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A Backward Particle Interpretation of Feynman-Kac
Formulae

Résumé : Nous présentons de nouvelles interprétations particulaires de mesures de Feynman-Kac
trajectorielles fondées sur une représentation markovienne a rebours de ces modeles, couplée avec
les interprétations particulaires de type champ moyen classiques du flot des mesures marginales
par rapport aux temps terminaux. A la différence des algorithmes particulaires fondés sur des
évolutions d’arbres généalogiques, ces nouvelles techniques permettent de calculer récursivement des
fonctionnelles additives normalisées et leur mesures limites avec un degré de précision uniforme par
rapport a ’horizon temporel considéré.

Nous proposons des résultats de convergence uniformes par rapport a 'horizon temporel, ainsi
que des théoremes de la limite centrale fonctionnels et des inégalités de concentration exponentielles.
Ces résultats semblent étre les premiers de ce type pour cette classe d’algorithmes particulaires. Nous
illustrons ces résultats en physique numérique avec des approximations particulaires d’équations aux
dérivées partielles de type Schroedinger et le calcul effectif des mesures stationnaires associées aux
h-processus.

Mots-clés : Modeles de Feynman-Kac, algorithmes stochastiques de type champ moyen, théoreme
de la limite centrale fonctionnels, inégalités de concentration exponentielle, estimations non asymp-
totiques
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1 Introduction

Let (Ey)n>0 be a sequence of measurable spaces equipped with some o-fields (&,)n>0, and we let
P(E.) be the set of all probability measures over the set E,. We let X,, be a Markov chain with
Markov transition M,, on E,, and we consider a sequence of (0, 1]-valued potential functions G,, on
the set E,. The Feynman-Kac path measure associated with the pairs (M, G,,) is the probability
measure Q,, on the product state space Ejg ) := (Eo X ... X Ey) defined by the following formula

dQn = — <« [[ Go(Xp)p dPy (1.1)

0<p<n

where Z,, is a normalizing constant and P, is the distribution of the random paths (X,)o<p<n of
the Markov process X, from the origin p = 0, up to the current time p = n. We also denote by
I, = Z, Q, its unnormalized version.

These distributions arise in a variety of application areas, including filtering, Bayesian inference,
branching processes in biology, particle absorption problems in physics and many other instances.
We refer the reader to the pair of books [4] [10] and references therein. Feynman-Kac models also
play a central role in the numerical analysis of certain partial differential equations, offering a natural
way to solve these functional integral models by simulating random paths of stochastic processes.
These Feynman-Kac models were originally presented by Mark Kac in 1949 [I2] for continuous time
processes. These continuous time models are used in molecular chemistry and computational physics
to calculate the ground state energy of some Hamiltonian operators associated with some potential
function V' describing the energy of a molecular configuration (see for instance [T}, [5, 15, [19], and
references therein).

To better connect these partial differential equation models with , let us assume that
M, (xp—1,dx,) is the Markov probability transition X,, = z,, ~» X, +1 = Zp4+1 coming from a dis-
cretization in time X,, = X} of a continuous time E-valued Markov process X} on a given time mesh
(tn)n>0 with a given time step (¢, —t,_1) = At. For potential functions of the form G,, = e~V4¢
the measures Q,, ~a¢—0 Q¢, represents the time discretization of the following distribution:

t
dQ; = = exp (—/ V(XY) ds) dpX’
where PX" stands for the distribution of the random paths (X o<s<t with a given infinitesimal
generator L. The marginal distributions 7, at time ¢ of the unnormalized measures Z; dQ; are the
solution of the so-called imaginary time Schroedinger equation, given in weak formulation on every
sufficiently regular function f by

d

= () =LV () with LV =L-V

The errors introduced by the discretization of the time are well understood for regular models, we
refer the interested reader to [6l 9] [14] [16] in the context of nonlinear filtering.

In this article, we design a numerical approximation scheme for the distributions @Q,, based on
the simulation of a sequence of mean field interacting particle systems. In molecular chemistry, these
evolutionary type models are often interpreted as a quantum or diffusion Monte Carlo model. In
this context, particles often are referred as walkers, to distinguish the virtual particle-like objects
to physical particles, like electrons of atoms. In contrast to traditional genealogical tree based
approximations (see for instance [4]), the particle model presented in this article can approximate
additive functionals of the form

Folzo, ... on) = ! > folay) (1.2)

(n+1) 52,
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4 Del Moral & Doucet € Singh

“uniformly well” with respect to the time horizon. Moreover this computation can be done “on-the-
fly”. To give a flavor of the impact of these results, we recall that the precision of the algorithm
corresponds to the size N of the particle system. If QY stands for the N-particle approximation
of Q,, under some appropriate regularity properties, we shall prove the following uniform and non
asymptotic Gaussian concentration estimate

3 tousu® (102 - QI = 7 +e) < /)

for any € > 0, and for some finite constant b < oo. In the filtering context, QY corresponds to
the sequential Monte Carlo approximation of the forward filtering backward smoothing recursion.
Recently, a theoretical study of this problem was undertaken by [8]. Our results complement theirs
and we present functional central limit theorems as well as non-asymptotic variance bounds. Addi-
tionally, we show how the forward filtering backward smoothing estimates of additive functionals can
be computed using a forward only recursion. This has applications to online parameter estimation
for non-linear non-Gaussian state-space models.

For time homogeneous models (M, fn,Gr) = (M, f, G) with a lower bounded potential function
G > ¢, and a M-reversible transition w.r.t. to some probability measure u s.t. M(z,.) ~ p and
(M (z,.)/dn) € La(u), it can be established that Q,,(F),) converges to ux(f), as n — oo, with the
measure pp defined below

1
In the above display, h is a positive eigenmeasure associated with the top eigenvalue of the integral
operator Q(z,dy) = G(z)M(z,dy) on La(p) (see for instance section 12.4 in [4]). This measure py,
is in fact the invariant measure of the h-process defined as the Markov chain X" with elementary
Markov transitions My, (z, dy) o< M (x, dy)h(y). As the initiated reader would have certainly noticed,
the above convergence result is only valid under some appropriate mixing conditions on the h-process.
The long time behavior of these h-processes and their connections to various applications areas of
probability, analysis, geometry and partial differential equations, has been the subject of countless
papers for many years in applied probability. In our framework, using elementary manipulations,
the Gaussian estimate given above can be used to calibrate the convergence of the particle estimate

N(F,) towards uy(f), as the pair of parameters N and n — oo.

The rest of this article is organized as follows:

In section 2] we describe the mean field particle models used to design the particle approximation
measures QY. In Section we state the main results presented in this article, including a functional
central limit theorem, and non asymptotic mean error bounds. Section []is dedicated to a key back-
ward Markov chain representation of the measures QQ,,. The analysis of our particle approximations
is provided in section 5] The next two sections, section [f] and section [7] are mainly concerned with
the proof of the two main theorems presented in section In the final section, section [§] we pro-
vide some comparisons between the backward particle model discussed in this article and the more
traditional genealogical tree based particle model.

For the convenience of the reader, we end this introduction with some notation used in the present
article. We denote respectively by M(E), and B(E), the set of all finite signed measures on some
measurable space (E, ), and the Banach space of all bounded and measurable functions f equipped
with the uniform norm || f||. We let u(f) = [ p(dz) f(x), be the Lebesgue integral of a function
f € B(E), with respect to a measure u € M(E). We recall that a bounded integral kernel M (x, dy)
from a measurable space (F, £) into an auxiliary measurable space (E’,£’) is an operator f +— M(f)
from B(E') into B(E) such that the functions

z— M(f)(z) == E,M(x,dy)f(y)

1Consult the last paragraph of this section for a statement of the notation used in this article.

