
HAL Id: inria-00421546
https://hal.inria.fr/inria-00421546

Submitted on 2 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minas: Memory Affinity Management Framework
Christiane Pousa Ribeiro, Jean-François Méhaut

To cite this version:
Christiane Pousa Ribeiro, Jean-François Méhaut. Minas: Memory Affinity Management Framework.
[Research Report] RR-7051, INRIA. 2009. �inria-00421546�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50140542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00421546
https://hal.archives-ouvertes.fr

apport

de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
70

51
--

FR
+E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Minas: Memory Affinity Management Framework

Christiane Pousa Ribeiro — Jean-François Méhaut

N° 7051

October 2009

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

http://hal.inria.fr/inria-00421546/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Minas: Memory A�nity Management Framework

Christiane Pousa Ribeiro, Jean-François Méhaut

Thème NUM � Systèmes numériques
Équipe-Projet MESCAL

Rapport de recherche n° 7051 � October 2009 � 25 pages

Abstract: In this document, we introduce Minas, a memory a�nity man-
agement framework for cache-coherent NUMA (Non-Uniform Memory Access)
platforms, which provides either explicit memory a�nity management or auto-
matic one with e�ciency and architecture abstraction for numerical scienti�c
applications. The explicit tuning is based on an API called MAi (Memory
A�nity interface) which provides simple functions to manage allocation and
data placement using an extensive set of memory policies. An automatic tun-
ing mechanism is provided by the preprocessor named MApp (Memory A�nity
preprocessor). MApp analyses both the application source code and the target
cache-coherent NUMA platform characteristics in order to automatically apply
MAi functions at compile time. Minas e�ciency and architecture abstraction
have been evaluated on two cache-coherent NUMA platforms using three nu-
merical scienti�c HPC applications. The results have shown signi�cant gains
when compared to other solutions available on Linux (First-touch, libnuma and
numactl).

Key-words: multi-core architecture, memory a�nity, static data, perfor-
mance evaluation, programming, tuning

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas: Memory A�nity Management Framework

Résumé : Ce document décrit Minas, un environnement logiciel (framework)
pour contrôler l'a�nité mémoire sur les architecture NUMA. Ce framework
propose une gestion implicite et explicite de l'a�nité de mémoire pour les ap-
plications scienti�ques. Les principales caractéristiques sont l'e�cacité et une
bonne abstraction de l'architecture. Dans Minas, la gestion explicite de l'a�nité
mémoire repose sur une interface de programmation (API) appelée MAi (Mem-
ory A�nity interface) qui o�re des fonctions simples pour gérer l'allocation et
le placement des données en utilisant de nombreuses politiques d'a�nité. Un
mécanisme automatique de contrôle de l'a�nité de mémoire est fourni par le
préprocesseur Mapp (Memory A�nity preprocessor). Mapp analyse le code
source de l'application et connaît les caractéristiques de la plate-forme NUMA
a�n d'appliquer automatiquement les fonctions du MAi pendant la phase de
compilation. L'e�cacité de Minas a été évaluée sur deux plates-formes ccNUMA
avec trois applications scienti�ques hautes performances. Les résultats ont révélé
des gains importants par rapport aux autres solutions disponibles sous Linux
(First-touch, libnuma and numactl).

Mots-clés : architectures NUMA, a�nité mémoire, données statiques, étude
de performances, optimisation

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 3

1 Introduction

The increasing number of cores per processor and the e�orts to overcome the
limitation of classical Symmetric Multiprocessors (SMP) parallel systems remain
a problem. Due to this, Non-Uniform Memory Access (NUMA) platforms are
becoming very common computing resources for numerical scienti�c High Per-
formance Computing (HPC). A NUMA platform is a large scale multi-processed
system in which the processing elements are served by a shared memory that is
physically distributed into several memory banks interconnected by a network.
Thus, memory access costs are not symmetric, since the distance between cpus
and memory banks may vary (local and remote accesses are possible). The
e�ects of applications memory access costs in such platforms can be reduced
through the guarantee of memory a�nity [1, 2, 3].

Memory a�nity is assured when a compromise between threads and data
is achieved by reducing either the number of remote accesses (latency opti-
mization) or the memory contention (bandwidth optimization). In the past,
researches have led to many di�erent solutions: libraries, interfaces, tools and
memory policies in user or kernel spaces of operating systems. However, most
of these solutions demand considerable changes in the application source code
considering architecture characteristics. Such solutions are thus not portable,
since they do not o�er architecture abstraction and consequently, developers
must have prior knowledge of the target platform characteristics (e.g., number
of processors/cores and number of nodes). Additionally, these solutions were
limited to speci�c NUMA platforms, they did not address di�erent memory ac-
cesses (limited set of memory policies) and they did not include optimizations
for numerical scienti�c data (i.e., array data structures).

