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Équipes-Projets ALEA

Rapport de recherche n° 7019 — July 2009 — 27 pages

Abstract: We design a particle interpretation of Feynman-Kac measures on path spaces based on
a backward Markovian representation combined with a traditional mean field particle interpretation
of the flow of their final time marginals. In contrast to traditional genealogical tree based models,
these new particle algorithms can be used to compute normalized additive functionals “on-the-fly”
as well as their limiting occupation measures with a given precision degree that does not depend on
the final time horizon.

We provide uniform convergence results w.r.t. the time horizon parameter as well as functional
central limit theorems and exponential concentration estimates, yielding what seems to be the first
results of this type for this class of models. We also illustrate these results in the context of compu-
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interest in the numerical approximation of the invariant measure associated to h-processes.
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A Backward Particle Interpretation of Feynman-Kac
Formulae

Résumé : Nous présentons de nouvelles interprétations particulaires de mesures de Feynman-Kac
trajectorielles fondées sur une représentation markovienne à rebours de ces modèles, couplée avec
les interprétations particulaires de type champ moyen classiques du flot des mesures marginales
par rapport aux temps terminaux. A la différence des algorithmes particulaires fondés sur des
évolutions d’arbres généalogiques, ces nouvelles techniques permettent de calculer récursivement des
fonctionnelles additives normalisées et leur mesures limites avec un degré de précision uniforme par
rapport à l’horizon temporel considéré.

Nous proposons des résultats de convergence uniformes par rapport à l’horizon temporel, ainsi
que des théorèmes de la limite centrale fonctionnels et des inégalités de concentration exponentielles.
Ces résultats semblent être les premiers de ce type pour cette classe d’algorithmes particulaires. Nous
illustrons ces résultats en physique numérique avec des approximations particulaires d’équations aux
dérivées partielles de type Schroedinger et le calcul effectif des mesures stationnaires associées aux
h-processus.

Mots-clés : Modèles de Feynman-Kac, algorithmes stochastiques de type champ moyen, théorème
de la limite centrale fonctionnels, inégalités de concentration exponentielle, estimations non asymp-
totiques
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1 Introduction

Let (En)n≥0 be a sequence of measurable spaces equipped with some σ-fields (En)n≥0, and we let
P(En) be the set of all probability measures over the set En. We let Xn be a Markov chain with
Markov transition Mn on En, and we consider a sequence of (0, 1]-valued potential functions Gn on
the set En. The Feynman-Kac path measure associated with the pairs (Mn, Gn) is the probability
measure Qn on the product state space E[0,n] := (E0 × . . .× En) defined by the following formula

dQn :=
1
Zn

 ∏
0≤p<n

Gp(Xp)

 dPn (1.1)

where Zn is a normalizing constant and Pn is the distribution of the random paths (Xp)0≤p≤n of
the Markov process Xp from the origin p = 0, up to the current time p = n. We also denote by
Γn = Zn Qn its unnormalized version.

These distributions arise in a variety of application areas, including filtering, Bayesian inference,
branching processes in biology, particle absorption problems in physics and many other instances.
We refer the reader to the pair of books [4, 10] and references therein. Feynman-Kac models also
play a central role in the numerical analysis of certain partial differential equations, offering a natural
way to solve these functional integral models by simulating random paths of stochastic processes.
These Feynman-Kac models were originally presented by Mark Kac in 1949 [12] for continuous time
processes. These continuous time models are used in molecular chemistry and computational physics
to calculate the ground state energy of some Hamiltonian operators associated with some potential
function V describing the energy of a molecular configuration (see for instance [1, 5, 15, 19], and
references therein).

To better connect these partial differential equation models with (1.1), let us assume that
Mn(xn−1, dxn) is the Markov probability transition Xn = xn  Xn+1 = xn+1 coming from a dis-
cretization in time Xn = X ′tn of a continuous time E-valued Markov process X ′t on a given time mesh
(tn)n≥0 with a given time step (tn − tn−1) = ∆t. For potential functions of the form Gn = e−V∆t,
the measures Qn '∆t→0 Qtn represents the time discretization of the following distribution:

dQt =
1
Zt

exp
(
−
∫ t

0

V (X ′s) ds
)
dPX

′

t

where PX′t stands for the distribution of the random paths (X ′s)0≤s≤t with a given infinitesimal
generator L. The marginal distributions γt at time t of the unnormalized measures Zt dQt are the
solution of the so-called imaginary time Schroedinger equation, given in weak formulation on every
sufficiently regular function f by

d

dt
γt(f) := γt(LV (f)) with LV = L− V

The errors introduced by the discretization of the time are well understood for regular models, we
refer the interested reader to [6, 9, 14, 16] in the context of nonlinear filtering.

In this article, we design a numerical approximation scheme for the distributions Qn based on
the simulation of a sequence of mean field interacting particle systems. In molecular chemistry, these
evolutionary type models are often interpreted as a quantum or diffusion Monte Carlo model. In
this context, particles often are referred as walkers, to distinguish the virtual particle-like objects
to physical particles, like electrons of atoms. In contrast to traditional genealogical tree based
approximations (see for instance [4]), the particle model presented in this article can approximate
additive functionals of the form

Fn(x0, . . . , xn) =
1

(n+ 1)

∑
0≤p≤n

fp(xp) (1.2)

RR n° 7019



4 Del Moral & Doucet & Singh

“uniformly well” with respect to the time horizon. Moreover this computation can be done “on-the-
fly”. To give a flavor of the impact of these results, we recall that the precision of the algorithm
corresponds to the size N of the particle system. If QN

n stands for the N -particle approximation
of Qn, under some appropriate regularity properties, we shall prove the following uniform and non
asymptotic Gaussian concentration estimates1:

1
N

log sup
n≥0

P
(∣∣[QN

n −Qn](Fn)
∣∣ ≥ b√

N
+ ε

)
≤ −ε2/(2b2)

for any ε > 0, and for some finite constant b < ∞. In the filtering context, QN
n corresponds to

the sequential Monte Carlo approximation of the forward filtering backward smoothing recursion.
Recently, a theoretical study of this problem was undertaken by [8]. Our results complement theirs
and we present functional central limit theorems as well as non-asymptotic variance bounds. Addi-
tionally, we show how the forward filtering backward smoothing estimates of additive functionals can
be computed using a forward only recursion. This has applications to online parameter estimation
for non-linear non-Gaussian state-space models.

For time homogeneous models (Mn, fn, Gn) = (M,f,G) with a lower bounded potential function
G > δ, and a M -reversible transition w.r.t. to some probability measure µ s.t. M(x, .) ∼ µ and
(M(x, .)/dµ) ∈ L2(µ), it can be established that Qn(Fn) converges to µh(f), as n → ∞, with the
measure µh defined below

µh(dx) :=
1

µ(hM(h))
h(x) M(h)(x) µ(dx)

In the above display, h is a positive eigenmeasure associated with the top eigenvalue of the integral
operator Q(x, dy) = G(x)M(x, dy) on L2(µ) (see for instance section 12.4 in [4]). This measure µh
is in fact the invariant measure of the h-process defined as the Markov chain Xh with elementary
Markov transitions Mh(x, dy) ∝M(x, dy)h(y). As the initiated reader would have certainly noticed,
the above convergence result is only valid under some appropriate mixing conditions on the h-process.
The long time behavior of these h-processes and their connections to various applications areas of
probability, analysis, geometry and partial differential equations, has been the subject of countless
papers for many years in applied probability. In our framework, using elementary manipulations,
the Gaussian estimate given above can be used to calibrate the convergence of the particle estimate
QN
n (Fn) towards µh(f), as the pair of parameters N and n→∞.

The rest of this article is organized as follows:
In section 2, we describe the mean field particle models used to design the particle approximation

measures QN
n . In section 3, we state the main results presented in this article, including a functional

central limit theorem, and non asymptotic mean error bounds. Section 4 is dedicated to a key back-
ward Markov chain representation of the measures Qn. The analysis of our particle approximations
is provided in section 5. The next two sections, section 6 and section 7, are mainly concerned with
the proof of the two main theorems presented in section 3. In the final section, section 8, we pro-
vide some comparisons between the backward particle model discussed in this article and the more
traditional genealogical tree based particle model.

For the convenience of the reader, we end this introduction with some notation used in the present
article. We denote respectively by M(E), and B(E), the set of all finite signed measures on some
measurable space (E, E), and the Banach space of all bounded and measurable functions f equipped
with the uniform norm ‖f‖. We let µ(f) =

∫
µ(dx) f(x), be the Lebesgue integral of a function

f ∈ B(E), with respect to a measure µ ∈M(E). We recall that a bounded integral kernel M(x, dy)
from a measurable space (E, E) into an auxiliary measurable space (E′, E ′) is an operator f 7→M(f)
from B(E′) into B(E) such that the functions

x 7→M(f)(x) :=
∫
E′
M(x, dy)f(y)

1Consult the last paragraph of this section for a statement of the notation used in this article.