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 5

are E-measurable and bounded, for any f € B(E’). In the above displayed formulae, dy stands for an
infinitesimal neighborhood of a point y in E’. The kernel M also generates a dual operator p +— uM
from M(FE) into M(E'") defined by (uM)(f) := w(M(f)). A Markov kernel is a positive and bounded
integral operator M with M (1) = 1. Given a pair of bounded integral operators (M7, M), we let
(M1 M>) the composition operator defined by (M7 Ms)(f) = M;(M2(f)). For time homogenous state
spaces, we denote by M™ = M™ M = MM™ ! the m-th composition of a given bounded integral
operator M, with m > 1. Given a positive function G on E, welet U : n € P(E) — ¥g(n) € P(E),
be the Boltzmann-Gibbs transformation defined by

on)dx) = — o ) nlda)

2 Description of the models

The numerical approximation of the path-space distributions (L.1)) requires extensive calculations.
The mean field particle interpretation of these models are based on the fact that the flow of the n-th
time marginals 7,, of the measures Q,, satisfy a non linear evolution equation of the following form

s (dy) = / i (d2) K p 1., (2, ) (2.1)

for some collection of Markov transitions K15, indexed by the time parameter n > 0 and the
set of probability measures P(E,,). The mean field particle interpretation of the nonlinear measure
valued model (2.1 is the EN-valued Markov chain

&= (&.8,....&)) e EY

with elementary transitions defined as

N N
S 1
P(gn-‘rl € dz ‘ gn) = H Kn—‘—l,n,]y (E;Lvdxl) with 777]1\[ = N E 5551 (22)
Jj=1

i=1

In the above displayed formula, dzx stands for an infinitesimal neighborhood of the point x =
(z',...,2") € EY. ,. The initial system &, consists of N independent and identically distributed
random variables with common law 19. We let FY := o (£, ...,&,) be the natural filtration associ-
ated with the N-particle approximation model deﬁned above. The resulting particle model coincides
with a genetic type stochastic algorithm &, ~~ §n ~ &n4+1 with selection transitions &, ~» fn and
mutation transitions fn ~ &n41 dictated by the potential (or fitness) functions G,, and the Markov
transitions M, 4.

During the selection stage &, ~ &, for every index i, with a probability €, G (£!), we set & = &
otherwise we replace ! with a new individual E; = ¢J randomly chosen from the whole population
with a probability proportional to G, (&2). The parameter €, > 0 is a tuning parameter that must
satisfy the constraint €,G,(£}) < 1, for every 1 < i < N. For ¢, = 0, the resulting proportional
selection transition corresponds to the so-called simple genetic model. During the mutation stage,
the selected particles £ ~ && 11 evolve independently according to the Markov transitions M, 1.

If we interpret the selection transition as a birth and death process, then arises the important
notion of the ancestral line of a current individual. More precisely, when a particle £, | — &%

evolves to a new location &! | we can interpret £, as the parent of £ . Looking backwards in time
and recalling that the particle fn 1 has selected a site &, in the configuration at time (n — 1), we

can interpret this site 53171 as the parent of 2;,1 and therefore as the ancestor denoted 5:171,71 at
level (n — 1) of &,. Running backwards in time we may trace the whole ancestral line

RR n° 7019



6 Del Moral & Doucet € Singh

More interestingly, the occupation measure of the corresponding N-genealogical tree model converges
as N — oo to the conditional distribution Q,,. For any function F,, on the path space E|g ), we have
the following convergence (to be stated precisely later) as N — oo,

N
o1 Z i g i
]\;Lr}loﬁ at Fn(go,n;glﬂm"'7£7z,n> :/ Qn(d(x()aaxn)) Fn(x()w"?xn) (24)

This convergence result can be refined in various directions. Nevertheless, the asymptotic variance
02(F,) of the above occupation measure around Q, increases quadratically with the final time

horizon n for additive functions of the form

Fu(mo,..oan) = > folzp) = op(Fy) ~ 0 (2.5)

0<p<n

comprised of some collection of non negative functions f, on E,. To be more precise, let us examine a
time homogeneous model (E,, fn, Gn, M,,) = (E, f, G, M) with constant potential functions G,, =1
and mutation transitions M s.t. ngM = 1. For the choice of the tuning parameter ¢ = 0, using the
asymptotic variance formulae in [4, eqn. (9.13), page 304 ], for any function f s.t. n9(f) = 0 and
no(f?) = 1 we prove that

02(F,) = Z E Z M(q*p”(f)(Xq)

0<p=<n 0<g¢=<n

with the positive part ay = max (a,0) and the convention M° = Id, the identity transition. For
M(z,dy) = no(dy), we find that

2F)= S E|| S rx)| | =m+nm+2)2 (2.6)

0<p<n 0<g<p

We further assume that the Markov transitions M,,(z,_1,dx,) are absolutely continuous with
respect to some measures A, (dz,) on E, and we have

AN, (7,1,
(H)  Hnor2) € (Buct x By Holanorz) = 20001y 5 g

In this situation, we have the backward decomposition formula
Qn(d(zo, ... xn)) = nuldey) My (zn,d(xo, ... Tr_1)) (2.7)

with the Markov transitions M,, defined below
Mn(CCm d(an cee 7$n71)) = H Mq’nqq ($q> qufl)
g=1

In the above display, M, 11, is the collection of Markov transitions defined for any n > 0 and
n € P(En) by
1
M, r,dy) = G.(y) H, ,x) n(d 2.8
+1,7]( y) n (Gan+1(-,$)) (y) "rl(y ) 77( y) ( )

A detailed proof of this formula and its extended version is provided in section [

Using the representation in (2.7, one natural way to approximate @, is to replace the measures
1, with their N-particle approximations 1. The resulting particle approximation measures, QY is
then

QN (d(z0, - -, 2n)) == 0N (dxn) MY (2, d(z0,. .., 20 1)) (2.9)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 7

with the random transitions
MY (2, d(z0, .. Tn1) H gl (zq,dzg—1) (2.10)

At this point, it is convenient to recall that for any bounded measurable function f, on FE,, the
measures 7, can be written as follows:

T (f) ;:77" with 7 (f) =E [ fu(Xa) [ Gal =na(fa) [ m(Gy) (211)

0<p<n 0<p<n

The multiplicative formula in the r.h.s. of (2.11) is easily checked using the fact that ~,41(1) =
Y (Gr) = N (Gr) Yn(1). Mimicking the above formulae, we set

Y =1 x @) with Y1) := J[ #)(Gp) and ~Y(dz) =~ (1) x n} (dz)
0<p<n

Notice that the N-particle approximation measures QY can be computed recursively with respect
to the time parameter. For instance, for linear functionals of the form (2.5), we have

Q) (Fn) = 1 ()

with a sequence of random functions F¥ on E,, that can be computed “on-the-fly” according to the
following recursion

FTJLV: Z |:Mn,nfy_1"'Mp+1,név (fp):fn—’_Mn,nfy_l(Ferv—l)

0<p<n

with the initial value F¥ = fo. In contrast to the genealogical tree based particle model (2.4)), this
new particle algorithm requires N2 computations instead of N, in the sense that:

M<j<N  ENE)=f)t Y Sl )i &) gy i

1<i<N 1§i’§NG V(& ) Hn (&L 1, 6h)