To overcome these issues, our research have led to the proposal of Minas:
an e�cient and portable framework for managing memory a�nity on cache-
coherent NUMA (ccNUMA) platforms. Minas enables explicit and automatic
control mechanisms for numerical scienti�c HPC applications. Beyond the ar-
chitecture abstraction, this framework also provides several memory policies
allowing better memory access control. We have evaluated its portability (ar-
chitecture abstraction) and e�ciency by performing experiments with four nu-
merical scienti�c HPC applications on two ccNUMA platforms. The results
have been compared with three often used solutions on ccNUMAs (�rst-touch,
numactl and libnuma from Linux).

The repport is structured as follows. In Section 2 we describe the previous
solutions in memory a�nity management for NUMA architectures. Section 3
introduce our framework and its design. We present in Section 4 the evaluation
of architecture abstraction of Minas and discuss its performance evaluation.
Finally, in the last section we present our conclusions and future work.

2 Memory A�nity Management Solutions

Many di�erent works has been done on memory a�nity management for NUMA
architectures. Most of them are proposals of new memory policies that have
some intelligent mechanism to place/migrate memory pages. Other types of
works are proposal of new directives to OpenMP and some support integrated

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

4 Ribeiro & Méhaut

in the operating system. In this section we present these three groups of related
work.

2.1 Memory A�nity Policies

Memory policy approach is the simplest way to deal with memory a�nity, since
developers do not have to carry about the memory management. In this ap-
proach, the operating system is responsible for optimizing all memory allocation
and placement [4, 5, 6, 7, 8].

First-touch is the default policy in Linux operating system to manage mem-
ory a�nity on ccNUMAs. This policy places data on the node that �rst accesses
it [9, 3]. To improve memory a�nity using this policy, it is necessary to either
execute a parallel initialization of all shared application data allocated by the
master thread or allocate its data on each thread. However, this strategy will
only present performance gains if it is applied on applications that have a regu-
lar data access pattern. In case of irregular applications, �rst-touch will result
in a high number of remote accesses, since threads do not access the same data.

In the work [4], authors present the proposal of a new memory policy named
on-next-touch for Solaris operating system. This policy allows data migration
when threads touch them for the next time. Thus, threads can have their
data in the same node, allowing more local access. In this work, the perfor-
mance evaluation of this policy was done using a real application that has as
main characteristic irregular data access patterns. The gain obtained with this
solution is about 69% with 22 threads. Currently, there are some proposals
of on-next-touch memory policy for Linux operating system. For instance, in
[5, 6], the authors have designed and implemented the on-next-touch policy on
such operating system. Its performance evaluation has shown good performance
gains only for applications that have a single level of parallelism. When it was
applied in nested parallel levels, it was not pro�table (threads frequently lost
their a�nity). Thus, many data migrations were done and this overhead lowered
the performance gains.

In [7], the authors present two new memory policies called skew-mapping
and prime-mapping. In the �rst one, allocation of memory pages is performed
skipping one node per round. As example, suppose that we have to allocate
16 memory pages in four nodes. The �rst four pages will be placed on nodes
0,1,2,3, the next four in nodes 1,2,3,0 and so on. The prime-mapping policy
works with virtual nodes to allocate data. Thus, after the allocation on the
virtual nodes there is a re-allocation of the pages in the real nodes. As scienti�c
applications always work in power of 2, for data distribution, these two policies
allows better data distribution. The gains with this solutions are about 35%
with some benchmarks.

The work [8] present two algorithms to do page migration and assure memory
a�nity in NUMA machines. These algorithms use information extracted from
kernel scheduler to perform page migrations. The performance evaluation has
shown gains of 264% considering existed solution as comparison.

2.2 Memory A�nity with OpenMP Directives

In [10], authors present a strategy to assure memory a�nity using OpenMP in
NUMA machines. The idea is to use information about schedule of threads and

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 5

data and made some relations between them. The work do not present formal
OpenMP extensions but shows some suggestions of how this can be donne and
what has to be included. All performance evaluation was donne using tightly-
coupled NUMA machines. The results show that their proposal can scale well
in the used machines.

In the work [11], authors present new OpenMP directives to allow memory
allocation in OpenMP. The new directives allows developers to express how data
have to be allocated in the NUMA machine. All memory allocation directives
are for arrays and Fortran programming language. The authors present the
ideas for the directives and how they can be implemented in a real compiler.

2.3 Memory A�nity with Operating System Support

NUMA support is now present in several operating systems, such as Linux and
Solaris. This support can be found in the user level (with administration tools or
shell commands and NUMA APIs) and in the kernel level (with system call) [12].
On Linux operating system, a basic support to manage a�nity on ccNUMAs
and is implemented in three parts: kernel/system calls, a library (libnuma) and
a tool (numactl).