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 5

are E-measurable and bounded, for any f ∈ B(E′). In the above displayed formulae, dy stands for an
infinitesimal neighborhood of a point y in E′. The kernel M also generates a dual operator µ 7→ µM
fromM(E) intoM(E′) defined by (µM)(f) := µ(M(f)). A Markov kernel is a positive and bounded
integral operator M with M(1) = 1. Given a pair of bounded integral operators (M1,M2), we let
(M1M2) the composition operator defined by (M1M2)(f) = M1(M2(f)). For time homogenous state
spaces, we denote by Mm = Mm−1M = MMm−1 the m-th composition of a given bounded integral
operator M , with m ≥ 1. Given a positive function G on E, we let ΨG : η ∈ P(E) 7→ ΨG(η) ∈ P(E),
be the Boltzmann-Gibbs transformation defined by

ΨG(η)(dx) :=
1

η(G)
G(x) η(dx)

2 Description of the models

The numerical approximation of the path-space distributions (1.1) requires extensive calculations.
The mean field particle interpretation of these models are based on the fact that the flow of the n-th
time marginals ηn of the measures Qn satisfy a non linear evolution equation of the following form

ηn+1(dy) =
∫
ηn(dx)Kn+1,ηn

(x, dy) (2.1)

for some collection of Markov transitions Kn+1,η, indexed by the time parameter n ≥ 0 and the
set of probability measures P(En). The mean field particle interpretation of the nonlinear measure
valued model (2.1) is the ENn -valued Markov chain

ξn =
(
ξ1
n, ξ

2
n, . . . , ξ

N
n

)
∈ ENn

with elementary transitions defined as

P (ξn+1 ∈ dx | ξn) =
N∏
i=1

Kn+1,ηN
n

(ξin, dx
i) with ηNn :=

1
N

N∑
j=1

δξj
n

(2.2)

In the above displayed formula, dx stands for an infinitesimal neighborhood of the point x =
(x1, . . . , xN ) ∈ ENn+1. The initial system ξ0 consists of N independent and identically distributed
random variables with common law η0. We let FNn := σ (ξ0, . . . , ξn) be the natural filtration associ-
ated with the N -particle approximation model defined above. The resulting particle model coincides
with a genetic type stochastic algorithm ξn  ξ̂n  ξn+1 with selection transitions ξn  ξ̂n and
mutation transitions ξ̂n  ξn+1 dictated by the potential (or fitness) functions Gn and the Markov
transitions Mn+1.

During the selection stage ξn  ξ̂n, for every index i, with a probability εnGn(ξin), we set ξ̂in = ξin,
otherwise we replace ξin with a new individual ξ̂in = ξjn randomly chosen from the whole population
with a probability proportional to Gn(ξjn). The parameter εn ≥ 0 is a tuning parameter that must
satisfy the constraint εnGn(ξin) ≤ 1, for every 1 ≤ i ≤ N . For εn = 0, the resulting proportional
selection transition corresponds to the so-called simple genetic model. During the mutation stage,
the selected particles ξ̂in  ξin+1 evolve independently according to the Markov transitions Mn+1.

If we interpret the selection transition as a birth and death process, then arises the important
notion of the ancestral line of a current individual. More precisely, when a particle ξ̂in−1 −→ ξin
evolves to a new location ξin, we can interpret ξ̂in−1 as the parent of ξin. Looking backwards in time
and recalling that the particle ξ̂in−1 has selected a site ξjn−1 in the configuration at time (n− 1), we
can interpret this site ξjn−1 as the parent of ξ̂in−1 and therefore as the ancestor denoted ξin−1,n at
level (n− 1) of ξin. Running backwards in time we may trace the whole ancestral line

ξi0,n ←− ξi1,n ←− . . .←− ξin−1,n ←− ξin,n = ξin (2.3)

RR n° 7019



6 Del Moral & Doucet & Singh

More interestingly, the occupation measure of the corresponding N -genealogical tree model converges
as N →∞ to the conditional distribution Qn. For any function Fn on the path space E[0,n], we have
the following convergence (to be stated precisely later) as N →∞,

lim
N→∞

1
N

N∑
i=1

Fn(ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n) =

∫
Qn(d(x0, . . . , xn)) Fn(x0, . . . , xn) (2.4)

This convergence result can be refined in various directions. Nevertheless, the asymptotic variance
σ2
n(Fn) of the above occupation measure around Qn increases quadratically with the final time

horizon n for additive functions of the form

Fn(x0, . . . , xn) =
∑

0≤p≤n

fp(xp)⇒ σ2
n(Fn) ' n2 (2.5)

comprised of some collection of non negative functions fp on Ep. To be more precise, let us examine a
time homogeneous model (En, fn, Gn,Mn) = (E, f,G,M) with constant potential functions Gn = 1
and mutation transitions M s.t. η0M = η0. For the choice of the tuning parameter ε = 0, using the
asymptotic variance formulae in [4, eqn. (9.13), page 304 ], for any function f s.t. η0(f) = 0 and
η0(f2) = 1 we prove that

σ2
n(Fn) =

∑
0≤p≤n

E


 ∑

0≤q≤n

M (q−p)+(f)(Xq)

2


with the positive part a+ = max (a, 0) and the convention M0 = Id, the identity transition. For
M(x, dy) = η0(dy), we find that

σ2
n(Fn) =

∑
0≤p≤n

E


 ∑

0≤q≤p

f(Xq)

2
 = (n+ 1)(n+ 2)/2 (2.6)

We further assume that the Markov transitions Mn(xn−1, dxn) are absolutely continuous with
respect to some measures λn(dxn) on En and we have

(H) ∀(xn−1, xn) ∈ (En−1 × En) Hn(xn−1, xn) =
dMn(xn−1, .)

dλn
(xn) > 0

In this situation, we have the backward decomposition formula

Qn(d(x0, . . . , xn)) = ηn(dxn) Mn(xn, d(x0, . . . , xn−1)) (2.7)

with the Markov transitions Mn defined below

Mn(xn, d(x0, . . . , xn−1)) :=
n∏
q=1

Mq,ηq−1(xq, dxq−1)

In the above display, Mn+1,η is the collection of Markov transitions defined for any n ≥ 0 and
η ∈ P(En) by

Mn+1,η(x, dy) =
1

η (GnHn+1(., x))
Gn(y) Hn+1(y, x) η(dy) (2.8)

A detailed proof of this formula and its extended version is provided in section 4.
Using the representation in (2.7), one natural way to approximate Qn is to replace the measures

ηn with their N -particle approximations ηNn . The resulting particle approximation measures, QN
n , is

then
QN
n (d(x0, . . . , xn)) := ηNn (dxn) MN

n (xn, d(x0, . . . , xn−1)) (2.9)

INRIA
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with the random transitions

MN
n (xn, d(x0, . . . , xn−1)) :=

n∏
q=1

Mq,ηN
q−1

(xq, dxq−1) (2.10)

At this point, it is convenient to recall that for any bounded measurable function fn on En, the
measures ηn can be written as follows:

ηn(fn) :=
γn(fn)
γn(1)

with γn(fn) := E

fn(Xn)
∏

0≤p<n

Gp(Xp)

 = ηn(fn)
∏

0≤p<n

ηp(Gp) (2.11)

The multiplicative formula in the r.h.s. of (2.11) is easily checked using the fact that γn+1(1) =
γn(Gn) = ηn(Gn) γn(1). Mimicking the above formulae, we set

ΓNn = γNn (1)×QN
n with γNn (1) :=

∏
0≤p<n

ηNp (Gp) and γNn (dx) = γNn (1)× ηNn (dx)

Notice that the N -particle approximation measures QN
n can be computed recursively with respect

to the time parameter. For instance, for linear functionals of the form (2.5), we have

QN
n (Fn) = ηNn (FNn )

with a sequence of random functions FNn on En that can be computed “on-the-fly” according to the
following recursion

FNn =
∑

0≤p≤n

[
Mn,ηN

n−1
. . .Mp+1,ηN

p

]
(fp) = fn +Mn,ηN

n−1
(FNn−1)

with the initial value FN0 = f0. In contrast to the genealogical tree based particle model (2.4), this
new particle algorithm requires N2 computations instead of N , in the sense that:

∀1 ≤ j ≤ N FNn (ξjn) = fn(ξjn) +
∑

1≤i≤N

Gn−1(ξin−1)Hn(ξin−1, ξ
j
n)∑

1≤i′≤N Gn−1(ξi′n−1)Hn(ξi′n−1, ξ
j
n)

FNn−1(ξin−1)

An important application of this recursion is to parameter estimation for non-linear non-Gaussian
state-space models. For instance, it may be used to implement an on-line version of the Expectation-
Maximization algorithm as detailed in [13, Section 3.2]. In a different approach to recursive parameter
estimation, an online particle algorithm is presented in [17] to compute the score for non-linear non-
Gaussian state-space models. In fact, the algorithm of [17] is actually implementing a special case of
the above recursion and may be reinterpreted as an “on-the-fly” computation of the forward filtering
backward smoothing estimate of an additive functional derived from Fisher’s identity.