An important application of this recursion is to parameter estimation for non-linear non-Gaussian
state-space models. For instance, it may be used to implement an on-line version of the Expectation-
Maximization algorithm as detailed in [I3] Section 3.2]. In a different approach to recursive parameter
estimation, an online particle algorithm is presented in [I7] to compute the score for non-linear non-
Gaussian state-space models. In fact, the algorithm of [17] is actually implementing a special case of
the above recursion and may be reinterpreted as an “on-the-fly” computation of the forward filtering
backward smoothing estimate of an additive functional derived from Fisher’s identity.
The convergence analysis of the N-particle measures QY towards their limiting value Q,, as
N — 00, is intimately related to the convergence of the flow of particle measures (77]]9\’ Jo<p<n towards
their limiting measures (1, )o<p<n. Several estimates can be easily derived more or less directly from
the convergence analysis of the particle occupation measures nY developed in [4], including L,-mean
error bounds and exponential deviation estimates. It is clearly out of the scope of the present work
to review all these consequences. One of the central objects in this analysis is the local sampling
errors VIV induced by the mean field particle transitions and defined by the following stochastic
perturbation formula .
,'7711\[ = ’I]g,lKanZ:Ll + ﬁ VnN (212)
The fluctuation and the deviations of these centered random measures V.V can be estimated using non
asymptotic Kintchine’s type L,-inequalities, as well as Hoeffding’s or Bernstein’s type exponential

RR n° 7019



8 Del Moral & Doucet € Singh

deviations [4, [7]. We also proved in [3] that these random perturbations behave asymptotically as
Gaussian random perturbations. More precisely, for any fixed time horizon n > 0, the sequence of
random fields V.V converges in law, as the number of particles N tends to infinity, to a sequence of
independent, Gaussian and centered random fields V;, ; with, for any bounded function f on F,,, and
n >0,

2

E(Va(f)?) =/ Mn-1(d2) K, (2, dy) (f(y) = Knp._, (£)(@)) (2.13)

In section[B] we provide some key decompositions expressing the deviation of the particle measures
(TN, QN) around their limiting values (T',,, Q,) in terms of these local random fields models. These
decomposition can be used to derive almost directly some exponential and IL,-mean error bounds
using the stochastic analysis developed in [4]. We shall use these functional central limit theorems
and some of their variations in various places in the present article.

3 Statement of some results

In the present article, we have chosen to concentrate on functional central limit theorems, as well
as on non asymptotic variance theorems in terms of the time horizon. To describe our results, it
is necessary to introduce the following notation. Let S(M) denote the Dobrushin coefficient of a
Markov transition M from a measurable space E into another measurable space E’ which defined
by the following formula

B(M) :=sup {osc(M(f)); f € Osci(E")}

where Osci(E’) stands the set of £'-measurable functions f with oscillation, denoted osc(f) =
sup {[f(x) — f(y)] ; z,y € E'}, less than or equal to 1. Some stochastic models discussed in the
present article are based on sequences of random Markov transitions MY that depend on some
mean field particle model with N random particles. In this case, 3(M%) may fail to be measurable.
For this type of models we shall use outer probability measures to integrate these quantities. For
instance, the mean value E (3(M?")) is to be understood as the infimum of the quantities E(BY)
where BY > 3(M¥) are measurable dominating functions. We also recall that =, satisfy the linear
recursive equation

TYn = ’Ypr,n with Qp,n = Qp+1Qp+2 ...Qn and Qn(xvdy) = Gn—l(z) Mn(z, dy)
for any 0 < p < n. Using elementary manipulations, we also check that
Ln(Fn) = v Dpn(Fn)

with the bounded integral operators Dy, ,, from E, into Ejg ;) defined below

D, o (Fp)(zp) = /Mp(a:p, d(zo, ..., Tp=1))Qpn(Tp, d(@ps1,...,Tn)) Fu(zo,...,Ts) (3.1)

with
Qpn(@p, d(@Tpt1, - .-, Tn)) = H Qq+1(2q, drgs1)

p<g<n

We also let (Gp,n, Pp,n) be the pair of potential functions and Markov transitions defined below
Gpn = Qpn(1)/1pQp,n(1) and Py n(Fn) = Dpn(Fn)/Dpn(1) (3.2)
Let the mapping @, ,, : P(E,) — P(E,), 0 < p < n, be defined as follows

PpQ@p,n

Dy n(pp) = m

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 9

Our first main result is a functional central limit theorem for the pair of random fields on B (E[o,n])
defined below
Wit = VN (T =Ty) and WY = VN (@) - Q)

WEN is centered in the sense that E (WY (F,)) = 0 for any F,, € B(Ejg,). The proof of this
surprising unbiasedness property can be found in corollary in section
The first main result of this article is the following multivariate fluctuation theorem.

Theorem 3.1 We suppose that the following reqularity condition is met for any n > 1 and for any
pair of states (z,y) € (Epn—1,Ep)

(HY)  hy(y) < Ho(z,y) < hg(y) with (b /hy) € La(nn) and by € Li(An) (3-3)

In this situation, the sequence of random fields WEN | resp. W2N - converge in law, as N — oo, to
the centered Gaussian fields WY, resp. W2, defined for any F,, € B(Ejo,n)) b

Wg(Fn) = V;?(Gp,n Pp,n(Fn _@n(Fn)))

A interpretation of the corresponding limiting variances in terms of conditional distributions of
Q. w.r.t. to the time marginal coordinates is provided in section
The second main result of the article is the following non asymptotic theorem.

Theorem 3.2 For anyr > 1, n >0, F,, € Osc1(FEjy,)) we have the non asymptotic estimates

1

VNE(|@Y - QlE)]) <ar X B (3.4)

0<p<n

for some finite constants a, < oo whose values only depend on the parameter v, and a pair of

constants (by.n,c,',) such that

by.n < sup (Qp,n(l)(m)/Qp’n(l)(y)) and CN <E (5(PN ))

T,y

In the above dzsplay, n stands for the random Markov transitions defined as P, , by replacing in

and the tmnsztwns My, by M.
For linear functionals of the fo, with f, € Oscy1(Ey), the L.-mean error estimate

is satisfied with a constant cﬁn m that can be chosen so that

NS 3 E(B(Myyy o Mygrgy )+ D B2 (3.5)

0<qg<p p<qg<n

with the Markov transitions Sy, 4 from E, into E, defined for any function f € B(Ey) by the following
formula Sp 4(f) = Qp.o(f)/Qp.q(1).

We emphasize that the LL,.-mean error bounds described in the above theorem enter the stability
properties of the semigroups S, , and the one associated with the backward Markov transitions
M, 41,y In several instances, the term in the r.h.s. of 1) can be uniformly bounded with respect
to the time horizon. For instance, in the toy example we discussed in , we have the variance
formula

E (W2(Fa)?) = (n+1)

RR n° 7019



10 Del Moral & Doucet € Singh

and the non asymptotic LL,.-estimates

by, =1 and cﬁ{n <1 = \/]VE(HQQI —Qn](Fn)r)% <ar (n+1)

In more general situations, these estimates are related to the stability properties of the Feynman-Kac
semigroup. To simplify the presentation, let us suppose that the state space E,, and the pair of
potential-transitions (G,,, M,,) are time homogeneous (E,,, Gy, H,, M,) = (E,G, H, M), and chosen
so that the following regularity condition is satisfied

(M), VY(z,2") G(z)<dG(z') and M™(x,dy) < p M™ (2, dy) (3.6)
for some m > 1 and some parameters (§, p) € [1,00)2. Under this rather strong condition, we have
bp,n < p(;m and B(Sp,q) < (1 o p7257m) L(g—p)/m]

See for instance corollary 4.3.3. in [4] and the more recent article [2]. On the other hand, let us
suppose that
inf (H(z,y)/H(z,y')) = a(h) >0

z,y,y’
In this case, we have

My (2, dy) < a(h)_2 Mn,n(ml7 dy) = 3 (Mp,ni,v,l "'Mqul,né") < (1 - a(h)2>p7q

For linear functional models of the form ({2.5) associated with functions f, € Osci(E,), it is now
readily checked that

VN E (H@iv — Qn](Fn)!’")% <a,b(n+1) (3.7)

for some finite constant b < oo whose values do not depend on the time parameter n. The above
non asymptotic estimates are not sharp for r = 2. To obtain better bounds, we need to refine the
analysis of the variance using first order decompositions to analyze separately the bias of the particle
model. In this context, we also prove in section [7.2] that

N [E(QY(Fo) —Qu(F)| <c(n+1) and E(W2N(F,)?) <c(n+1) (1 + ”;\; 1) (3.8)

for some finite constant ¢ < co, whose values do not depend on the time parameter.