The kernel part de�nes three system calls (mbind(), set_mempolicy() and
get_mempolicy()) that allow the programmer to set a memory policy (bind,
interleave, preferred or default) for a memory range. However, the use of such
system calls is a complex task, since developers must deal with pointers, memory
pages, sets of bytes and bit masks.

The second part of this support is a library named libnuma, which is a
wrapper layer over the kernel system calls. The limited set of memory policies
provided by libnuma is the same as the one provided by the system calls. In
this solution, the programmer must change the application code to apply the
policies. The main advantage of this solution is that developers can have a
better control of data allocation and distribution.

The numactl tool allows the user to set a memory policy for an application
without changing the source code. However, the chosen policy will be applied
over all application data (it is not possible to either express di�erent access
patterns or change the policy during the execution [12]). Additionally, the user
must give as argument a list of nodes (memory banks and cpus/cores) that will
be used, which is platform-dependent parameter.

2.4 Conclusion on Related Works

Most of the proposed solutions, presented in this section, do not avoid changes
in application source code. They o�er a limited set of memory policies (do
not allow to express di�erent memory pattern accesses) and they do not o�er
architecture abstraction (developer must know the target architecture). More-
over, they do not include optimizations for numerical scienti�c data (array data
structures), which are intensively used in scienti�c numerical HPC applications.

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

6 Ribeiro & Méhaut

3 Minas

Minas [13] is a framework that allows developers to manage memory a�nity in
an explicit or automatic way on large scale ccNUMA platforms. It is composed
of three modules: Minas-MAi, Minas-MApp and numarch. Minas-MAi, which
is a high level interface, is responsible for implementing the explicit NUMA-
aware application tuning mechanism whereas the Minas-MApp preprocessor
implements an automatic NUMA-aware application tuning. The last module,
numarch, extracts all information about the target platform. This framework is
e�cient and portable, since it has good performance and provides architecture
abstraction. Additionally, it has been designed to deal with NUMA penalties
for numerical scienti�c HPC applications.

Minas di�ers from other memory a�nity solutions [12, 9, 6] in at least four
aspects. First of all, Minas o�ers code portability. Since numarch provides archi-
tecture abstraction, once the application source code is optimized for a speci�c
ccNUMA platform, it can be used in another platform without any modi�ca-
tions. If the same memory a�nity strategy �ts both platforms, the performance
gains will also be equivalent. Secondly, Minas is a �exible framework since it
supports two di�erent mechanisms to control memory a�nity (explicit and au-
tomatic tuning). Thirdly, Minas is designed for array oriented applications,
since this data structure usually represents the most important variables in ker-
nels/computations. Finally, Minas implements several memory policies to deal
with both regular applications (threads always access the same data set) and
irregular applications (threads access di�erent data during the computations).

numarch

MApp

NUMA-Aware
Source Code

Minas MAi
- mai_alloc(...)
- mai_bind(...)

Search
Best Policy

Variables
Information

Code
Transformation

Application
Source Code

Machine
Information

Automatic Tuning

Explicit Tuning

Symbols

Figure 1: Overview of Minas.

Figure 1 shows a schema of Minas mechanisms to assure memory a�nity.
The original application source code can be modi�ed by either using the explicit
mechanism or the automatic one. The decision between automatic and explicit
mechanisms depends on the developer's knowledge about the target application.
One possible approach is to �rst use the automatic tuning mechanism and to
verify whether the performance improvements are considered su�cient or not.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 7

If the gains are not su�cient, developers can then explicitly modify (manual
tuning) the application source code using Minas-MAi.

MAi is a user level interface that provides several memory policies (alloca-
tion and data placement) to explicitly manage memory a�nity on numerical
scienti�c applications. In order to use MAi interface, developers must only
know characteristics of the application (memory access), since Minas can re-
trieve information about the target platform. More details about this interface
are presented in section 3.1. MApp is a preprocessor that performs automated
tuning of applications in order to minimize NUMA penalties. As such, devel-
opers do not need to manually change their source code as application code
optimizations are done automatically using Minas knowledge of the underlying
platform and application. Those optimizations are performed at compile time
integrating MAi interface functions to application source code. More details
about this preprocessor are presented in section 3.2.

The numarch module has an important role for both explicit and automatic
mechanisms. In Minas-MAi, it is used to provide architecture abstraction for
all memory policies. On the contrary, in Minas-MApp, it is used to consult all
necessary information about the underlying platform in order to decide which
policy will be applied during the code transformation.

The current version of Minas is implemented in C. Minas has been tested on
di�erent ccNUMA architectures (Intel, AMD and SGI) with Linux as operating
system. Regarding languages and compilers, Minas supports C/C++, Intel C
Compiler (ICC), GNU C Compiler (GCC) and Portland C Compiler (PGI). A
Fortran support is currently underway.