The convergence analysis of the N -particle measures QN
n towards their limiting value Qn, as

N →∞, is intimately related to the convergence of the flow of particle measures (ηNp )0≤p≤n towards
their limiting measures (ηp)0≤p≤n. Several estimates can be easily derived more or less directly from
the convergence analysis of the particle occupation measures ηNn developed in [4], including Lp-mean
error bounds and exponential deviation estimates. It is clearly out of the scope of the present work
to review all these consequences. One of the central objects in this analysis is the local sampling
errors V Nn induced by the mean field particle transitions and defined by the following stochastic
perturbation formula

ηNn = ηNn−1Kn,ηN
n−1

+
1√
N

V Nn (2.12)

The fluctuation and the deviations of these centered random measures V Nn can be estimated using non
asymptotic Kintchine’s type Lr-inequalities, as well as Hoeffding’s or Bernstein’s type exponential

RR n° 7019



8 Del Moral & Doucet & Singh

deviations [4, 7]. We also proved in [3] that these random perturbations behave asymptotically as
Gaussian random perturbations. More precisely, for any fixed time horizon n ≥ 0, the sequence of
random fields V Nn converges in law, as the number of particles N tends to infinity, to a sequence of
independent, Gaussian and centered random fields Vn ; with, for any bounded function f on En, and
n ≥ 0,

E(Vn(f)2) =
∫

ηn−1(dx)Kn,ηn−1(x, dy)
(
f(y)−Kn,ηn−1(f)(x)

)2 (2.13)

In section 5, we provide some key decompositions expressing the deviation of the particle measures
(ΓNn ,QN

n ) around their limiting values (Γn,Qn) in terms of these local random fields models. These
decomposition can be used to derive almost directly some exponential and Lp-mean error bounds
using the stochastic analysis developed in [4]. We shall use these functional central limit theorems
and some of their variations in various places in the present article.

3 Statement of some results

In the present article, we have chosen to concentrate on functional central limit theorems, as well
as on non asymptotic variance theorems in terms of the time horizon. To describe our results, it
is necessary to introduce the following notation. Let β(M) denote the Dobrushin coefficient of a
Markov transition M from a measurable space E into another measurable space E′ which defined
by the following formula

β(M) := sup {osc(M(f)) ; f ∈ Osc1(E′)}

where Osc1(E′) stands the set of E ′-measurable functions f with oscillation, denoted osc(f) =
sup {[f(x)− f(y)] ; x, y ∈ E′}, less than or equal to 1. Some stochastic models discussed in the
present article are based on sequences of random Markov transitions MN that depend on some
mean field particle model with N random particles. In this case, β(MN ) may fail to be measurable.
For this type of models we shall use outer probability measures to integrate these quantities. For
instance, the mean value E

(
β(MN )

)
is to be understood as the infimum of the quantities E(BN )

where BN ≥ β(MN ) are measurable dominating functions. We also recall that γn satisfy the linear
recursive equation

γn = γpQp,n with Qp,n = Qp+1Qp+2 . . . Qn and Qn(x, dy) = Gn−1(x) Mn(x, dy)

for any 0 ≤ p ≤ n. Using elementary manipulations, we also check that

Γn(Fn) = γpDp,n(Fn)

with the bounded integral operators Dp,n from Ep into E[0,n] defined below

Dp,n(Fn)(xp) :=
∫
Mp(xp, d(x0, . . . , xp−1))Qp,n(xp, d(xp+1, . . . , xn)) Fn(x0, . . . , xn) (3.1)

with
Qp,n(xp, d(xp+1, . . . , xn)) :=

∏
p≤q<n

Qq+1(xq, dxq+1)

We also let (Gp,n, Pp,n) be the pair of potential functions and Markov transitions defined below

Gp,n = Qp,n(1)/ηpQp,n(1) and Pp,n(Fn) = Dp,n(Fn)/Dp,n(1) (3.2)

Let the mapping Φp,n : P(Ep)→ P(En), 0 ≤ p ≤ n, be defined as follows

Φp,n(µp) =
µpQp,n
µpQp,n(1)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 9

Our first main result is a functional central limit theorem for the pair of random fields on B(E[0,n])
defined below

WΓ,N
n :=

√
N
(
ΓNn − Γn

)
and WQ,N

n :=
√
N [QN

n −Qn]

WΓ,N
n is centered in the sense that E

(
WΓ,N
n (Fn)

)
= 0 for any Fn ∈ B(E[0,n]). The proof of this

surprising unbiasedness property can be found in corollary 5.3, in section 5.
The first main result of this article is the following multivariate fluctuation theorem.

Theorem 3.1 We suppose that the following regularity condition is met for any n ≥ 1 and for any
pair of states (x, y) ∈ (En−1, En)

(H+) h−n (y) ≤ Hn(x, y) ≤ h+
n (y) with (h+

n /h
−
n ) ∈ L4(ηn) and h+

n ∈ L1(λn) (3.3)

In this situation, the sequence of random fields WΓ,N
n , resp. WQ,N

n , converge in law, as N →∞, to
the centered Gaussian fields WΓ

n , resp. WQ
n , defined for any Fn ∈ B(E[0,n]) by

WΓ
n (Fn) =

n∑
p=0

γp(1) Vp (Dp,n(Fn))

WQ
n (Fn) =

n∑
p=0

Vp (Gp,n Pp,n(Fn −Qn(Fn)))

A interpretation of the corresponding limiting variances in terms of conditional distributions of
Qn w.r.t. to the time marginal coordinates is provided in section 8.1.

The second main result of the article is the following non asymptotic theorem.

Theorem 3.2 For any r ≥ 1, n ≥ 0, Fn ∈ Osc1(E[0,n]) we have the non asymptotic estimates

√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar

∑
0≤p≤n

b2p,n c
N
p,n (3.4)

for some finite constants ar < ∞ whose values only depend on the parameter r, and a pair of
constants (bp,n, cNp,n) such that

bp,n ≤ sup
x,y

(Qp,n(1)(x)/Qp,n(1)(y)) and cNp,n ≤ E
(
β(PNp,n)

)
In the above display, PNp,n stands for the random Markov transitions defined as Pp,n by replacing in
(3.1) and (3.2) the transitions Mp by MN

p .
For linear functionals of the form (2.5), with fn ∈ Osc1(En), the Lr-mean error estimate (3.4)

is satisfied with a constant cNp,n in (3.4) that can be chosen so that

cNp,n ≤
∑

0≤q<p

E
(
β
(
Mp,ηN

p−1
. . .Mq+1,ηN

q

))
+
∑

p≤q≤n

b2q,n β(Sp,q) (3.5)

with the Markov transitions Sp,q from Ep into Eq defined for any function f ∈ B(Eq) by the following
formula Sp,q(f) = Qp,q(f)/Qp,q(1).

We emphasize that the Lr-mean error bounds described in the above theorem enter the stability
properties of the semigroups Sp,q and the one associated with the backward Markov transitions
Mn+1,ηN

n
. In several instances, the term in the r.h.s. of (3.5) can be uniformly bounded with respect

to the time horizon. For instance, in the toy example we discussed in (2.6), we have the variance
formula

E
(
WQ
n (Fn)2

)
= (n+ 1)

RR n° 7019



10 Del Moral & Doucet & Singh

and the non asymptotic Lr-estimates

bp,n = 1 and cNp,n ≤ 1 =⇒
√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar (n+ 1)

In more general situations, these estimates are related to the stability properties of the Feynman-Kac
semigroup. To simplify the presentation, let us suppose that the state space En, and the pair of
potential-transitions (Gn,Mn) are time homogeneous (En, Gn, Hn,Mn) = (E,G,H,M), and chosen
so that the following regularity condition is satisfied

(M)m ∀(x, x′) G(x) ≤ δ G(x′) and Mm(x, dy) ≤ ρ Mm(x′, dy) (3.6)

for some m ≥ 1 and some parameters (δ, ρ) ∈ [1,∞)2. Under this rather strong condition, we have

bp,n ≤ ρδm and β(Sp,q) ≤
(
1− ρ−2δ−m

)b(q−p)/mc
See for instance corollary 4.3.3. in [4] and the more recent article [2]. On the other hand, let us
suppose that

inf
x,y,y′

(H(x, y)/H(x, y′)) = α(h) > 0

In this case, we have

Mn,η(x, dy) ≤ α(h)−2 Mn,η(x′, dy) =⇒ β
(
Mp,ηN

p−1
. . .Mq+1,ηN

q

)
≤
(
1− α(h)2

)p−q
For linear functional models of the form (2.5) associated with functions fn ∈ Osc1(En), it is now
readily checked that

√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar b (n+ 1) (3.7)

for some finite constant b < ∞ whose values do not depend on the time parameter n. The above
non asymptotic estimates are not sharp for r = 2. To obtain better bounds, we need to refine the
analysis of the variance using first order decompositions to analyze separately the bias of the particle
model. In this context, we also prove in section 7.2 that

N
∣∣E (QN

n (Fn)
)
−Qn(F )

∣∣ ≤ c (n+ 1) and E
(
WQ,N
n (Fn)2

)
≤ c (n+ 1)

(
1 +

n+ 1
N

)
(3.8)

for some finite constant c <∞, whose values do not depend on the time parameter.
With some information on the constants ar, the above Lr-mean error bounds can turned to

uniform exponential estimates w.r.t. the time parameter for normalized additive functionals of the
following form