With some information on the constants a,., the above L,-mean error bounds can turned to
uniform exponential estimates w.r.t. the time parameter for normalized additive functionals of the
following form

— 1
Fo(xo,...,Tp) = —— Z folxp)
0<p<n
To be more precise, by lemma 7.3.3 in [4], the collection of constants a, in (3.7) can be chosen so
that
agr < (2r)! 277/r1 and a3ty < (2r+ 1)1 277/ (3.9)
In this situation, it is easily checked that for any € > 0, and N > 1, we have the following uniform
Gaussian concentration estimates:
1 — b
— logsup P nN— | (Fn Z+6>§—62 252
ioesu P (@ - Qul(F)| > J(2?)
This result is a direct consequence of the fact that for any non negative random variable U

(VT >1 E(U")” <ar b) = logP (U > b+e) < —2/(20)

To check this claim, we develop the exponential to prove that
w0 (b2 (br)?

bt
logE(etU) < bt—|—:>10g]P’(UZb—|—6)§—sup<et—>
2 t>0 2

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 11

4 A backward Markov chain formulation

This section is mainly concerned with the proof of the backward decomposition formula (2.7]). Before
proceeding, we recall that the measures (v, 7,) satisfy the non linear equations

Yn = 'Yn—lQn and h+1 = (I)n—i-l(nn) = \IJG'n (777L)Mn+1

and their semigroups are given by

Yn = YpQpn and Nn(fn) = anp,n(fn)/anp,n(l)

for any function f, € B(E,). In this connection, we also mention that the semigroup of the pair of
measures (I',,,Q,,) defined in (I.1)) for any 0 < p < n and any F, € B(E|y]), we have

Ln(Fn) =% Dpn(F) and Qn(Fn) = 0pDpn(F)/1pDpn(1) (4.1)

These formulae are a direct consequence of the following observation

1Dy () = /Qp(d(xo,...,xp)) Qs A1, s 20)) Fn(0, s a0m)
Lemma 4.1 For any 0 < p < n, we have

’Yp(dxp) Qp,n(xpa d(xp—Ha ey Tp)) = Yn(dTy) Mn,p(xn» d(:z:p, cy Tpo1)) (4.2)

with
Mo p(Tn, d(zp, ..., Tn1)) = H Mg, (Tg+1, dxq)

p<g<n

In particular, for any time m > 0, the Feynman-Kac path measures Q, defined in can be
expressed in terms of the sequence of marginal measures (1,)o<p<n, With the following backward
Markov chain formulation

Qn(d(zoy ..., T0n)) = nu(dey) Mpo(@n,d(zo, ..., Tn-1)): (4.3)

Before entering into the details of the proof of this lemma, we mention that holds true for
any well defined Markov transition M, 14, (v, dz) from E,, into E, 4, satisfying the local backward
equation

Ve, (nn)(dx) Mn+1($,dy) = (I)n+1(77n)(dy) My, (y, dm)

or equivalently

M (d) Quir(z,dy) = (NnQnir)(dy) Mty (y, dx) (4.4)
In other words, we have the duality formula
Va, () (f Mni1(9)) = @ni1(n) (9 Mnt1n, (f)) (4.5)

Also notice that for any pair of measures p,v on F, s.t. p < v, we have uM, 1 < vMp 1.
Indeed, if we have vM,,+1(A) = 0, the function M,,;1(14) is null v-almost everywhere, and therefore
u-almost everywhere from which we conclude that pM,11(A) = 0. For any bounded measurable
function g on FE,, we set

Ve, (m)(dx) = Ve, (nn)(dz) g(x) < e, (1n)(dz)

From the previous discussion, we have W, (1,)Mny1 < ¥a, (1) My41 and it is easily checked that

d\II%" (M) M1

- d\PGn (nn)Mn+1 <y)

Myi1,,(9)(y)

RR n° 7019



12 Del Moral & Doucet € Singh

is a well defined Markov transition from F,; into E, satisfying the desired backward equation.
These manipulations are rather classical in the literature on Markov chains (see for instance [18],
and references therein). Under the regularity condition (H) the above transition is explicitly given

by the formula (2.8)).

Now, we come to the proof of lemma 4.1

Proof of lemma [4.1k

We prove (4.2) using a backward induction on the parameter p. By , the formula is clearly
true for p = (n — 1). Suppose the result has been proved at rank p. Since we have

Vp—l(dxp—l) Qp—l,n(xp—la d(xp, )

= Yp—1(dzp—1) Qp(Tp—1,dxp) Qpn(Tp, d(xpi1,. .., Tn))
and
'Yp—l(dmp—l) Qp(l'p—lvdmp) = 'Vp(dxp) Mpmp—l(frpvdwp—l)
Using the backward induction we conclude that the desired formula is also met at rank (p — 1).

The second assertion is a direct consequence of (4.2). The end of the proof of the lemma is now
completed. -

We end this section with some properties of backward Markov transitions associated with a given
initial probability measure that may differ from the one associated with the Feynman-Kac measures.
These mathematical objects appear in a natural way in the analysis of the N-particle approximation

transitions M introduced in (2.10).
Definition 4.2 For any 0 < p < n and any probability measure n € P(E,), we denote by Mpi1pn
the Markov transition from Ey 1 into Ep, ) = (Ep X ... x Ey) defined by
Mot1pn ($n+1>d($p7 ceyTp)) = H Mq+1,q>p,q(n) ($q+1, dl“q)
p<qs<n

Notice that this definition is consistent with the definition of the Markov transitions M, ,, intro-
duced in lemma [Tk

Mn-i-l,P,np (xn+17 d(xpv ce. 7xn)) = Mn-ﬁ-l,p ($n+17 d(xp’ e 7xn))

Also observe that M1, , can alternatively be defined by the pair of recursions

Mn+l,p,n (xn-&-la d(xpa s axn))
=M1 p41,8,14(n) (Tnt1, d(Tpi1, - Tn)) X Mpy1,n(Tps1, dap) (4.6)
= Mn-l—l,@p,n(n) ($n+1ﬂ dl’n) Mn,pﬂ] (Z’n, d(‘riﬁ ce ’z"_l))

The proof of the following lemma follows the same lines of arguments as the ones used in the proof of
lemmal4.1l For the convenience of the reader, the details of this proof are postponed to the appendix.