3.1 MAi: Memory A�nity Interface

MAi1 (Memory A�nity interface) is an API (Application Programming Inter-
face) that provides a simple way to control memory a�nity on application over
ccNUMA platforms. It simpli�es memory a�nity management issues, since it
provides simple and high level functions that can be called in the application
source code to deal with data allocation and placement [14]. All MAi func-
tions are array-oriented and they can be divided in three groups: allocation,
memory policies and system functions. Allocation functions are responsible for
allocating arrays (they are optimized for ccNUMA platforms). Memory policies
functions are used to apply a speci�c memory policy for an array, allocating its
memory pages on memory blocks. MAi has several memory policies that can be
used to optimize memory access on ccNUMA platforms (latency and bandwidth
optimization). System functions allows developers to collect and print system
information such as memory blocks used by the memory policies, cpus/cores
used during the application execution, memory blocks and statistics about page
migration. Furthermore, MAi has a thread scheduling mechanism that are used
with some memory policies to better assure memory a�nity.

The most important group of functions of MAi is the memory policies, since
it is responsible for assuring memory a�nity. The interface implements eight
memory policies, that have as memory a�nity unit an array (Minas was de-
signed for numerical scienti�c applications). The memory policies of MAi can
be divided in three groups: bind, cyclic and random. The bind group is com-

1MAi can be download from http://mai.gforge.inria.fr/

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

8 Ribeiro & Méhaut

posed of bind_all and bind_block memory policies, the cyclic one of cyclic,
cyclic_block, skew_mapp and prime_mapp, and the random one of random
and random_block. The main di�erences between these three groups are the
memory blocks used, data distribution and thread scheduling. In MAi, data dis-
tribution can be performed using either individual elements of an array (element-
by-element distribution) or an array block (blocks distribution). A block is a
set of rows or columns, where the size can be speci�ed by the user. If the user
does not specify it, MAi will choose the block size automatically. The block size
is computed considering the scheduling of the workload for the threads. This
strategy is also applied for all MAi memory policies that use the concept of
blocks.

In bind group, the distribution of an array is restricted to a set of memory
blocks of the platform. Bind_all memory policy places all data in restricted
memory block(s) speci�ed by the user. If more than one memory block is
speci�ed, data will be placed in more memory blocks. However, this policy will
use all available memory (physical) from the �rst memory block before using the
next one. In bind_block memory policy, data is divided into blocks depending
on the number of threads that will be used and where they are running. Due
to this, blocks of data are placed closer to threads which will compute them.

In Figure 2 (a) and Figure 2 (b), we show a schema that represents how data
distribution is done in bind_all and bind_block memory policy. A node n is
composed of a memory block (Mn) and a set of processing units (to simplify the
representation they were not shown). Bind memory policies were designed for
applications that present a regular behavior. In such applications, each thread
always accesses the same set of data and a static scheduling of the workload is
used. Furthermore, bind policies optimize latency over ccNUMAs, since data is
placed closer to the thread that uses it.

vector

bind_all policy bind_block policy

M0

Node 0

M1

Node 1

Mn

Node n

...M0

Node 0 Node 1

Mn

Node n

...

physical
allocation

physical
allocation

vector

M1

(a) (b)

Figure 2: Bind memory policies.

The cyclic group uses di�erent round-robin strategies to place data on mem-
ory blocks. In both cyclic and cyclic_block policies, data is placed according to a
linear round-robin distribution. However, cyclic uses a memory page per round
(Figure 4 (a)), which has similar behavior of the interleave policy of the Linux
NUMA support, whereas cyclic_block uses a block of memory pages (Figure 4
(b)).

The skew_mapp memory policy was proposed in [7] and it is a modi�cation
of round-robin policy that has linear page skew. In this policy, a page i is
allocated on the node (i + bi/Mc + 1) mod M , where M is the number of
memory blocks (Figure 4 (a)). The prime_mapp policy was also proposed in [7]
and uses a two-phase strategy. In the �rst phase, the policy places data using

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 9

cyclic policy on (P) virtual memory blocks, where P is a prime greater or equal
to M (real number of memory blocks). In the second phase, the memory pages
previously placed on virtual memory blocks are reordered and placed on real
memory blocks also using the cyclic policy (Figure 4 (b)).