Fn(x0, . . . , xn) :=
1

n+ 1

∑
0≤p≤n

fp(xp)

To be more precise, by lemma 7.3.3 in [4], the collection of constants ar in (3.7) can be chosen so
that

a2r
2r ≤ (2r)! 2−r/r! and a2r+1

2r+1 ≤ (2r + 1)! 2−r/r! (3.9)
In this situation, it is easily checked that for any ε > 0, and N ≥ 1, we have the following uniform
Gaussian concentration estimates:

1
N

log sup
n≥0

P
(∣∣[QN

n −Qn](Fn)
∣∣ ≥ b√

N
+ ε

)
≤ −ε2/(2b2)

This result is a direct consequence of the fact that for any non negative random variable U(
∀r ≥ 1 E (Ur)

1
r ≤ ar b

)
⇒ log P (U ≥ b+ ε) ≤ −ε2/(2b2)

To check this claim, we develop the exponential to prove that

log E
(
etU
) ∀t≥0

≤ bt+
(bt)2

2
⇒ log P (U ≥ b+ ε) ≤ − sup

t≥0

(
εt− (bt)2

2

)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 11

4 A backward Markov chain formulation

This section is mainly concerned with the proof of the backward decomposition formula (2.7). Before
proceeding, we recall that the measures (γn, ηn) satisfy the non linear equations

γn = γn−1Qn and ηn+1 := Φn+1(ηn) := ΨGn(ηn)Mn+1

and their semigroups are given by

γn = γpQp,n and ηn(fn) := ηpQp,n(fn)/ηpQp,n(1)

for any function fn ∈ B(En). In this connection, we also mention that the semigroup of the pair of
measures (Γn,Qn) defined in (1.1) for any 0 ≤ p ≤ n and any Fn ∈ B(E[0,n]), we have

Γn(Fn) = γpDp,n(Fn) and Qn(Fn) = ηpDp,n(Fn)/ηpDp,n(1) (4.1)

These formulae are a direct consequence of the following observation

ηpDp,n(Fn) =
∫

Qp(d(x0, . . . , xp)) Qp,n(xp, d(xp+1, . . . , xn))Fn(x0, . . . , xn)

Lemma 4.1 For any 0 ≤ p < n, we have

γp(dxp) Qp,n(xp, d(xp+1, . . . , xn)) = γn(dxn) Mn,p(xn, d(xp, . . . , xn−1)) (4.2)

with
Mn,p(xn, d(xp, . . . , xn−1)) :=

∏
p≤q<n

Mq+1,ηq (xq+1, dxq)

In particular, for any time n ≥ 0, the Feynman-Kac path measures Qn defined in (1.1) can be
expressed in terms of the sequence of marginal measures (ηp)0≤p≤n, with the following backward
Markov chain formulation

Qn(d(x0, . . . , xn)) = ηn(dxn) Mn,0(xn, d(x0, . . . , xn−1)) : (4.3)

Before entering into the details of the proof of this lemma, we mention that (4.3) holds true for
any well defined Markov transition Mn+1,ηn(y, dx) from En into En+1 satisfying the local backward
equation

ΨGn
(ηn)(dx) Mn+1(x, dy) = Φn+1(ηn)(dy) Mn+1,ηn

(y, dx)

or equivalently
ηn(dx) Qn+1(x, dy) = (ηnQn+1)(dy) Mn+1,ηn

(y, dx) (4.4)

In other words, we have the duality formula

ΨGn(ηn) (f Mn+1(g)) = Φn+1(ηn) (g Mn+1,ηn(f)) (4.5)

Also notice that for any pair of measures µ, ν on En s.t. µ � ν, we have µMn+1 � νMn+1.
Indeed, if we have νMn+1(A) = 0, the function Mn+1(1A) is null ν-almost everywhere, and therefore
µ-almost everywhere from which we conclude that µMn+1(A) = 0. For any bounded measurable
function g on En we set

Ψg
Gn

(ηn)(dx) = ΨGn
(ηn)(dx) g(x)� ΨGn

(ηn)(dx)

From the previous discussion, we have Ψg
Gn

(ηn)Mn+1 � ΨGn
(ηn)Mn+1 and it is easily checked that

Mn+1,ηn
(g)(y) =

dΨg
Gn

(ηn)Mn+1

dΨGn
(ηn)Mn+1

(y)

RR n° 7019



12 Del Moral & Doucet & Singh

is a well defined Markov transition from En+1 into En satisfying the desired backward equation.
These manipulations are rather classical in the literature on Markov chains (see for instance [18],
and references therein). Under the regularity condition (H) the above transition is explicitly given
by the formula (2.8).

Now, we come to the proof of lemma 4.1.
Proof of lemma 4.1:
We prove (4.2) using a backward induction on the parameter p. By (4.4), the formula is clearly

true for p = (n− 1). Suppose the result has been proved at rank p. Since we have

γp−1(dxp−1) Qp−1,n(xp−1, d(xp, . . . , xn))

= γp−1(dxp−1) Qp(xp−1, dxp) Qp,n(xp, d(xp+1, . . . , xn))

and
γp−1(dxp−1) Qp(xp−1, dxp) = γp(dxp) Mp,ηp−1(xp, dxp−1)

Using the backward induction we conclude that the desired formula is also met at rank (p − 1).
The second assertion is a direct consequence of (4.2). The end of the proof of the lemma is now
completed.

We end this section with some properties of backward Markov transitions associated with a given
initial probability measure that may differ from the one associated with the Feynman-Kac measures.
These mathematical objects appear in a natural way in the analysis of the N -particle approximation
transitions MN

n introduced in (2.10).

Definition 4.2 For any 0 ≤ p ≤ n and any probability measure η ∈ P(Ep), we denote by Mn+1,p,η

the Markov transition from En+1 into E[p,n] = (Ep × . . .× En) defined by

Mn+1,p,η (xn+1, d(xp, . . . , xn)) =
∏

p≤q≤n

Mq+1,Φp,q(η)(xq+1, dxq)

Notice that this definition is consistent with the definition of the Markov transitionsMp,n intro-
duced in lemma 4.1:

Mn+1,p,ηp
(xn+1, d(xp, . . . , xn)) =Mn+1,p (xn+1, d(xp, . . . , xn))

Also observe that Mn+1,p,η can alternatively be defined by the pair of recursions

Mn+1,p,η (xn+1, d(xp, . . . , xn))

=Mn+1,p+1,Φp+1(η) (xn+1, d(xp+1, . . . , xn))×Mp+1,η(xp+1, dxp)

= Mn+1,Φp,n(η)(xn+1, dxn) Mn,p,η (xn, d(xp, . . . , xn−1))

(4.6)

The proof of the following lemma follows the same lines of arguments as the ones used in the proof of
lemma 4.1. For the convenience of the reader, the details of this proof are postponed to the appendix.

Lemma 4.3 For any 0 ≤ p < n and any probability measure η ∈ P(Ep), we have

ηQp,n(dxn) Mn,p,η(xn, d(xp, . . . , xn−1)) = η(dxp) Qp,n(xp, d(xp+1, . . . , xn))

In other words, we have

Mn,p,η(xn, d(xp, . . . , xn−1))

=
(η ×Qp,n−1)(d(xp, . . . , xn−1))Gn−1(xn−1) Hn(xn−1, xn)

(ηQp,n−1) (Gn−1 Hn(., xn))

(4.7)

with the measure (η ×Qp,n−1) defined below

(η ×Qp,n−1)(d(xp, . . . , xn−1)) := η(dxp) Qp,n−1(xp, d(xp+1, . . . , xn−1))

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 13

5 Particle approximation models

We provide in this section some preliminary results on the convergence of the N -particle measures
(ΓNn ,QN

n ) to their limiting values (Γn,Qn), as N →∞. Most of the forthcoming analysis is developed
in terms of the following integral operators.

Definition 5.1 For any 0 ≤ p ≤ n, we let DN
p,n be the FNp−1-measurable integral operators from

B(E[0,n]) into B(Ep) defined below

DN
p,n(Fn)(xp) :=

∫
MN

p (xp, d(x0, . . . , xp−1))Qp,n(xp, d(xp+1, . . . , xn))Fn(x0, . . . , xn)

with the conventions DN
0,n = Q0,n, and resp. DN

n,n =MN
n , for p = 0, and resp. p = n

The main result of this section is the following theorem.