Lemma 4.3 For any 0 < p <n and any probability measure n € P(E,), we have
NQpn(dry) Moy pn(Tn, d(@p, ..., 2n—1)) = n(dzp) Qpn(Tp, d(Xpi1,-..,%n))
In other words, we have
Mo pon(@n, d(xp, ..., 2Hn_1))

(77 X Qp,n—l)(d(l'p, e 7$n—1))Gn—1(xn—1) Hn(xn—la xn) (47)

(1Qp.n—1) (Gno1 Hu(.,75))
with the measure (N x Qp n—1) defined below

(1 %X Qpn-1)(d(@p, ..., Tn-1)) = n(dzp) Qpn-1(Tp,d(Tps1,...,Tn-1))

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 13

5 Particle approximation models

We provide in this section some preliminary results on the convergence of the N-particle measures
(TN QN) to their limiting values (I',,, Q,,), as N — oo. Most of the forthcoming analysis is developed
in terms of the following integral operators.

Definition 5.1 For any 0 < p < n, we let DN be the fN 1-measurable integral operators from
B(Ejy,n)) into B(E,) defined below

DYA(E) ) = [ M dor o 20) Qoo Ay 00)) Fois )

with the conventions DO n = Qo.n, and resp. Dn =MD forp=0, and resp. p=n
The main result of this section is the following theorem.

Theorem 5.2 For any 0 < p <n, and any function F,, on the path space Ejg ], we have
E(CY(Fo) | FY) =Y (DY.(F,) and WIN(F, Z'yp 1) VN (DY, (Fy))

Proof of theorem [5.2}
To prove the first assertion, we use a backward induction on the parameter p. For p = n, the
result is immediate since we have

We suppose that the formula is valid at a given rank p < n. In this situation, we have

E@Y(F) | Fl) = %) E@m (Dya(F)) | Foly)

(1) / Y (GporHy () Aplday) DY (F)(z,)  (5.1)

Using the fact that

Y1 (1) np (G Hp (- ) Ap(day) My, (@p, drp1) = Vo1 (day—1)Qp(xp—1, dxp)
we conclude that the r.h.s. term in takes the form

f’yﬁl(dxp,l)/\/lévfl(xp,l, d(zo, ..., 2p—2))Qp_1n(Tp—1,d(Tp, ..., zpn)) Fn(zo,-..,Ts)

= ’Vévfl (D;év;l,n(F’ﬂ))

This ends the proof of the first assertion. The proof of the second assertion is based on the following
decomposition

(T3 = Tn) (Fn)

STEEYFE) | FY) -E N (F) | 7))

p=0

Z% (”p (Dpn(Fn)) = N;) M (Dfav—l,n(Fn))>

npfl(GP_l
where F%| is the trivial sigma field. By definition of the random fields VpN , it remains to prove that

RR n° 7019



14 Del Moral & Doucet € Singh

To check this formula, we use the decomposition

77117\[—1(d$p—1) Mi)v—l(‘rp—la d(ﬂ?o, cee 7xp—2)) Qp—l,n(xp—h d(xpv s ,an))

(5.2)
= n[]xl(dxp—l)Qp(xp—la dxp)M;z])v—l(xp—lv d(‘TOa cee 7xp—2)) Qp,n(x]m d(xp-i-l? ceey ZCn))
Using the fact that
nﬁl(dxp,ﬂQp (Tp-1,dxpy) = (ﬂé&@p)(d%) Mp,né\QI (zp, dxpfl)
we conclude that the term in the r.h.s. of (5.2)) is equal to
(775_1Qp)(d96p) M;I)V(xpa d(wo, ..., 2p-1)) Qpn(Tp, d(Tpi1,---,Tn))
This ends the proof of the theorem. [

Several consequences of theorem are now emphasized. On the one hand, using the fact that
the random fields V™ are centered given F.¥ ;, we find that

E (LY (F,)) =Tn(F,)
On the other hand, using the fact that

(1) _ (1) _ 1
(1) pQpn(l)  7pQpn(1)

we prove the following decomposition

W, (B) = VN (3 (1) @Y - Z VY (Dpa(F) (5.3)

with the pair of parameters (7,];] (1), Eﬁ{n) defined below

N N
Y (1) :==—">= and D_ (F, 5.4
W= o) = Gyl o)
Using again the fact that the random fields V,V are centered given FY |, we have
2
E (W, (F)?) = ZE<7p [VN( o (F) }f;V_lD
Using the estimates
DS (F)ll < 1Qpn (DI IEn]l
—N — . — Qpn(1
DY E < (@Dl Bl with @, (1) =~ 22 (5.5
Mp@p.n (1)

we prove the non asymptotic variance estimate

n

E(W," (F.)?) < ZE T (02) 1@ WIF =32 L+ E () (1) = 1)) @D

p=0

for any function F), such that ||F,|| < 1. On the other hand, using the decomposition
(' (1) QY = Qa) = [T (1) = 1] Q7 + (@7 — Qn)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 15

we prove that

N 2\ 1/2 1 L oy 1/2 N 2\ 1/2
_ < _
B ([0Y (F) ~@u(F)) < - BV R +E ([0 - 1))
Some interesting bias estimates can also be obtained using the fact that
E(Qy (Fa)) = Qu(Fo) =E([1 =70 (D] [Q (Fn) = Qu(Fn)])
and the following easily proved upper bound
1/2 1/2

B (@Y (F) - Qu(Fa)| < E([1-77W)]7) 7 E ([Q (F) - Qu(Fa)]”)

Under the regularity condition (M),, stated in (3.6), we proved in a recent article [2], that for
any n > p >0, and any N > (n + 1)pé™ we have

1@ n(V <™ and N E[FY(1)-1)"] <4 (m+1) p 6™
From these estimates, we readily prove the following corollary.

Corollary 5.3 Assume that condition (M), is satisfied for some parameters (m,d,p). In this sit-
uation, for any n > p >0, any F,, such that ||F,|| <1, and any N > (n+ 1)pd™ we have

N
n n

E (WFN(Fn)) =0 and E (W (Fn)Q) <(6mp)*(n+1) (1 + % pd™(n + 2))

In addition, we have
N 2 m m 2
NE([QY(F) - Qu(B)]*) < 200+ 1™ (448 |1+ —(n+2)
and the bias estimate

9 1/2
N [E(QY(F,)) — Qu(Fy)| < 2v2 (n+1)ps™ (4 + p™ {1 + 5+ z)D

6 Fluctuation properties

This section is mainly concerned with the proof of theorem Unless otherwise is stated, in the
further developments of this section, we assume that the regularity condition (H™) presented in (3.3))
is satisfied for some collection of functions (h,,,h;). Our first step to establish theorem is the

n’»''n
fluctuation analysis of the N-particle measures (I'}Y, QY) given in proposition whose proof relies

on the following technical lemma.

Lemma 6.1

MY (2, d(z0, ..., Zn1)) — Myp(2n,d(z0, ..., Tn_1))

= 3 Mgy = Moo o )| @@ 1)) MY (@, d(o, 1))

0<p<n

The proof of this lemma follows elementary but rather tedious calculations; thus it is postponed
to the appendix. We now state proposition [6.2

RR n° 7019



16 Del Moral & Doucet € Singh

Proposition 6.2 For any N > 1,0 <p <n, z, € E,, m > 1, and I}, € B(E[O,n]) such that
|Fn] <1, we have

VI E (|0} (B) = DB )| ") ™ < atm) i) (721, ) (6.1)

for some finite constants a(m) < oo, resp. b(n) < oo, whose values only depend on the parameters
m, resp. on the time horizon n.