Cyclic memory policies can be used in applications with regular and irregular
behavior (threads do not always access the same data). These memory policies
spread data between the memory blocks minimizing concurrent accesses and
increasing bandwidth. However, some scienti�c applications can still have con-
tention problems with cyclic and cyclic_block, since these policies make a linear
distribution of memory pages (generally, power of 2) on the platform (it has
power of 2 memory blocks). Thus, the proposal of skew_mapp and prime_mapp
memory policies aims at reducing concurrent accesses for such applications [7].

vector

cyclic policy

physical
allocation

M0

Node 0

M1

Node 1

Mn

Node n

...

vector

cyclic_block policy

physical
allocation

memory pages0 m

block size = 2 memory pages

M0

Node 0

M1

Node 1

Mn

Node n

...

memory pages0 m

(a) (b)

Figure 3: Cyclic memory policies

Finally, the last group of memory policies is random. In these memory poli-
cies, memory pages are placed randomly on ccNUMA nodes, using a random
uniform distribution. The main goal of this memory policy is to increase band-
width. Like other policies, di�erent sizes of blocks can also be used.

One of the most important features of MAi is that it allows the developer to
change the memory policy applied to an array during the application execution.
This characteristic allows developers to express di�erent patterns during the
application execution. Additionally, MAi memory policies can be combined
during the application execution to implement a new memory policy. Finally,
any incorrect memory placement can be optimized through the use of MAi
memory migration functions. The unit used for migration can be a set memory
pages (automatically de�ned by MAi) or a set of rows/columns (speci�ed by
the user).

For bind memory policies, to better ensure memory a�nity, both threads
and memory must be considered in the solution. Due to this, MAi has a thread
scheduling mechanism that is used for bind memory policies. The default thread
scheduling policy is to �x them on processors/cores. Such strategy assures that
threads will not migrate (less overhead with task migrations) and consequently,
MAi will be able to perform a better data distribution and assure memory
a�nity. This thread scheduling considers the number of threads (T) and pro-
cessors/cores (P) to decide how to �x threads. If T ≤ P , one thread per proces-
sor/core strategy is chosen, which minimizes the memory contention problem
on node, which is present in some NUMA platforms2. Memory contention hap-

2Bull Novascale Itanium 2 and SGI Altix Itanium 2 NUMA platforms.

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

10 Ribeiro & Méhaut

vector

skew_mapp policy

physical
allocation

M0

Node 0

M1

Node 1

Mn

Node n

...

memory pages0 m

2, 4, 7

memory pages

0, 5, 8 1, 3, 6

N = 3

vector

prime_mapp policy

physical
allocation

M0

Node 0

M1

Node 1

Mn

Node n

...

0, 3, 5 1, 4, 6 2, 7, 8

N = 3

memory pages

memory pages0 m

(a) (b)

Figure 4: Cyclic memory policies

pens when several threads try to access the same memory block. Concurrent
accesses in the same memory block can generate worse performance, since they
must be serialized. The default scheduling strategy can be changed during the
library initialization. The developer can then choose between using the operat-
ing system thread scheduling or de�ning his own threads and processors/cores
mapping.

3.2 MApp: Memory A�nity Preprocessor

MApp (Memory A�nity preprocessor) is a preprocessor that provides a trans-
parent control of memory a�nity for numerical scienti�c HPC applications over
ccNUMA platforms. MApp performs optimizations in the application source
code considering the application variables (shared arrays) and platform char-
acteristics at compile time. Its main characteristics are its simplicity of use
(automatic NUMA-aware tuning, no manual modi�cations) and its platform
and compiler independence.

The code transformation process is divided into four steps. Firstly, it scans
the input �le (application source code) to obtain information about variables.
During the scanning process, MApp searches for shared static arrays that are
considered large by Minas (eligible arrays). An eligible array is considered large
if its size is equal or greater than the size of the highest level cache of the plat-
form. Secondly, it fetches the platform characteristics, retrieving information
from the numarch module (NUMA factor3, nodes, cpus/cores, interconnection
network and memory subsystem). During the third step, it chooses a suitable
memory policy for each array. Finally, the code transformation is performed by
changing the static arrays declaration and including Minas-MAi speci�c func-
tions for allocation and data placement.

The most important step of MApp automatic tuning process is the strategy
used to decide which memory policy will be applied for an application. Based
on empirical data from our previous works and experiments [15, 14, 16], we
have designed an heuristic responsible for deciding which memory policy would
be the most e�ective considering the underlying ccNUMA characteristics. On
platforms with a high number of interconnections between nodes (e.g., fat-tree
and hypercube) and small NUMA factor, the heuristic will apply cyclic memory
policies, since such platforms usually present memory contention problems. On

3NUMA factor is the ratio between remote latency and local latency.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 11

Program 1 An heuristic to select a memory policy.
begin

arch:=get_numarch();
do if arch.numaf >= 2 then

do if !complexnet(arch.net) then

mpolicy:=bind; exit �
else

mpolicy:=bind;
block:=verifydata(rows,col);
exit �

end

the contrary, on platforms with low number of interconnections and high NUMA
factor, the heuristic will opt for bind_block memory policies (Program 1).