Theorem 5.2 For any 0 ≤ p ≤ n, and any function Fn on the path space E[0,n], we have

E
(
ΓNn (Fn)

∣∣ FNp ) = γNp
(
DN
p,n(Fn)

)
and WΓ,N

n (Fn) =
n∑
p=0

γNp (1) V Np
(
DN
p,n(Fn)

)
Proof of theorem 5.2:
To prove the first assertion, we use a backward induction on the parameter p. For p = n, the

result is immediate since we have

ΓNn (Fn) = γNn (1) ηNn
(
DN
n,n(Fn)

)
We suppose that the formula is valid at a given rank p ≤ n. In this situation, we have

E
(
ΓNn (Fn)

∣∣ FNp−1

)
= γNp (1) E

(
ηNp
(
DN
p,n(Fn)

) ∣∣ FNp−1

)
= γNp−1(1)

∫
ηNp−1(Gp−1Hp(., xp)) λp(dxp) DN

p,n(Fn)(xp) (5.1)

Using the fact that

γNp−1(1) ηNp−1(Gp−1Hp(., xp)) λp(dxp) Mp,ηN
p−1

(xp, dxp−1) = γNp−1(dxp−1)Qp(xp−1, dxp)

we conclude that the r.h.s. term in (5.1) takes the form∫
γNp−1(dxp−1)MN

p−1(xp−1, d(x0, . . . , xp−2))Qp−1,n(xp−1, d(xp, . . . , xn)) Fn(x0, . . . , xn)

= γNp−1

(
DN
p−1,n(Fn)

)
This ends the proof of the first assertion. The proof of the second assertion is based on the following
decomposition

(
ΓNn − Γn

)
(Fn) =

n∑
p=0

[
E
(
ΓNn (Fn)

∣∣ FNp )− E
(
ΓNn (Fn)

∣∣ FNp−1

)]
=

n∑
p=0

γNp (1)

(
ηNp
(
DN
p,n(Fn)

)
− 1
ηNp−1(Gp−1)

ηNp−1

(
DN
p−1,n(Fn)

))

where FN−1 is the trivial sigma field. By definition of the random fields V Np , it remains to prove that

ηNp−1

(
DN
p−1,n(Fn)

)
= (ηNp−1Qp)

(
DN
p,n(Fn)

)
RR n° 7019



14 Del Moral & Doucet & Singh

To check this formula, we use the decomposition

ηNp−1(dxp−1) MN
p−1(xp−1, d(x0, . . . , xp−2)) Qp−1,n(xp−1, d(xp, . . . , xn))

= ηNp−1(dxp−1)Qp(xp−1, dxp)MN
p−1(xp−1, d(x0, . . . , xp−2)) Qp,n(xp, d(xp+1, . . . , xn))

(5.2)

Using the fact that

ηNp−1(dxp−1)Qp(xp−1, dxp) = (ηNp−1Qp)(dxp) Mp,ηN
p−1

(xp, dxp−1)

we conclude that the term in the r.h.s. of (5.2) is equal to

(ηNp−1Qp)(dxp) MN
p (xp, d(x0, . . . , xp−1)) Qp,n(xp, d(xp+1, . . . , xn))

This ends the proof of the theorem.

Several consequences of theorem 5.2 are now emphasized. On the one hand, using the fact that
the random fields V Nn are centered given FNn−1, we find that

E
(
ΓNn (Fn)

)
= Γn(Fn)

On the other hand, using the fact that

γp(1)
γn(1)

=
γp(1)

γpQp,n(1)
=

1
ηpQp,n(1)

we prove the following decomposition

W
Γ,N

n (Fn) =
√
N
(
γNn (1) QN

n −Qn

)
(Fn) =

n∑
p=0

γNp (1) V Np
(
D
N

p,n(Fn)
)

(5.3)

with the pair of parameters
(
γNn (1), D

N

p,n

)
defined below

γNn (1) :=
γNn (1)
γn(1)

and D
N

p,n(Fn) =
DN
p,n(Fn)

ηpQp,n(1)
(5.4)

Using again the fact that the random fields V Nn are centered given FNn−1, we have

E
(
W

Γ,N

n (Fn)2
)

=
n∑
p=0

E
(
γNp (1)2 E

[
V Np

(
D
N

p,n(Fn)
)2 ∣∣ FNp−1

])
Using the estimates

‖DN
p,n(Fn)‖ ≤ ‖Qp,n(1)‖ ‖Fn‖

‖DN

p,n(Fn)‖ ≤ ‖Qp,n(1)‖ ‖Fn‖ with Qp,n(1) =
Qp,n(1)
ηpQp,n(1)

(5.5)

we prove the non asymptotic variance estimate

E
(
W

Γ,N

n (Fn)2
)
≤

n∑
p=0

E
(
γNp (1)2

)
‖Qp,n(1)‖2 =

n∑
p=0

[
1 + E

(
[γNp (1)− 1]2

)]
‖Qp,n(1)‖2

for any function Fn such that ‖Fn‖ ≤ 1. On the other hand, using the decomposition(
γNn (1) QN

n −Qn

)
=
[
γNn (1)− 1

]
QN
n +

(
QN
n −Qn

)
INRIA
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we prove that

E
([

QN
n (Fn)−Qn(Fn)

]2)1/2

≤ 1√
N

E
(
WΓ
n (Fn)2

)1/2
+ E

([
γNn (1)− 1

]2)1/2

Some interesting bias estimates can also be obtained using the fact that

E
(
QN
n (Fn)

)
−Qn(Fn) = E

([
1− γNn (1)

] [
QN
n (Fn)−Qn(Fn)

])
and the following easily proved upper bound

∣∣E (QN
n (Fn)

)
−Qn(Fn)

∣∣ ≤ E
([

1− γNn (1)
]2)1/2

E
([

QN
n (Fn)−Qn(Fn)

]2)1/2

Under the regularity condition (M)m stated in (3.6), we proved in a recent article [2], that for
any n ≥ p ≥ 0, and any N > (n+ 1)ρδm we have

‖Qp,n(1)‖ ≤ δmρ and N E
[(
γNn (1)− 1

)2] ≤ 4 (n+ 1) ρ δm

From these estimates, we readily prove the following corollary.

Corollary 5.3 Assume that condition (M)m is satisfied for some parameters (m, δ, ρ). In this sit-
uation, for any n ≥ p ≥ 0, any Fn such that ‖Fn‖ ≤ 1, and any N > (n+ 1)ρδm we have

E
(
W

Γ,N

n (Fn)
)

= 0 and E
(
W

Γ,N

n (Fn)2
)
≤ (δmρ)2(n+ 1)

(
1 +

2
N

ρδm(n+ 2)
)

In addition, we have

N E
([

QN
n (Fn)−Qn(Fn)

]2) ≤ 2(n+ 1)ρδm
(

4 + ρδm
[
1 +

2
N

(n+ 2)
])

and the bias estimate

N
∣∣E (QN

n (Fn)
)
−Qn(Fn)

∣∣ ≤ 2
√

2 (n+ 1)ρδm
(

4 + ρδm
[
1 +

2
N

(n+ 2)
])1/2

6 Fluctuation properties

This section is mainly concerned with the proof of theorem 3.1. Unless otherwise is stated, in the
further developments of this section, we assume that the regularity condition (H+) presented in (3.3)
is satisfied for some collection of functions (h−n , h

+
n ). Our first step to establish theorem 3.1 is the

fluctuation analysis of the N -particle measures (ΓNn ,QN
n ) given in proposition 6.2 whose proof relies

on the following technical lemma.

Lemma 6.1

MN
n (xn, d(x0, . . . , xn−1))−Mn(xn, d(x0, . . . , xn−1))

=
∑

0≤p≤n

[
Mn,p,ηN

p
−Mn,p,Φp(ηN

p−1)
]

(xn, d(xp, . . . , xn−1)) MN
p (xp, d(x0, . . . , xp−1))

The proof of this lemma follows elementary but rather tedious calculations; thus it is postponed
to the appendix. We now state proposition 6.2.
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Proposition 6.2 For any N ≥ 1, 0 ≤ p ≤ n, xp ∈ Ep, m ≥ 1, and Fn ∈ B(E[0,n]) such that
‖Fn‖ ≤ 1, we have

√
N E

(∣∣DN
p,n(Fn)−Dp,n(Fn)(xp)

∣∣m) 1
m ≤ a(m) b(n)

(
h+
p

h−p
(xp)

)2

(6.1)

for some finite constants a(m) < ∞, resp. b(n) < ∞, whose values only depend on the parameters
m, resp. on the time horizon n.

Proof:

Using lemma 6.1, we find that

DN
p,n(Fn)−Dp,n(Fn) =

∑
0≤q≤p

[
Mp,q,ηN

q
−Mp,q,Φq(ηN

q−1)
] (
TNp,q,n(Fn)

)
with the random function TNp,q,n(Fn) defined below

TNp,q,n(Fn)(xq, . . . , xp)

:=
∫
Qp,n(xp, d(xp+1, . . . , xn)) MN

q (xq, d(x0, . . . , xq−1)) Fn(x0, . . . , xn)

Using formula (4.7), we prove that for any m ≥ 1 and any function F on E[q,p]

√
N E

(∣∣∣[Mp,q,ηN
q
−Mp,q,Φq(ηN

q−1)
]

(F ) (xp)
∣∣∣m ∣∣ FNq−1

) 1
m

≤ a(m) b(n) ‖F‖
(
h+
p

h−p
(xp)

)2

for some finite constants a(m) < ∞ and b(n) < ∞ whose values only depend on the parameters
m and n. Using these almost sure estimates, we easily prove (6.1). This ends the proof of the
proposition.