Proof:
Using lemma we find that

Dgn(Fn) = Dpn(Fn) = Z {Mp,qmév - Mp7q7<1>q(7]é\’;1):| (TzﬁYq,n(Fn))

0<g<p

with the random function T, . (F,,) defined below

TN (F) (g 2p)

p.g,n
= [ Qpn(ap, d(xpir, ..., zp)) /\/lév(xq, d(zo, ..., xq-1)) Fulzo,...,zp)

Using formula (4.7)), we prove that for any m > 1 and any function F on Ej,
2

VI E (|[Myany = My o] BV )| 1 FL)™ < atm) b (T())

for some finite constants a(m) < oo and b(n) < oo whose values only depend on the parameters

m and n. Using these almost sure estimates, we easily prove (6.1). This ends the proof of the

proposition. [ |

Now, we come to the proof of theorem
Proof of theorem [3.1k
Using theorem [5.2] we have the decomposition

Wy N (Fa) = En:%ﬁv(l) VoY (Dpn(F)) + Ry ™ (Fr)
p=0

with the second order remainder term

n

RN(F,) =>4 (1) VN (FY,)  and the function FY, :=[D}, — Dpn](Fy)
p=0

By Slutsky’s lemma and by the continuous mapping theorem it clearly suffices to check that RL-N (F,)
converge to 0, in probability, as N — oco. To prove this claim, we notice that

2 2
E(VN () [ 7)) <o () (7))
On the other hand, we have
@, (1) ((FY)%)
= f)‘p(dxp) Ve, (771])\{—1) (Hp(-,7p)) Fgg\,[n(xp)2

< ((FgﬁYn)Q) + //\p(dxp) H:lIle—l (77;])\[—1) - \11pr1 (7710—1)] (Hp('vxp))‘ F;f\,,n(xp)Q INRIA
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This yields the rather crude estimate
2
@, () (F)°)
= f)‘p(dxp) \I’prl (’7;17\[—1) (Hp('axp)) an(xp)2

<y ((FN)?) + 41QuaI [ Moldy) W,y (12) = Wi,y (pe)] (Hilevmy)
from which we conclude that
E (VY (F0)°)
< fnp(dzp) E [(Fggvm(xp))ﬂ

+4||Qp,n(1)||2 IAp(dxp) E (| [\I/Gpﬂ (77117\[—1) - \I'prl (7711—1)} (Hp('vxp))D
We can establish that

VNE (| [\Ile—l (77117\[71) - Vg, , (771?*1)} (Hp('vxp))D < b(n) h;@p)
See for instance section 7.4.3, theorem 7.4.4 in [4]. Using proposition

VN E (V,,N (F;Yn)z) < c(n) <\/1N Ty ((ij) N Ap(hp)

for some finite constant c¢(n) < co. The end of the proof of the first assertion now follows standard
computations. To prove the second assertion, we use the following decomposition

1 —rnN
Tn (1)
with the random fields WE’N defined in 1) We complete the proof using the fact that 72 (1)
tends to 1, almost surely, as N — oo. This ends the proof of the theorem. [

We end this section with some comments on the asymptotic variance associated to the Gaussian
fields W2. Using (4.1), we prove that

Qn = \Dﬁp,nu)(%)Pp,n

with the pair of integral operators (Dp n, Ppn) from B(Ejq ) into B(E),)

_ L Dp,n(Fn) _ Dpvn(l)
DpnFn) = o0 0) = 0y ()

from which we deduce the following formula

D
P, (F,) and P,,(F,):=

p,n(Fn - Qn(Fn))(xp)

= Dpn(V)(@p) [ [Ppn(Fn)(@p) = Ppon(Fr)(yp)] ‘1’5,,,”,(1)(77p)(dyp)

Under condition (M),,, for any function F), with oscillations osc(F),) < 1, we prove the following
estimate

)

(6.2)

n

IDpn(1)l| < 8"p = E (WE(EF)?) < (6"0)* Y B(Ppn)?

p=0

RR n° 7019
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7 Non asymptotic estimates

7.1 Non asymptotic L,-mean error estimates

This section is mainly concerned with the proof of theorem We follow the same semigroup
techniques as the ones we used in section 7.4.3 in [4] to derive uniform estimates w.r.t. the time
parameter for the N-particle measures n)Y. We use the decomposition

N _ _ D]J)\,[n(F ) _Up 1Dp 17L(F)
[Qn Qn](Fn) _0<zp;n< 77p DN ( ) np—le—l,n( ) )

with the conventions nleylm = 19Qo,n, for p = 0. Next, we observe that

77p 1Dp 1 n( n)

=[] (dep_ )M (xp_1,d(z0, ..., Tp—2)) Qp1,n(Tp—1,d(Tp, ..., 0)) Fp(0, .. ., 2n)

= [yl (dzp—1)Qp(wp—1, dp)

x/\/li,v_l(xp_l, d(zo,...,Tp-2))Qpn(Tp, d(xpi1,. ... xn))Fn(zo, ..., 2n)
On the other hand, we have
TIﬁl(dxpfl)Qp(mpfhdxp) = n;];Vlep(dxp) Mp,'r]:é\’_l(xp’ dzp—1)

from which we conclude that

77p 1Dp ln(F) (T]p 1Qp)( pn(F ))

This yields the decomposition

v o (WDNF) ) (DY (F)
[0~ Ql(F) Z( D0 @yl (DY, D) ) 1)

with the convention ®¢(n;) = 1o, for p = 0. If we set

@, (11, 1) (D (Fn))
@y (1) (D) (1))

then every term in the r.h.s. of (7.1) takes the following form

N DYAFN)  0yQun()
D;)vn( ) Uéva,n(l)

=N
Fon=F,—

—N  ~
[ D W(EFN) =@, D, (FY)

with the integral operators ﬁ;\fn defined in lb Next, we observe that DY, (1) = Qp (1), and
=N
D

(1) = D, n(1). Thus, in terms of the local sampling random fields VpN , we have proved that

NDN (FN) 1 1 N o~
I Zpm o) .~ - yNp L(FN ) (7.2)
ny DY, (1) VN 9} D,n(1) P PR

and
N _ _ DY, (F,)
D, (F,) =Dyn(1) x PN (F,) with PN (F,) = m (7.3)
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From these observations, we prove that

@y (1p=1) (Dpin(Fn)) _ @150 1)(Qun(1) By (Fn))
@ (1 1) (D}, (1)) (1) (Qp.n(1))

Arguing as in (6.2]) we obtain the following decomposition

=g 1) (2p(m_1)) P (F)

7N ~
Dp,n (Fp]Yn) ('rp)

= Dpn(V)(xp) x [ [P (Fn) (@) — B (F)(wp)] Y, . ) (Pp(mp"1)) (dyp)

and therefore

S bp’n OSC(PIfYn(Fn))

n(l
< bpn B(P n) osc(F,) with bp7n§f:im

We end the proof of (3.4) using the fact that for any » > 1, p > 0, f € B(E,) s.t. osc(f) < 1 we
have the almost sure Kintchine type inequality

1

E(VVO FL) <a

for some finite (non random) constants a, < oo whose values only depend on 7. Indeed, using the
fact that each term in the sum of ([7.1) takes the form (7.2) we prove that

VN E (J[QY - Qul(F)] T)3<ar > b E(osc(P(Fn))) (7.4)

0<p<n

This ends the proof of the first assertion (3.4) of theorem For linear functionals of the form
(2.5)), it is easily checked that

DYo(Fn) = Qo)) 0 [Mygy oo Myran | () + Y Qualfa QunlD)

0<q<p p<gq<n
with the convention Mpn Mp_HmIz)\r = Id, the identity operator, for ¢ = p. Recalling that
DY, (1) = Qpn(l), we conclude that
N o qu Qqn ) fq)
BpnEn) = ot 3 My, My )+ 30 <52 G 25
0<qg<p p<g<n paian
and therefore
Qp,q(Qqn(1) fq)
) = Y (Moo My 1)+ Y LBl Jo)
0<qg<p P p<q<n paQ(QQ7 ( ))