Figure 3.2 shows a simple example of a code transformation generated by
MApp. This example is a parallel code (C with openMP) that performs some
operations in four arrays. However, as we can observe, MApp only applied mem-
ory policies for three of them (eligible arrays). Small variables such as i,j and
xux will probably �t in cache so MApp will not interfere on compiler decisions
(allocation and placement of variables). In this example, the target ccNUMA
platform has a small NUMA factor (remote latency is low) and a bandwidth
problem for interconnection between nodes. Thus, on such a platform, opti-
mizing memory accesses considering bandwidth instead of latency is important.
Due to this, MApp has decided to spread memory pages of vel, vxy and tem
with cyclic memory policy in order to optimize bandwidth.

Original Source Code
NUMA-Aware Source Code

MApp

#define X 516
#define Y 128
#define Xv 1000
#define LIMRX 32
#define LIMRY 16

int nrom[X], vel[Xv][Y];
double tem[X][Y];

int main() {
 int i, j;
 int xux[LIMRX][LIMRY], vxy[LIMRX][Xv];

#pragma omp parallel for private(j)
 for(i=1; i<LIMRX; i++)
 for(j=1; j<LIMRY; j++)
 vel[i-1][j-1] = fcos(xux[i][j], tem[i][j], vxy[i][j]);

#pragma omp parallel for private(j)
 for(i=X-1; i>=0; i--)
 for(j=Y-1; j>=0; j--)
 vel[i][j] = comp(tem[i][j]);
 ...
}

int nrom[516], **vel;
double **tem;

int main() {
 int i, j;
 int xux[32][16], **vxy;

 mai_init(((void *)0));
 vel = mai_alloc_2D(1000, 128, sizeof(int), 4);
 mai_cyclic(vel);
 tem = mai_alloc_2D(516, 128, sizeof(double), 8);
 mai_cyclic(tem);
 vxy = mai_alloc_2D(32, 1000, sizeof(int), 4);
 mai_cyclic(vxy);

#pragma omp parallel for private(j)
 for(i=1; i<32; i++)
 for(j=1; j<16; j++)
 vel[i-1][j-1] = fcos(xux[i][j], tem[i][j], vxy[i][j]);

#pragma omp parallel for private(j)
 for(i=516-1; i>=0; i--)
 for(j=128-1; j>=0; j--)
 vel[i][j] = comp(tem[i][j]);
 ...
}

captionExample of MApp source code transformation.

3.3 Numarch

Numarch is a module of Minas that extracts information from the underlying
ccNUMA platform. The information retrieved by numarch is used by MAi and

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

12 Ribeiro & Méhaut

MApp to provide architecture abstraction and assure memory a�nity. Its main
characteristics are its simplicity of use (interface with high level functions) and
portability (support for di�erent platforms).

This module extracts information about the interconnection network (num-
ber of links and bandwidth), memory access costs (NUMA factor) and architec-
ture (number of nodes and cpus/cores). To retrieve such information, numarch
parses the �le system of the operating system. Numarch is implemented part
in C and part in shell script.

4 Minas Evaluation

In this section, we present the evaluation of Minas compared with the other
three memory a�nity solutions for Linux based platforms. We �rst describe the
two ccNUMA platforms used in our experiments. Then, we describe the four
numerical scienti�c applications (NAS Parallel Benchmarks [17], ICTM [16] and
Ondes 3D [18]) and their main characteristics. Finally, we present architecture
abstraction and performance results.

4.1 ccNUMA Platforms

Our experiments have been carried out on two ccNUMA platforms. The �rst
platform is an eight dual core AMD Opteron 2.2 GHz. It is organized in eight
nodes of two processors with 2 MB of shared cache memory for each node. It
has a total of 32 GB of main memory (4 GB of local memory). Each node has
three connections (HyperTransport [19]) which are used to link with other nodes
(except nodes zero and one). These connections give di�erent memory latencies
for remote access by nodes of the platform. The NUMA factor on this platform
varies from 1.2 to 1.5. The compiler that has been used for the OpenMP code
compilation was the GCC (GNU C Compiler). A schematic representation of
this machine is given in Figure 5 (a). We have chosen to use the name Opteron
for this platform.