Now, we come to the proof of theorem 3.1.
Proof of theorem 3.1:
Using theorem 5.2, we have the decomposition

WΓ,N
n (Fn) =

n∑
p=0

γNp (1) V Np (Dp,n(Fn)) +RΓ,N
n (Fn)

with the second order remainder term

RΓ,N
n (Fn) :=

n∑
p=0

γNp (1) V Np
(
FNp,n

)
and the function FNp,n := [DN

p,n −Dp,n](Fn)

By Slutsky’s lemma and by the continuous mapping theorem it clearly suffices to check that RΓ,N
n (Fn)

converge to 0, in probability, as N →∞. To prove this claim, we notice that

E
(
V Np

(
FNp,n

)2 ∣∣ FNp−1

)
≤ Φp

(
ηNp−1

) ((
FNp,n

)2)
On the other hand, we have

Φp
(
ηNp−1

) ((
FNp,n

)2)
=
∫
λp(dxp) ΨGp−1

(
ηNp−1

)
(Hp(., xp)) FNp,n(xp)2

≤ ηp
((
FNp,n

)2)+
∫
λp(dxp)

∣∣[ΨGp−1

(
ηNp−1

)
−ΨGp−1 (ηp−1)

]
(Hp(., xp))

∣∣ FNp,n(xp)2
INRIA
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This yields the rather crude estimate

Φp
(
ηNp−1

) ((
FNp,n

)2)
=
∫
λp(dxp) ΨGp−1

(
ηNp−1

)
(Hp(., xp)) FNp,n(xp)2

≤ ηp
((
FNp,n

)2)+ 4‖Qp,n(1)‖2
∫
λp(dxp)

∣∣[ΨGp−1

(
ηNp−1

)
−ΨGp−1 (ηp−1)

]
(Hp(., xp))

∣∣
from which we conclude that

E
(
V Np

(
FNp,n

)2)
≤
∫
ηp(dxp) E

[(
FNp,n(xp)

)2]
+4‖Qp,n(1)‖2

∫
λp(dxp) E

(∣∣[ΨGp−1

(
ηNp−1

)
−ΨGp−1 (ηp−1)

]
(Hp(., xp))

∣∣)
We can establish that

√
N E

(∣∣[ΨGp−1

(
ηNp−1

)
−ΨGp−1 (ηp−1)

]
(Hp(., xp))

∣∣) ≤ b(n) h+
p (xp)

See for instance section 7.4.3, theorem 7.4.4 in [4]. Using proposition 6.2,

√
N E

(
V Np

(
FNp,n

)2) ≤ c(n)
(

1√
N
ηp

((
h+

p

h−p

)4
)

+ λp(h+
p )
)

for some finite constant c(n) < ∞. The end of the proof of the first assertion now follows standard
computations. To prove the second assertion, we use the following decomposition

√
N [QN

n −Qn](Fn) =
1

γNn (1)
W

Γ,N

n (Fn −Qn(Fn))

with the random fields W
Γ,N

n defined in (5.3). We complete the proof using the fact that γNn (1)
tends to 1, almost surely, as N →∞. This ends the proof of the theorem.

We end this section with some comments on the asymptotic variance associated to the Gaussian
fields WQ

n . Using (4.1), we prove that

Qn = ΨDp,n(1)(ηp)Pp,n

with the pair of integral operators (Dp,n, Pp,n) from B(E[0,n]) into B(Ep)

Dp,n(Fn) :=
Dp,n(Fn)
ηpQp,n(1)

=
Dp,n(1)
ηpQp,n(1)

Pp,n(Fn) and Pp,n(Fn) :=
Dp,n(Fn)
Dp,n(1)

from which we deduce the following formula

Dp,n(Fn −Qn(Fn))(xp)

= Dp,n(1)(xp)
∫

[Pp,n(Fn)(xp)− Pp,n(Fn)(yp)] ΨDp,n(1)(ηp)(dyp)
(6.2)

Under condition (M)m, for any function Fn with oscillations osc(Fn) ≤ 1, we prove the following
estimate

‖Dp,n(1)‖ ≤ δmρ =⇒ E
(
WQ
n (Fn)2

)
≤ (δmρ)2

n∑
p=0

β(Pp,n)2
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7 Non asymptotic estimates

7.1 Non asymptotic Lr-mean error estimates

This section is mainly concerned with the proof of theorem 3.2. We follow the same semigroup
techniques as the ones we used in section 7.4.3 in [4] to derive uniform estimates w.r.t. the time
parameter for the N -particle measures ηNn . We use the decomposition

[QN
n −Qn](Fn) =

∑
0≤p≤n

(
ηNp D

N
p,n(Fn)

ηNp D
N
p,n(1)

−
ηNp−1D

N
p−1,n(Fn)

ηNp−1D
N
p−1,n(1)

)

with the conventions ηN−1D
N
−1,n = η0Q0,n, for p = 0. Next, we observe that

ηNp−1D
N
p−1,n(Fn)

=
∫
ηNp−1(dxp−1)MN

p−1(xp−1, d(x0, . . . , xp−2))Qp−1,n(xp−1, d(xp, . . . , xn))Fn(x0, . . . , xn)

=
∫
ηNp−1(dxp−1)Qp(xp−1, dxp)

×MN
p−1(xp−1, d(x0, . . . , xp−2))Qp,n(xp, d(xp+1, . . . , xn))Fn(x0, . . . , xn)

On the other hand, we have

ηNp−1(dxp−1)Qp(xp−1, dxp) = ηNp−1Qp(dxp) Mp,ηN
p−1

(xp, dxp−1)

from which we conclude that

ηNp−1D
N
p−1,n(Fn) = (ηNp−1Qp)(D

N
p,n(Fn))

This yields the decomposition

[QN
n −Qn](Fn) =

∑
0≤p≤n

(
ηNp D

N
p,n(Fn)

ηNp D
N
p,n(1)

−
Φp(ηNp−1)(DN

p,n(Fn))
Φp(ηNp−1)(DN

p,n(1))

)
(7.1)

with the convention Φ0(ηN−1) = η0, for p = 0. If we set

F̃Np,n = Fn −
Φp(ηNp−1)(DN

p,n(Fn))
Φp(ηNp−1)(DN

p,n(1))

then every term in the r.h.s. of (7.1) takes the following form

ηNp D
N
p,n(F̃Np,n)

ηNp D
N
p,n(1)

=
ηpQp,n(1)
ηNp Qp,n(1)

×
[
ηNp D

N

p,n(F̃Np,n)− Φp(ηNp−1)D
N

p,n(F̃Np,n)
]

with the integral operators D
N

p,n defined in (5.4). Next, we observe that DN
p,n(1) = Qp,n(1), and

D
N

p,n(1) = Dp,n(1). Thus, in terms of the local sampling random fields V Np , we have proved that

ηNp D
N
p,n(F̃Np,n)

ηNp D
N
p,n(1)

=
1√
N
× 1
ηNp Dp,n(1)

× V Np D
N

p,n(F̃Np,n) (7.2)

and

D
N

p,n(Fn) = Dp,n(1)× PNp,n(Fn) with PNp,n(Fn) :=
DN
p,n(Fn)
DN
p,n(1)

(7.3)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 19

From these observations, we prove that

Φp(ηNp−1)(DN
p,n(Fn))

Φp(ηNp−1)(DN
p,n(1))

=
Φp(ηNp−1)(Qp,n(1) PNp,n(Fn))

Φp(ηNp−1)(Qp,n(1))
= ΨQp,n(1)

(
Φp(ηNp−1)

)
PNp,n(Fn)

Arguing as in (6.2) we obtain the following decomposition

D
N

p,n(F̃Np,n)(xp)

= Dp,n(1)(xp)×
∫ [

PNp,n(Fn)(xp)− PNp,n(Fn)(yp)
]

ΨQp,n(1)(Φp(ηNp−1))(dyp)

and therefore∥∥∥DN

p,n(F̃Np,n)
∥∥∥ ≤ bp,n osc(PNp,n(Fn))

≤ bp,n β(PNp,n) osc(Fn) with bp,n ≤ sup
xp,yp

Qp,n(1)(xp)
Qp,n(1)(yp)

We end the proof of (3.4) using the fact that for any r ≥ 1, p ≥ 0, f ∈ B(Ep) s.t. osc(f) ≤ 1 we
have the almost sure Kintchine type inequality

E
(∣∣V Np (f)

∣∣r ∣∣ FNp−1

) 1
r ≤ ar

for some finite (non random) constants ar < ∞ whose values only depend on r. Indeed, using the
fact that each term in the sum of (7.1) takes the form (7.2) we prove that

√
N E

(∣∣[QN
n −Qn](Fn)

∣∣r) 1
r ≤ ar

∑
0≤p≤n

b2p,n E
(
osc(PNp,n(Fn))

)
(7.4)

This ends the proof of the first assertion (3.4) of theorem 3.2. For linear functionals of the form
(2.5), it is easily checked that

DN
p,n(Fn) = Qp,n(1)

∑
0≤q≤p

[
Mp,ηN

p−1
. . .Mq+1,ηN

q

]
(fq) +

∑
p<q≤n

Qp,q(fq Qq,n(1))

with the convention Mp,ηN
p−1

. . .Mp+1,ηN
p

= Id, the identity operator, for q = p. Recalling that
DN
p,n(1) = Qp,n(1), we conclude that