Qp,q(Qq,n(l) fq) _ Sp,q(Q (1) fq) wi _ Q;D,q(g)
Qpa(@Qen(1) Sp,q@q,n(l)) th  Sp4(9) 0
(

with the potential functions Qqﬁn 1) defined in 1) After some elementary computations, we obtain
the following estimates

osc(PZfYn (Fy))

< Socaen B (Mg o Mysiny ) 050(fg) + Xy Vo B(Spa) 05c(fy)

This ends the proof of the second assertion (3.5)) of theorem
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7.2 Non asymptotic variance estimates

This section is mainly concerned with the proof of the non asymptotic estimate stated in (3.8).
Recalling that 1,D, (1) = 1, we readily check that

1 1 — _
= =1-—= My Dpn(1) = mpDp (1)) =1 = —=——=—— W'"(D, (1))
n;]aVme(l) ni])va,n(l) ( Py e ) i g

with the empirical random field W[J,V T defined below

Wé\f,n =VN [77117\7 = Tlp]

We recall that

Vf, € Osci(E,) (|WN"fp )%<ar >,

0<q¢<p

with the Markov transitions S, ,, defined in theorem [3.2] See for instance the non asymptotic L,-
estimates presented on page 36 in [3]. Using the above decomposition, the local terms (|7.2)) can be
rewritten as follows

! vNDY

51y o D) = Vi D (F) = s Wi (1) % V3 () (F)

N D))

By (7.1)), these local decompositions yield the following formula

p,n

WON(E,) = IN(F,) + \/% RN(F,)

N VND, L (FN)

0<p<n

with the first order term

and the second order remainder term

1 _ N~
Rg(Fn) == Z m W;])v’n(Dp,n(l)) X ‘/pN(Dp,n(FéVn))
0<p<n p TP

By construction, we have
E(IN(F)2) = Y. E(VV (D (F)?) <o)
0<p<n

with some finite constant

Z b (osc( PN W(F2)?))

0<p<n

Furthermore, using Cauchy-Schwartz inequality

ERVE?)D < Y b EOVYID, 04 E (VYD) (F))
0<p<n
with some constant
>, > 82, B(Sep) | E(osc(PY,(Fn)))

0<p<n 0<q<p
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We conclude that

N

1 1y
\/—Nr §J(n)+\/—ﬁr (n)

Arguing as in section [3) under the regularity condition (M), stated in (3.6)), for linear functionals
of the form ([2.5)), with f,, € Oscy(E,,), we readily check that

IE (W2N(F,))| < N(n) and E(W2N(F,)?)

o’(n)<c(n+1) and rV(n) <c/? (n+1)

for some finite constant ¢ < oo, whose values do not depend on the pair (n, N). In this case, we
conclude that

|E (W2N(F,))| < % M (n+1) and E(W2EN(F,)?) <c(n+1) <1 + n;\f)

This ends the proof of (3.8).

8 Comparisons with genealogical tree particle models

In this section, we provide with a brief comparison between these particle models and the genealogical
tree particle interpretations of the measures Q,, discussed in (2.4]).

8.1 Limiting variance interpretation models

Our first objective is to present a new interpretation of the pair of potential-transitions (G, Pp.n)
defined in (3.2). We fix the time horizon n and we denote by Eq, the expectation operator of a
canonical random path (Xo, ..., X;,) under the measure Q,. For any function F' € B(Ej, ), p < n,
using (2.7) we check that

Eq, (F(Xp,.--, X)) = /nn(dxn) H Mg,—i(xq, dxg—1) F(ap, ... 20)
p<g<n

This implies that for any F' € B(Ey ), we have the Q,-almost sure formula

Eg, (F(Xo,...,Xp) | (Xp,.... Xy) ) = /Mp(Xp,d(xo,...,xp,l))F((q:O,...,xp,l),Xp)
= Eq, (F(X07-~-,Xp)| Xp )

Using elementary calculations, it is also easily checked that for any function F' € B(Ej ) we have
the @Q,-almost sure formula

EQn (F(X07aXn)| (XOa”'vXP) )

= m f Qp,’n(Xp7 d(l’p+1, e ,./L'n))_F‘((_.)(()7 e ,Xp)7 (.Tp+1, N ,xn))
and therefore, for any function F,, € B(E] ), we prove that
Eq, (Fn(X0> s »Xn) | Xp ) = Ppm(Fn)(Xp)

%p)

In much the same way, if we denote by Qp,’ the time marginal of the measure Q,, with respect to

the p-th coordinate, we have
dQY’
QP <« n, with ——— =Gpn
dnp
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For centered functions F, s.t. Q,(F,) = 0, by the functional central limit theorem the limiting
variance of the measures ny associated with the genetic model ([2.2)) with acceptance parameters
€, = 0 has the following interpretation:

E(WXF.)?) = Y np[Ga, Pon(Fn)?]

p=0
>_Eq, (
p=0

We end this section with some estimates of these limiting variances. Arguing as in (6.2)), for any
F, € B(Ejy,5)), we readily prove the estimate

dQ'?) 2
(Xp) Eq, (Fn(Xos-- -5 Xn) [Xp)
d77p

E (W2(F,)?) < Z b2, 0sc(Pyn(Fyn))?

0<p<n

For linear functionals of the form (2.5), with functions f, € Osci(E,), using the same lines of
arguments as those we used at the end of section [7] it is easily checked that

OSC(Pp,n(Fn)) < Z B (Mp,npfl "'Mq+1ﬂ7q> + Z bz,n ﬁ(sp,q)

0<q<p p<g<n

Under the regularity condition (M),, stated in (3.6]), the r.h.s. term in the above display is uniformly
bounded with respect to the time parameters 0 < p < n, from which we conclude that

E(WR2(F,)?) <c(n+1) (8.1)

for some finite constant ¢ < oo, whose values do not depend on the time parameter.

8.2 Variance comparisons

We recall that the genealogical tree evolution models associated with the genetic type particle systems
discussed in this article can be seen as the mean field particle interpretation of the Feynman-Kac
mesures 73, defined as in , by replacing the pair (X,,, G,,) by the historical process X, and the
potential function G,, defined below:

X, = (Xo, . ,Xn) and gn(Xn) = GTL(XTL)

We also have a non linear transport equation defined as in (2.1)) by replacing K, ,,_, by some
Markov transition Xy, , _, from Fjg,_1j into Ej ). In this notation, the genealogical tree model
coincides with the mean field particle model defined as in 1) by replacing .f(',wzv_1 by K

n,nﬁ’_ 1’
where 1)’ | stands for the occupation measure of the genealogical tree model at time (n — 1). The
local sampling errors are described by a sequence of random field model VX', V,, on B(Ejg ,,)) defined
as in and , by replacing K, ,, by K, ,. More details on the path space technique can be
found in chapter 3 of the book [4].

The fluctuations of the genealogical tree occupation measures

N
1
N N N N
M= 206 e e ad =TT (@) | o (8.2)
i=1 0<p<n

around their limiting values 7,, and ~,, are described by the pair of empirical random fields defined
below

WIN = VN (Y —7,) and WY = VN [ = 1,]
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To describe the limiting gaussian random fields W) and W), we need another round of notation.

