of representations,
built by the robot, that estimate the distributions of
probabilities of observing certain events ek in particu-
lar contexts, defined as mathematical configurations in
the sensorimotor flow. There are several types of such
events, but the probabilities that are measured are typ-
ically either the probability of observing a certain state
SMk in the sensorimotor flow, denoted P (SMk), or the
probability of observing particular transitions between
states, such as P (SMk(t), SM l(t + 1)), or the probabil-
ity of observing a particular state after having observed
a given state P (SMk(t + 1)|SM l(t)). Here, the states
SMk can either be direct numerical prototypes or com-
plete regions within the sensorimotor space (and it may
involve a mechanism for discretizing the space). In the
following, we will consider all these eventualities possible
and just use the general notation P (ek). We will assume
that the robot possesses a mechanism that allows it to
build internally, and as it experiences the world, an esti-
mation of the probability distribution of events across the
whole space E of possible events (but the space of possi-
ble events is not predefined and should also be discovered
by the robot, so typically this is an initially empty space
that grows with experience). Finally, we use the concept
of entropy, which characterizes the shape of the distribu-
tion function, for discretized spaces:

H(E) = −
∑

ek∈E

P (ek)ln(P (ek)) (1)

Uncertainty motivation (UM) The tendency to be
intrinsically attracted by novelty has often been used as
an example in the literature on intrinsic motivation. A
straightforward manner to computationally implement
it is to build a system that, for every event ek that is
actually observed, will generate a reward r(ek) inversely
proportional to its probability of observation:

r(ek, t) = C · (1− P (ek, t)) (2)

where C is a constant. Various models based on UM-
like mechanisms were implemented in the computational
literature (e.g. (Huang and Weng, 2002))

Information gain motivation (IGM) It has also of-
ten been proposed in psychology and education that hu-
mans have a natural propensity to learn and assimilate
(Ryan and Deci, 2000). In information theoretic terms,
this notion of assimilation or of “pleasure of learning”

can be modeled by the decrease of uncertainty in the
knowledge that the robot has of the world after an event
ek has happened:

r(ek, t) = C · (H(E, t)−H(E, t + 1)) (3)

Examples of implementation of this information gain mo-
tivation can be found for instance in (Fedorov, 1972,
Roy and McCallum, 2001) (but note that in these paper
the term “motivation system” is not used). It should be
noted that, in practice, it is not necessarily tractable in
continuous spaces. Actually, this is potentially a com-
mon problem to all distributional approaches.

Empowerment (EM) Empowerment
(Capdepuy et al., 2007) is a reward measure that
pushes an agent to produce sequences of actions that
can transfer a maximal amount of information to its
sensors through the environment. It is defined as
the channel capacity from the sequence of actions
At, At+1, ..., At+n−1 to the perceptions St+n after an
arbitrary number of timesteps:

r(At, At+1, ..., At+n−1 → St+n) =

maxp(~a)I(At, At+1, ..., At+n−1, St+n)

where p(~a) is the probability distribution function of
the action sequences ~a = (at, at+1, ..., at+n−1) and I is
mutual information. (Capdepuy et al., 2007) has shown
how it could foster the emergence of complex behavior.

3.1.2 Predictive models

Often, knowledge and expectations in robots are not
represented by complete probability distributions, but
rather based on the use of predictors such as neural net-
works or support vector machines that make direct pre-
dictions about future events . In this kind of architec-
ture, it is also possible to define computationally var-
ious forms of intrinsic motivations. These predictors,
denoted Π, are typically used to predict some proper-
ties Prk or sensorimotor states SMk that will happen in
the future (close or far) given the current sensorimotor
context SM(t) and possibly the past sensorimotor con-
text. Similarly to above, we will denote all properties
and states under the generic notation ek. We will also
use the notation SM(→ t) to denote a structure which
encodes the current sensorimotor context and possibly
the past contexts. Thus, a general prediction of a sys-
tem will be denoted:

Π(SM(→ t)) = ẽk(t + 1) (4)

We then define Er(t) as the error of this prediction, being
the distance between the predicted event ẽk(t + 1) and
the event that actually happens ek(t + 1):

Er(t) = ‖ẽk(t + 1)− ek(t + 1)‖ (5)

Predictive novelty motivation (NM) It then
comes naturally to propose a first manner to model a
motivation for novelty in this framework. Interesting



situations are those for which the prediction errors are
highest:

r(SM(→ t)) = C · Er(t) (6)

where C is a constant. Examples of implementation of
this kind of motivation system can be found for example
in (Thrun, 1995, Barto et al., 2004).