Node 6

M6

Node 7

M7

Node 4

M4

Node 5

M5

Node 2

M2

Node 3

P6 P7M3

Node 0

M0

Node 1

M1

P12 P13 P14 P15

P8 P9 P10 P11

P4 P5

P0 P1 P2 P3

C_BRICK

C_BRICK

C_BRICK

R
_B

R
IC

K

R
_B

R
IC

K

Node 4

M4

Node 5

M5P8 P9 P10 P11

Node 2

M2

Node 3

P6 P7M3P4 P5

Node 0

M0

Node 1

M1P0 P1 P2 P3

(a) (b)

Figure 5: NUMA Platforms: (a) Opteron (b) SGI.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 13

The second ccNUMA platform is a SGI Altix 350 with twelve Itanium 2
processors of 1.5 GHz and 4 MB of shared cache memory each. It is organized in
six nodes of two processors with a total of 24 GB of main memory (4 GB of local
memory). Each node has two connections (NUMAlink switch [20]) which are
used to link with other nodes. The NUMA factor for this platform varies from
1.2 to 1.3. The compiler that has been used for the OpenMP code compilation
was the ICC (version 9.0). A schematic representation of this machine is given
in Figure 5 (b). We have chosen to use the name SGI to make reference to this
platform.

The operating system that has been used for both platforms is Linux 64-bits
version with support for NUMA architecture (system calls, NUMA API and
user tool numactl).

4.2 Applications

In this section, we present the four applications we have used to evaluate Mi-
nas performance. We have selected three applications, two from NAS Parallel
Benchmarks (NPB's) and two Geophysics applications. In this work, we have
chosen the kernels Conjugate Gradient (CG) and Fast Fourier Transform (FFT)
from NPB's4. The Geophysics applications were the Interval Categorizer Tessel-
lation Model (ICTM) and the Simulation of Seismic Wave Propagation (Ondes
3D). Such applications have been selected because they represented important
numerical scienti�c problems. They also are memory-bound and they have reg-
ular/irregular memory access patterns. All applications have been implemented
in C and they have been parallelized using OpenMP.

NAS Parallel Benchmarks - CG kernel. NAS Parallel Benchmarks is
a well-known benchmark derived from Computational Fluid Dynamics (CFD)
codes and it is composed of applications and kernels [17]. CG is a kernel that
uses a conjugate gradient method to compute an approximation to the small-
est eigenvalue of a large, sparse, unstructured matrix. This kernel tests un-
structured vector computations and communications. The computations are
basically sparse-matrix vector multiplication, reduction sums and several vector
operations performed in parallel. It uses a sparse-matrix vector with randomly
generated locations of entries which gives a large amount of cache misses. The
input parameter of this kernel is the size of the array that is used for the compu-
tation. In this work, we have used an array of size 75000 (class B, 6.7 Gbytes).
Figure 6 shows the algorithm (Figure 6 (a)) and its memory accesses patterns
(Figure 6 (b)). Basically, CG uses loops with random and long distance memory
accesses during the computation phases over sparse matrices represented with
vectors.

NAS Parallel Benchmarks - FFT kernel. FFT is a kernel that computes
the fast transform of Fourier for three dimensional systems. The application
works with complex numbers that are represented by data structures. There
are three main steps in the FFT computation and data are shared just in the
second step. The computation is done in one direction by step and each thread

4Results for other NPB's kernels and applicatins can be found in Minas project homepage
[13].

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

14 Ribeiro & Méhaut

(a) (b) (c)

Figure 6: Access patterns: CG and FFT.

computes nz-planes. Figure 6 (c) presents a schema of the application. FFT
memory access patterns (short and long in X, Y and Z direction) are presented
in Figure 6 (b) . In our experiments, we have used 512x256x256 matrices (class
B, 1.25 Gbytes).

ICTM: Interval Categorizer Tessellation Model. ICTM is a multi-
layered tessellation model for the categorization of geographic regions consider-
ing several di�erent characteristics (relief, vegetation, climate, etc.). The num-
ber of characteristics that should be studied determines the number of layers
of the model. In each layer, a di�erent analysis of the region is performed.
The input data is extracted from satellite images, in which the information is
given in certain points referenced by their latitude and longitude coordinates.
The geographic region is represented by a initial 2-D matrix of the total area
into su�ciently small rectangular subareas. In order to categorize the regions
of each layer, ICTM executes sequential phases. Each phase accesses speci�c
matrices that have previously been computed and generates a new 2-D matrix
as a result of the computation. Depending on the phase, the access pattern to
other matrices can either be regular or irregular. Since the categorization of
extremely large regions has a high computational cost, a parallel solution for
ccNUMA platforms has been proposed in [16]. In this paper, we have carried
out experiments using 6700x6700 matrices (2 Gbytes of data) and a radius of
size 40 (number of neighbors to be analysed by status matrix phase). As shown
in Figure 7 (a), the algorithm basically uses nested loops with short and long
distance memory accesses (Figure 7 (b)) during the computation phases.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 15