Firstly, we observe that the pair of measures (v,,7,) on the path space Ejg,n) coincide with the
measures (', Q,) we defined in the introduction of the present article. For these path space models,
it is easily checked that

Tn = 'Ypr,n
with the integral operator from B(Ey ,) into B(Ej y)) defined below

Dpn(Fp)(xo,. .. xp) i= / Qpn(Tp, d(@ps1, . 20)) Ful(zo,. .., 2p)s (Tpt1s---,Tn))
In the above display Q,, ,, is the integral operator defined in (3.1). Notice that

Dpn(1) (205 -+, 7p) = Qpn(1)(wp) = Dpn(1)(2p) = Qp,n(1)(zp)

Asin (3.2), we consider be the pair of potential functions and Markov transitions (G, n, Pp.n) defined
below

Gpn(@0s- -y xp) = Gpn(wp) and  Ppn(Fn) = Dyn(Fn)/Dpn(l) (8.3)

In terms of conditional expectations, we readily prove that
Eg, (Fn(Xo,---, Xn) | (Xoy---,Xp) ) = Ppn(Fn)(Xo, ..., Xp) (8.4)

for any function F;, € B(Ejyy))-

It is more or less well known that the sequence of random fields W)V, resp. Wi~ converge
in law, as N — oo, to the centered Gaussian fields W), resp. W, defined as W' resp. W, by
replacing the quantities (Vy,, Gp n, Dpn, Ppn, Qn) by the path space models (Vp, Gp.n, Dp.ns Pp.ns 1n);
that is we have that

WiE) = 3 3(1) Yy (Dyn(F))
p=0

WH(F,) = Z Vo (Gpn Ppon(Fr — 0 (F)))
p=0

A detailed discussion on these functional fluctuation theorems can be found in chapter 9 in [4].
Arguing as before, for centered functions F, s.t. Q,(F,) = 0, the limiting variance of the genealogical
tree occupation measures 77 associated with the genetic model with acceptance parameters
€, = 0 has the following interpretation:

" QY
E(WH(F,)?) = ZEQ"‘(dn (Xo,...,X,) Eg, (Fu(Xo,..., Xn) [(Xo,..., X))
p=0 p

— E(W3E)Y) + Y B, (dg (4,) Vo, (PynlF) |Xp>>
p=0
with the Q,-conditional variance of the conditional expectations with respect to X, given by
Varg, (Pp.n(Fn) [Xp)
=Eq, ([Ea, (Fa(Xo,. -, Xa) | (X0, X)) = Eg, (Fa(Xo, o, Xa) 1,1, )

For sufficiently regular models, and for linear functionals of the form (2.5, with local functions
fn € Oscy(E,), we have proved in (8.1) that E (W2(F,)?) < ¢ (n+ 1), for some finite constant
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¢ < 00, whose values do not depend on the time parameter. In this context, we also have that

2

Varg, (Ppn(Fn)|Xp) = Eq, Z (fo(Xq) — Eq, (fo(XIXp)) | |Xp

0<q<p

These local variance quantities may grow dramatically with the parameter p, so that the result-
ing variance E (W}(F,)?) will be much larger than E (W2(F,)?). For instance, in the toy model

discussed in 1) we clearly have Q%p ) = Np = Mo and

Eg, (Fu(Xo,.. ., Xn) [(Xo,..., Xp)) = Y f(X

0<g<p
from which we conclude that

E(WX(F,)?) =(n+1) and E(W!(F,)?) =E(WZX(F,)?) + n(n+1)

8.3 Non asymptotic comparisons

For any function F,, € B(Ejp,,), and any 7 > 1, it is known that
1
\/NE(HWJLV—Qn]( n T)T<ar Z b . 05¢(Pp.n(Fr))
0<p<n

with the occupation measure 1Y of the genealogical tree model defined in (8.2). See for instance
page 36 in [3]. Notice that the r.h.s. term is the same as in 1D by replacing P;f\,[n by the integral
operator Pp, ,, defined in (8.3]). For linear functionals of the form (2.5), we have

Ppn(Fn) (2o, - .- Tp) = Z fa(zq) + Z Urg(Qgn )fq)(xp)

0<g<p p<g<n (Qq n( ))
Chosing local functions f,, s.t. osc(f,) =1, we find that

0s¢(Ppn(EFy)) > p = Z b n 05C¢(Ppn(Fr)) > n(n+1)/2
0<p<n

In the reverse angle, under the regularity condition (M),,, we prove in and ( . ) that

Z b2, oscP W(Fo)) <b(n+1)
0<p<n

for some finite constant b < oo whose values do not depend on the time parameter n.

Appendix
Proof of lemma [4.3]

We prove the lemma by induction on the parameter n(> p). For n = p + 1, we have

Mpitpn(@py1,dep) = My p(xpir,dey) and  Qp pi1(xp, dapi1) = Qpyi1(Tp, dTpin)

By definition of the transitions M1, we have

NQp+1(drpy1) Mpi1py(Tpi1,dry) = n(dry) Qp pr1(wyp, drpir)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 25
We suppose that the result has been proved at rank n. In this situation, we notice that

n(dxp) Qpni1(Tp, d(@pi1;- - Tnt1))

=n(dzp) Qpn(Tp, d(Tpi1,-- s 70))Qni1(Tn, dTpny1)

=nQpn(dzyn) Qni1(Tn, dTrni1) My pn(Tn, d(Tp, ..., Tn_1))

=1NQpn(1) ®pn()(drn) Qni1(Tn,drni1) My py(Tn, d(@p, ..., 20-1))
Using the fact that

Ppn(n)(dzn) Qni1(Tn, dTnir) = Ppn(M)Qnt1(dTnt1) Miny1a, () (@nt1,dzn)
and
NQpn(1) Lpn()Qni1(drnir) =1Qpnt1(drnir)

we conclude that

n(dzp) Qpni1(Tp, d(Tpys- . Tny1))

=nQpn+1(dTni1) Myi1,e, () (Tnt1,dTn) Mapy(Tn, d(Tp, ... Tn-1))

= NQpn+1(dTni1) Mant1,py (Tni1, d(@p, ..., 70))
This ends the proof of the lemma. [

Proof of lemma [6.1k
Using the recursions , we prove that
M1 pny (Tng1, d(@p, .o T0))
= Mn+1,p+1,¢>p+1(n;¥) (Tnt1, d(Tpt1, -y 2n)) X Mpyy gy (Tpi1, dap)
On the other hand, we also have
/\/lé,VH(xPJrh d(zo,...,2p)) = Mpﬂm{," (Zp+1, dxp)/\/li,v(xp, d(zo, ..., Tp-1))
from which we conclude that
Mn+1,p+1,¢>p+1(ng) (@nt1, d(Tpt, - .-, Tn)) Mé;VJrl(prrlv d(zo, - .., xp))
= Mui1pny @ns1, d(Tp, ..., 20)) MY (zp, d(zo, ..., Tp_1))

The end of the proof is now a direct consequence of the following decomposition

MY (z,,d(z0,. .. 20-1)) — Mp(n,d(z0, ..., Tp_1))
= S [Mugny @nsd(@p, - 201)) MY (2, d(z0, 7y 1))
Moy s d(@prs 1) M (@1, dlwo, 2 2))]
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with the conventions

M"70ﬂ7(1)\] (.’I?n,d(al‘(), cee ,.’Enfl)) M(I)V(Qﬁo, d(.’]?07 cee ,1‘1)) = MWOJI(J)V (Jln,d(wo, ces ,xnfl))

for p=0, and for p=n

Moy gy (n,d(Tp, .- Tn—1)) MnN(xn,d(xo, cey L) = Mfzv(xn, d(zg, ..., Tpn_1)
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