Intermediate level of novelty motivation (ILNM)
According to psychologists that proposed that humans
are attracted by situations of intermediate/optimal in-
congruity, one can update the previous mechanism by
introducing a threshold Eσ

r that defines this intermedi-
ate level of novelty:

r(SM(→ t)) = C1 · e−C2·‖Er(t)−Eσ
r ‖

2
(7)

where C1 and C2 are constants. Yet, this definition has
the drawback of leaving the tuning of the threshold to
the intuition of the human engineer. As a matter of
fact, having a single threshold for the whole sensorimo-
tor space might even be quite problematic in practice,
since notions of novelty and similarities might vary a lot
in different parts of that space, and developing mecha-
nisms for automatic adaptive thresholding is a difficult
problem.

Learning progress motivation (LPM) Several re-
searchers have proposed another manner to model opti-
mal incongruity which avoids the problem of setting a
threshold, and is related to the information gain mea-
surement described in the information theoretic section
above. It consists in modeling intrinsic motivation with
a system that generates rewards when predictions im-
prove over time. Thus, the system will try to maxi-
mize prediction progress, i.e. the decrease of predic-
tion errors, i.e. effectively reward knowledge acquisi-
tion per se. This corresponds to the concept of epis-
temic curiosity proposed by Berlyne (Berlyne, 1965).
A first computational formalization was proposed in
(Schmidhuber, 1991). Another kind of computational
formalization was proposed in (Oudeyer et al., 2007),
where “prediction progress” was referred as “learning
progress”. To get a formal model, one needs to be pre-
cise and subtle in how the decrease is computed. Indeed,
as argued in (Oudeyer et al., 2007), the possible naive
implementation comparing prediction errors between a
window around time t and a window around time t−θ is
in fact nonsense: this may for example attribute a high
reward to the transition between a situation in which
a robot is trying to predict the movement of a leaf in
the wind (very unpredictable) to a situation in which it
just stares at a white wall trying to predict whether its
color will change (very predictable). The system should
not try to compare very different sensorimotor situations
and qualitatively different predictions.

A first proposition to compute learning progress
and get around this problem was proposed by
(Schmidhuber, 1991). It consists in measuring the dif-
ference in prediction error of the predictor Π, about the
same sensorimotor context SM(→ t), between the first

prediction and a second prediction made just after the
predictor has been updated with a learning rule:

r(SM → t) = Er(t)− E
′

r(t) (8)

where

E
′

r(t) = ‖Π
′
(SM(→ t))− ek(t + 1)‖ (9)

with Π
′

being the updated predictor after the learning
update due to the prediction Π(SM(→ t)) and the per-
ception of the actual consequence ek(t + 1).

Another approach to compute learning progress, pre-
sented in (Oudeyer et al., 2007), is to use a mechanism
that will allow the robot to group similar situations into
regions Rn within which comparison is meaningful. The
number and boundaries of these regions are typically
adaptively updated (Oudeyer et al., 2007). Then, for
each of these regions, the robot monitors the evolution
of prediction errors, and makes a model of their global
derivative in the past, which defines learning progress,
and thus reward, in these regions. Mathematically:

r(SM(→ t)) =< ERn
r (t− θ) > − < ERn

r (t) > (10)

with SM(t) belonging to region Rn and where <
ERn

r (t) > is the mean of predictions errors made by the
predictor in the last τ predictions made about sensorimo-
tor situations SM(t) belonging to region Rn. A detailed
study about how to implement such a system is provided
in (Oudeyer et al., 2007).

Predictive familiarity motivation (FM) In the
psychology literature, intrinsic motivations refer gener-
ally to mechanisms that push organisms to explore their
environment. Yet, there are direct variants of previous
computational systems that are both simple and cor-
respond intuitively to existing forms of human motiva-
tion. For example, a slight mathematical variation of
NM would model a motivation to search for situation
which are very predictable, and thus familiar:

r(SM(→ t)) =
C

Er(t)
(11)

where C is a constant. It would actually be sound to
consider this kind of motivation as intrinsic, in spite of
the fact that it will typically not push an organism to
explore its environment. FM is also related to cogni-
tive homeostasis, and some experiments have shown its
potential impact on development (Andry et al., 2004).