PNp,n(Fn) = fp +
∑

0≤q<p

[
Mp,ηN

p−1
. . .Mq+1,ηN

q

]
(fq) +

∑
p<q≤n

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))

and therefore

PNp,n(Fn) =
∑

0≤q<p

[
Mp,ηN

p−1
. . .Mq+1,ηN

q

]
(fq) +

∑
p≤q≤n

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))

=
Sp,q(Qq,n(1) fq)

Sp,q(Qq,n(1))
with Sp,q(g) =

Qp,q(g)
Qp,q(1)

with the potential functions Qq,n(1) defined in (5.5). After some elementary computations, we obtain
the following estimates

osc(PNp,n(Fn))

≤
∑

0≤q<p β
(
Mp,ηN

p−1
. . .Mq+1,ηN

q

)
osc(fq) +

∑
p≤q≤n b2q,n β(Sp,q) osc(fq)

This ends the proof of the second assertion (3.5) of theorem 3.2.
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7.2 Non asymptotic variance estimates

This section is mainly concerned with the proof of the non asymptotic estimate stated in (3.8).
Recalling that ηpDp,n(1) = 1, we readily check that

1
ηNp Dp,n(1)

= 1− 1
ηNp Dp,n(1)

(
ηNp Dp,n(1)− ηpDp,n(1)

)
= 1− 1√

N

1
ηNp Dp,n(1)

WN,η
p (Dp,n(1))

with the empirical random field WN,η
p defined below

WN,η
p =

√
N [ηNp − ηp]

We recall that

∀fp ∈ Osc1(Ep) E
(∣∣WN,η

p (fp)
∣∣r) 1

r ≤ ar
∑

0≤q≤p

b2q,p β(Sq,p)

with the Markov transitions Sq,p defined in theorem 3.2. See for instance the non asymptotic Lr-
estimates presented on page 36 in [3]. Using the above decomposition, the local terms (7.2) can be
rewritten as follows

1
ηNp Dp,n(1)

V Np (D
N

p,n(F̃Np,n)) = V Np (D
N

p,n(F̃Np,n))− 1√
N

1
ηNp Dp,n(1)

WN,η
p (Dp,n(1))× V Np (D

N

p,n(F̃Np,n))

By (7.1), these local decompositions yield the following formula

WQ,N
n (Fn) = INn (Fn) +

1√
N

RNn (Fn)

with the first order term
INn (Fn) :=

∑
0≤p≤n

V Np (D
N

p,n(F̃Np,n))

and the second order remainder term

RNn (Fn) := −
∑

0≤p≤n

1
ηNp Dp,n(1)

WN,η
p (Dp,n(1))× V Np (D

N

p,n(F̃Np,n))

By construction, we have

E
(
INn (Fn)2

)
=

∑
0≤p≤n

E
(
V Np (D

N

p,n(F̃Np,n))2
)
≤ σ2(n)

with some finite constant
σ2(n) :=

∑
0≤p≤n

b2p,n E
(
osc(PNp,n(Fn)2)

)
Furthermore, using Cauchy-Schwartz inequality

E
(
RNn (Fn)2

) 1
2 ≤

∑
0≤p≤n

bp,n E
(
WN,η
p (Dp,n(1))4

) 1
4 E
(
V Np (D

N

p,n(F̃Np,n))4
) 1

4 ≤ rN (n)

with some constant

rN (n) := a2
4

∑
0≤p≤n

b2p,n

 ∑
0≤q≤p

b2q,p β(Sq,p)

 E
(
osc(PNp,n(Fn))

)
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We conclude that∣∣E (WQ,N
n (Fn)

)∣∣ ≤ 1√
N

rN (n) and E
(
WQ,N
n (Fn)2

) 1
2 ≤ σ(n) +

1√
N

rN (n)

Arguing as in section 3, under the regularity condition (M)m stated in (3.6), for linear functionals
of the form (2.5), with fn ∈ Osc1(En), we readily check that

σ2(n) ≤ c (n+ 1) and rN (n) ≤ c1/2 (n+ 1)

for some finite constant c < ∞, whose values do not depend on the pair (n,N). In this case, we
conclude that

∣∣E (WQ,N
n (Fn)

)∣∣ ≤ 1√
N

c1/2 (n+ 1) and E
(
WQ,N
n (Fn)2

)
≤ c (n+ 1)

(
1 +

√
n+ 1
N

)2

This ends the proof of (3.8).

8 Comparisons with genealogical tree particle models

In this section, we provide with a brief comparison between these particle models and the genealogical
tree particle interpretations of the measures Qn discussed in (2.4).

8.1 Limiting variance interpretation models

Our first objective is to present a new interpretation of the pair of potential-transitions (Gp,n, Pp,n)
defined in (3.2). We fix the time horizon n and we denote by EQn

the expectation operator of a
canonical random path (X0, . . . , Xn) under the measure Qn. For any function F ∈ B(E[p,n]), p ≤ n,
using (2.7) we check that

EQn (F (Xp, . . . , Xn)) =
∫
ηn(dxn)

∏
p<q≤n

Mq,ηq−1(xq, dxq−1) F (xp, . . . , xn)

This implies that for any F ∈ B(E[0,p]), we have the Qn-almost sure formula

EQn
(F (X0, . . . , Xp) | (Xp, . . . , Xn) ) =

∫
Mp(Xp, d(x0, . . . , xp−1))F ((x0, . . . , xp−1), Xp)

= EQn
(F (X0, . . . , Xp) | Xp )

Using elementary calculations, it is also easily checked that for any function F ∈ B(E[0,n]) we have
the Qn-almost sure formula

EQn
(F (X0, . . . , Xn) | (X0, . . . , Xp) )

= 1
Qp,n(1)(Xp)

∫
Qp,n(Xp, d(xp+1, . . . , xn))F ((X0, . . . , Xp), (xp+1, . . . , xn))

and therefore, for any function Fn ∈ B(E[0,n]), we prove that

EQn (Fn(X0, . . . , Xn) | Xp ) = Pp,n(Fn)(Xp)

In much the same way, if we denote by Q(p)
n the time marginal of the measure Qn with respect to

the p-th coordinate, we have

Q(p)
n � ηp with

dQ(p)
n

dηp
= Gp,n
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For centered functions Fn s.t. Qn(Fn) = 0, by the functional central limit theorem 3.1, the limiting
variance of the measures QN

n associated with the genetic model (2.2) with acceptance parameters
εn = 0 has the following interpretation:

E
(
WQ
n (Fn)2

)
=

n∑
p=0

ηp
[
G2
p,n Pp,n(Fn)2

]
=

n∑
p=0

EQn

(
dQ(p)

n

dηp
(Xp) EQn

(Fn(X0, . . . , Xn) |Xp )2

)

We end this section with some estimates of these limiting variances. Arguing as in (6.2), for any
Fn ∈ B(E[0,n]), we readily prove the estimate

E
(
WQ
n (Fn)2

)
≤

∑
0≤p≤n

b2p,n osc(Pp,n(Fn))2

For linear functionals of the form (2.5), with functions fn ∈ Osc1(En), using the same lines of
arguments as those we used at the end of section 7, it is easily checked that

osc(Pp,n(Fn)) ≤
∑

0≤q<p

β
(
Mp,ηp−1 . . .Mq+1,ηq

)
+
∑

p≤q≤n

b2q,n β(Sp,q)

Under the regularity condition (M)m stated in (3.6), the r.h.s. term in the above display is uniformly
bounded with respect to the time parameters 0 ≤ p ≤ n, from which we conclude that

E
(
WQ
n (Fn)2

)
≤ c (n+ 1) (8.1)

for some finite constant c <∞, whose values do not depend on the time parameter.

8.2 Variance comparisons

We recall that the genealogical tree evolution models associated with the genetic type particle systems
discussed in this article can be seen as the mean field particle interpretation of the Feynman-Kac
mesures ηn defined as in (2.11), by replacing the pair (Xn, Gn) by the historical process Xn and the
potential function Gn defined below:

Xn := (X0, . . . , Xn) and Gn(Xn) := Gn(Xn)

We also have a non linear transport equation defined as in (2.1) by replacing Kn,ηn−1 by some
Markov transition Kn,ηn−1 from E[0,n−1] into E[0,n]. In this notation, the genealogical tree model
coincides with the mean field particle model defined as in (2.2) by replacing Kn,ηN

n−1
by Kn,ηN

n−1
,

where ηNn−1 stands for the occupation measure of the genealogical tree model at time (n − 1). The
local sampling errors are described by a sequence of random field model VNn ,Vn on B(E[0,n]) defined
as in (2.12) and (2.13), by replacing Kn,η by Kn,η. More details on the path space technique can be
found in chapter 3 of the book [4].

The fluctuations of the genealogical tree occupation measures

ηNn :=
1
N

N∑
i=1

δ(ξi
0,n,ξ

i
1,n,...,ξ

i
n,n) and γNn :=

 ∏
0≤p<n

ηNp (Gp)

× ηNn (8.2)

around their limiting values ηn and γn are described by the pair of empirical random fields defined
below

Wγ,N
n :=

√
N
(
γNn − γn

)
and Wη,N

n :=
√
N [ηNn − ηn]
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To describe the limiting gaussian random fields Wγ
n and Wη

n, we need another round of notation.
Firstly, we observe that the pair of measures (γn, ηn) on the path space E[0,n] coincide with the
measures (Γn,Qn) we defined in the introduction of the present article. For these path space models,
it is easily checked that

γn = γpDp,n
with the integral operator from B(E[0,n]) into B(E[0,p]) defined below

Dp,n(Fn)(x0, . . . , xp) :=
∫
Qp,n(xp, d(xp+1, . . . , xn)) Fn((x0, . . . , xp), (xp+1, . . . , xn))

In the above display Qp,n is the integral operator defined in (3.1). Notice that

Dp,n(1)(x0, . . . , xp) = Qp,n(1)(xp) = Dp,n(1)(xp) = Qp,n(1)(xp)

As in (3.2), we consider be the pair of potential functions and Markov transitions (Gp,n,Pp,n) defined
below

Gp,n(x0, . . . , xp) = Gp,n(xp) and Pp,n(Fn) = Dp,n(Fn)/Dp,n(1) (8.3)

In terms of conditional expectations, we readily prove that

EQn
(Fn(X0, . . . , Xn) | (X0, . . . , Xp) ) = Pp,n(Fn)(X0, . . . , Xp) (8.4)

for any function Fn ∈ B(E[0,n]).
It is more or less well known that the sequence of random fields Wγ,N

n , resp. Wηn,N
n , converge

in law, as N → ∞, to the centered Gaussian fields Wγ
n , resp. Wη

n, defined as WΓ
n , resp. WQ

n , by
replacing the quantities (Vp, Gp,n, Dp,n, Pp,n,Qn) by the path space models (Vp,Gp,n,Dp,n,Pp,n, ηn);
that is we have that

Wγ
n(Fn) =

n∑
p=0

γp(1) Vp (Dp,n(Fn))

Wη
n(Fn) =

n∑
p=0

Vp (Gp,n Pp,n(Fn − ηn(Fn)))

A detailed discussion on these functional fluctuation theorems can be found in chapter 9 in [4].
Arguing as before, for centered functions Fn s.t. Qn(Fn) = 0, the limiting variance of the genealogical
tree occupation measures ηNn associated with the genetic model (2.2) with acceptance parameters
εn = 0 has the following interpretation:

E
(
Wη
n(Fn)2

)
=

n∑
p=0

EQn

(
dQ(p)

n

dηp
(X0, . . . , Xp) EQn

(Fn(X0, . . . , Xn) |(X0, . . . , Xp) )2

)

= E
(
WQ
n (Fn)2

)
+

n∑
p=0

EQn

(
dQ(p)

n

dηp
(Xp) VarQn (Pp,n(Fn) |Xp )

)

with the Qn-conditional variance of the conditional expectations (8.4) with respect to Xp given by

VarQn
(Pp,n(Fn) |Xp )

= EQn

(
[EQn (Fn(X0, . . . , Xn) | (X0, . . . , Xp) )− EQn (Fn(X0, . . . , Xn) |Xp )]2 |Xp

)
For sufficiently regular models, and for linear functionals of the form (2.5), with local functions
fn ∈ Osc1(En), we have proved in (8.1) that E

(
WQ
n (Fn)2

)
≤ c (n + 1), for some finite constant
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c <∞, whose values do not depend on the time parameter. In this context, we also have that

VarQn (Pp,n(Fn) |Xp ) = EQn


 ∑

0≤q<p

(fq(Xq)− EQn (fq(Xq)|Xp))

2

|Xp


These local variance quantities may grow dramatically with the parameter p, so that the result-
ing variance E

(
Wη
n(Fn)2

)
will be much larger than E

(
WQ
n (Fn)2

)
. For instance, in the toy model

discussed in (2.6), we clearly have Q(p)
n = ηp = η0 and

EQn
(Fn(X0, . . . , Xn) |(X0, . . . , Xp) ) =

∑
0≤q≤p

f(Xq)

from which we conclude that

E
(
WQ
n (Fn)2

)
= (n+ 1) and E

(
Wη
n(Fn)2

)
= E

(
WQ
n (Fn)2

)
+
n(n+ 1)

2

8.3 Non asymptotic comparisons

For any function Fn ∈ B(E[0,n]), and any r ≥ 1, it is known that

√
N E

(∣∣[ηNn −Qn](Fn)
∣∣r) 1

r ≤ ar
∑

0≤p≤n

b2p,n osc(Pp,n(Fn))

with the occupation measure ηNn of the genealogical tree model defined in (8.2). See for instance
page 36 in [3]. Notice that the r.h.s. term is the same as in (7.4) by replacing PNp,n by the integral
operator Pp,n defined in (8.3). For linear functionals of the form (2.5), we have

Pp,n(Fn)(x0, . . . , xp) =
∑

0≤q<p

fq(xq) +
∑

p≤q≤n

Qp,q(Qq,n(1) fq)
Qp,q(Qq,n(1))

(xp)

Chosing local functions fn s.t. osc(fn) = 1, we find that

osc(Pp,n(Fn)) ≥ p =⇒
∑

0≤p≤n

b2p,n osc(Pp,n(Fn)) ≥ n(n+ 1)/2

In the reverse angle, under the regularity condition (M)m, we prove in (7.4) and (3.7) that∑
0≤p≤n

b2p,n E
(
osc(PNp,n(Fn)

)
≤ b (n+ 1)

for some finite constant b <∞ whose values do not depend on the time parameter n.

Appendix

Proof of lemma 4.3

We prove the lemma by induction on the parameter n(> p). For n = p+ 1, we have

Mp+1,p,η(xp+1, dxp) = Mp+1,η(xp+1, dxp) and Qp,p+1(xp, dxp+1) = Qp+1(xp, dxp+1)

By definition of the transitions Mp+1,η, we have

ηQp+1(dxp+1) Mp+1,p,η(xp+1, dxp) = η(dxp) Qp,p+1(xp, dxp+1)

INRIA



A Backward Particle Interpretation of Feynman-Kac Formulae 25

We suppose that the result has been proved at rank n. In this situation, we notice that

η(dxp) Qp,n+1(xp, d(xp+1, . . . , xn+1))

= η(dxp) Qp,n(xp, d(xp+1, . . . , xn))Qn+1(xn, dxn+1)

= ηQp,n(dxn) Qn+1(xn, dxn+1) Mn,p,η(xn, d(xp, . . . , xn−1))

= ηQp,n(1) Φp,n(η)(dxn) Qn+1(xn, dxn+1) Mn,p,η(xn, d(xp, . . . , xn−1))

Using the fact that

Φp,n(η)(dxn) Qn+1(xn, dxn+1) = Φp,n(η)Qn+1(dxn+1) Mn+1,Φp,n(η)(xn+1, dxn)

and
ηQp,n(1) Φp,n(η)Qn+1(dxn+1) = ηQp,n+1(dxn+1)

we conclude that

η(dxp) Qp,n+1(xp, d(xp+1, . . . , xn+1))

= ηQp,n+1(dxn+1) Mn+1,Φp,n(η)(xn+1, dxn) Mn,p,η(xn, d(xp, . . . , xn−1))

= ηQp,n+1(dxn+1) Mn+1,p,η (xn+1, d(xp, . . . , xn))

This ends the proof of the lemma.

Proof of lemma 6.1:

Using the recursions (4.6), we prove that

Mn+1,p,ηN
p

(xn+1, d(xp, . . . , xn))

=Mn+1,p+1,Φp+1(ηN
p ) (xn+1, d(xp+1, . . . , xn))×Mp+1,ηN

p
(xp+1, dxp)

On the other hand, we also have

MN
p+1(xp+1, d(x0, . . . , xp)) = Mp+1,ηN

p
(xp+1, dxp)MN

p (xp, d(x0, . . . , xp−1))

from which we conclude that

Mn+1,p+1,Φp+1(ηN
p ) (xn+1, d(xp+1, . . . , xn))MN

p+1(xp+1, d(x0, . . . , xp))

=Mn+1,p,ηN
p

(xn+1, d(xp, . . . , xn))MN
p (xp, d(x0, . . . , xp−1))

The end of the proof is now a direct consequence of the following decomposition

MN
n (xn, d(x0, . . . , xn−1))−Mn(xn, d(x0, . . . , xn−1))

=
∑

1≤p≤n

[
Mn,p,ηN

p
(xn, d(xp, . . . , xn−1))MN

p (xp, d(x0, . . . , xp−1))

−Mn,p−1,ηN
p−1

(xn, d(xp−1, . . . , xn−1))MN
p−1(xp−1, d(x0, . . . , xp−2))

]
+Mn,0,ηN

0
(xn, d(x0, . . . , xn−1))−Mn,0,η0 (xn, d(x0, . . . , xn−1))
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with the conventions

Mn,0,ηN
0

(xn, d(x0, . . . , xn−1))MN
0 (x0, d(x0, . . . , x1)) =Mn,0,ηN

0
(xn, d(x0, . . . , xn−1))

for p = 0, and for p = n

Mn,n,ηN
n

(xn, d(xn, . . . , xn−1))MN
n (xn, d(x0, . . . , xn−1) =MN

n (xn, d(x0, . . . , xn−1)
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