3.2 Competence-based models of intrinsic mo-
tivation

A second major computational approach to intrinsic
motivation is based on measures of competence that
an agent has for achieving self-determined results or
goals. It is directly inspired from important psycho-
logical theories of effectance (White, 1959), personal
causation (De Charms, 1968), competence and self-
determination (Deci and Ryan, 1985), and “Flow”
(Csikszentmihalyi, 1991). Central here is the concept



of “challenge”, with associated measures of difficulty as
well as measures of actual performance. A “challenge”
or “goal” here will be any sensorimotor configuration
SMk, or any set {Pk} of properties of a sensorimotor
configuration, that the individual sets by itself and that
it tries to achieve through action. A challenge/goal
is here self-determined, denoted gk = {Pk}. It is the
properties of the achievement process, rather than
the “meaning” of the particular goal being achieved,
that will determine the level of interestingness of the
associated activity. While prediction mechanisms or
probability models, as used in previous sections, can
be used in the goal-reaching architecture, they are not
mandatory (for example, one can implement systems
that try to achieve self-generated goals through Q-
learning and never explicitly make predictions of future
sensorimotor contexts). Furthermore, while in some
cases, certain competence-based and knowledge-based
models of intrinsic motivation might be somewhat sim-
ilar, they may often produce very different behaviors.
Indeed, the capacity to predict what happens in a
situation can be sometimes only loosely coupled to the
capacity to modify a situation in order to achieve a
given self-determined goal.

More technically, we will assume here a cognitive ar-
chitecture in which there are two levels of action, as-
sociated to two time scales for decision. First, there is
a high-level of action consisting in choosing what goals
shall be explored for reaching (thus, this is not a phys-
ical but a mental action). This flow of choices is asso-
ciated to a first time scale, in which the time when a
goal is set is denoted tg. Second, there is a lower-level
of action consisting in choosing what to do in order to
reach the goals. Whenever a goal gk(tg) is set, there
is a “know-how” module KH(tg) that is responsible for
planning the lower-level actions in order to reach it and
that learns through experience. After a certain amount
of time, bounded for example by a timeout Tg, a moti-
vation module compares the goal that was initially set
and the current situation to assess to what extent it was
reached, i.e. measure the competence of the agent on
goal gk at time tg:

la(gk, tg) = ‖ ˜gk(tg)− gk(tg))‖ (12)

The “interestingness”, and thus reward value, of the goal
gk is then derived from this competence measure. The
next goal is then chosen at time tg + 1 in such a way
that the expected cumulated sum of these rewards in
the future will be maximal, and traditional reinforcement
learning algorithm can be used for this selection of action
(i.e. for the selection of adequate goals).

Goal setting and reaching episodes are related
to temporally extended actions in option theory
(Sutton et al., 1999). However, to our knowledge, this
paper presents competence-based models of intrinsic mo-
tivation that seem to have been very limitedly explored
so far.

Maximizing incompetence motivation (IM) A
first competence-based approach to intrinsic motivation

can be a system which pushes the robot to set chal-
lenges/goals for which its performance is lowest. This
is a motivation for maximally difficult challenges. This
can be implemented as:

r(SM(→ t), gk, tg) = C · la(gk, tg) (13)

Note that here and everywhere in the competence based
approaches, rewards are generated only at the end of
episodes.

Maximizing competence progress - aka Flow mo-
tivation (CPM) Maximizing incompetence does not
model very well the psychological models of optimal chal-
lenge and “flow” proposed by (Csikszentmihalyi, 1991).
Flow refers to the state of pleasure related to activities
for which difficulty is optimal: neither too easy nor too
difficult. As difficulty of a goal can be modeled by the
(mean) performance in achieving this goal, a possible
manner to model flow would be to introduce two thresh-
olds defining the zone of optimal difficulty. Yet, the use
of thresholds can be rather fragile, require hand tun-
ing and possibly complex adaptive mechanism to update
these thresholds during the robot’s lifetime. Another ap-
proach can be taken, which avoids the use of thresholds.
It consists in defining the interestingness of a challenge
as the competence progress that is experienced as the
robot repeatedly tries to achieve it. So, a challenge for
which a robot is bad initially but for which it is rapidly
becoming good will be highly rewarding. Thus, a first
manner to implement CPM would be:

r(SM(→ t), gk, tg) = C · (la(gk, tg−θ)− la(gk, tg)) (14)

corresponding to the difference between the current per-
formance for task gk and the performance corresponding
to the last time gk was tried, at a time denoted tg − θ.
Again, because of possible high variance in goal achieve-
ment, one could use smoothed differences:

r(SM(→ t), gk, tg) = C·(< la(gk, tg−θ) > − < la(gk, tg) >)
(15)

with < la(gk), tg) > being the mean performance in try-
ing to reach gk in the last τ corresponding episodes, and
< la(gk), tg−θ) > being the mean performance in trying
to reach gk between episodes tg − θ − τ and tg − θ.

3.3 Morphological models of intrinsic motiva-
tion

The two previous computational approaches to moti-
vation were based on measures comparing information
characterizing a stimulus perceived in the present and
information characterizing stimuli perceived in the past
and represented in memory. A third approach that can
be taken is based on the comparison of information char-
acterizing several pieces of stimuli perceived at the same
time in several parts of the perceptive field. Pragmati-
cally, this approach consists in attributing interest de-
pending on morphological mathematical properties of
the current flow of sensorimotor values, irrespective of
what the internal cognitive system might predict or mas-
ter.



Synchronicity motivation (SyncM) One typical
example of this type of intrinsic motivation mechanism
is based on synchronicity. The synchronicity motivation
is based on an information theoretic measure of short-
term correlation (or reduced information distance) be-
tween a number of sensorimotor channels. With such a
motivation, situations for which there is a high short-
term correlation between a maximally large number of
sensorimotor channels are very interesting. This can be
formalized in the following manner.

Let us consider that the sensorimotor space SM is a
set of n information sources {SMi} and that possible
values for these information sources typically correspond
to elements belonging to an arbitrary number of bins. At
each time t, a element smi corresponds to the informa-
tion source SMi and the following notation can be used:
SMi(t) = smi .

The conditional entropy for two information sources
SMi and SMj can be calculated as

H(SMj |SMi) = −
∑
smi

∑
smj

p(smi, smj) log2 p(smj |smi)

(16)
where p(smj |smi) = p(smj , smi)/p(smi).

H(SMj |SMi) is traditionally interpreted as the uncer-
tainty associated with SMj if the value of SMi is known.

We can measure synchronicity s(SMj , SMi) between
two information sources in various manners. One of them
is Crutchfield’s normalized information distance (which
is a metric) between two information sources, defined as
(Crutchfield, 1990):

d(SMj , SMi) =
H(SMi|SMj) + H(SMj |SMi)

H(SMi, SMj)
(17)

Based on this definition we can define synchronicity as

s(SMj , SMi) =
C

d(SMj , SMi)
(18)

We can define the reward associated with a given re-
cent time window as

r(SM(→ t)) = C · (
∑

i

∑
j

s(SMj , SMi)) (19)

Although generally not as a motivational variable, syn-
chrony measures have been used in several recent formal
models (e.g. (Prince et al., 2003)). Some related inves-
tigations, based on information theory but not specif-
ically to synchrony, have been conducted in which it
was studied how various information-theoretic cost func-
tions to be optimized by a sensorimotor system allowed
the self-organization of various coordinated behaviour
(Sporns and Lungarella, 2006).

4. Conclusion

Based on Berlyne’s theory, this paper has proposed an
integrated definition of intrinsic motivation, based on the
concept of collative variables. Starting from this defini-
tion, we have described a landscape of possible computa-
tional approaches to intrinsic motivation. Some of them

have already been implemented and tested in the liter-
ature, and this unified landscape will help to compare
them in the same framework. We also showed that there
are important types of approaches, such as competence
based intrinsic motivation, which are still largely unex-
plored but full of potential. As a consequence, we hope
this paper will set the stage for research initiatives inves-
tigating in a systematic manner what are the behavioral
and developmental consequences of using each particu-
lar type of intrinsic motivation mechanism, in particu-
lar studying how far each of them can drive efficiently
the learning of reusable skills, self-organize developmen-
tal trajectories, and allow for open-ended development.
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