ICTM Access patterns
short distance

long distance

Ondes3D

x

y

z

x

x

y

x

y

x

y

x

y

x

y

function init():
 for i ← 0 to _rows do

 for j ← 0 to _columns do
 mat_interval[i][j] ← read(i, j)

function compute_interval_matrices():
 for i ← 0 to _rows do

 for j ← 0 to _columns do
 mat_interval[i][j] ← compute(i±1, j±1)

function compute_status_matrices():
 for i ← 0 to _rows do

 for j ← 0 to _columns do
 while r is inside radius do
 mat_status[i][j] ← compute(i±r, j±r)

for i ← 0 to Nx do

 for j ← 0 to Ny do
 for k ← 0 to Nz do
 M[i][j][k] ← read(i, j, k)

for i ← 0 to Nx do

 for j ← 0 to Ny do
 for k ← 0 to Nz do
 M[i][j][k] ← compute_velocity()

for i ← 0 to Nx do

 for j ← 0 to Ny do
 for k ← 0 to Nz do
 M[i][j][k] ← compute_stress()

(a) (b) (c)

Figure 7: Access patterns: ICTM and Ondes 3D.

Ondes 3D: Simulation of Seismic Wave Propagation. Ondes 3D is an
application that simulates seismic wave propagation in three dimensional geo-
logical media based on �nite-di�erence discretization. It has been developed by
the French Geological Survey (BRGM - www.brgm.fr) and it is mainly used for
strong motion analysis and seismic risk assessment. The particularity of this
simulation is to consider a �nite computing domain even though the physical
domain is unbounded. Therefore, the user must de�ne special numerical bound-
ary conditions in order to absorb the outgoing energy. Ondes 3D has three main
steps: data allocation, data initialization and propagation calculus (composed
by two calculus loops). During the �rst two steps, the three dimensional ar-
rays are dynamically allocated and initialized (400x400x400, approximately 4.6
Gbytes of memory). During the last step, the two calculus loops compute ve-
locity and stress of the seismic wave propagation. In all three steps, the three
dimensional arrays are accessed in a regular way (same data access pattern)
[18, 15]. Figure 7 (c) presents a schema of the application with its three steps.
On contrary to ICTM, Ondes 3D has only short distance memory accesses, as
presented in Figure 7 (b).

4.3 Architecture Abstraction

In this section we present the evaluation of architecture abstraction of Minas
using two applications (CG and ICTM) and platforms described in previous
sections. For each application and platform, we have compared Minas with
numactl and libnuma.

Regarding the explicit memory a�nity solutions, we have changed the ap-
plications execution parameters (numactl) and their source codes (Minas-MAi
and libnuma). The numactl tool avoids source code modi�cations but demands
some parameters for the application execution command line. In order to use
Minas-MAi and libnuma, the developer must add speci�c data allocation and
placement functions in the source code.

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

16 Ribeiro & Méhaut

Figure 8: CG Kernel with numactl.

The explicit solution numactl does not require source code changes. However,
we had to change the execution command line of all applications to specify which
memory policy should have been applied as well as the nodes and cpus lists.
Figures 8 and 9 show the command line that has been used to execute CG and
ICTM. Contrary to Minas-MAi, numactl do not allow architecture abstraction,
since the nodes and cpus lists are explicit passed as parameters to the tool.

Figure 9: ICTM with numactl.

To apply Minas-MAi in CG and ICTM applications, we have selected three
di�erent memory policies (cyclic, skew_mapp and bind_block). The �rst two
memory policies are ideal for irregular memory accesses (CG and ICTM) over
ccNUMA platforms that have a small NUMA factor, since they spread data
among nodes. The latter memory policy is suitable for regular memory accesses
where threads always access the same data set. Since libnuma has a limited
set of memory policies, we have used two strategies. The interleave policy
(similar behavior of Minas-MAi cyclic policy) has been applied for irregular
memory accesses whereas the numa_tonode_memory() function has been used
for regular ones. In Figure 10 (a), (b), (c) and (d), we present a snippet of
ICTM and CG applications coded with Minas-MAi and libnuma. As we can
observe, the implementation with Minas-MAi is simpler than the libnuma one.
The main di�erence between Minas-MAi and libnuma is that the �rst one can
gather the platform characteristics, so that no explicit con�guration is needed
to apply memory policies.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 17

Figure 10: CG Kernel and ICTM with Minas-MAi and libnuma.

4.4 Performance Evaluation

In this section we present the performance evaluation of Minas using the appli-
cations and platforms described in previous sections. For each application and
platform, we have carried out series of experiments using Minas and three Linux
solutions (�rst-touch policy, numactl and libnuma).

The results have been obtained through the average of several executions
varying the number of threads from 2 to the maximum number of cpus/cores
of each platform. These results have presented a low standard deviation, since
all experiments have been done with exclusive access to the ccNUMA machines.

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

18 Ribeiro & Méhaut

Our results are organized by application (FFT, CG, ICTM and Ondes 3D). For
each application, except for FFT, we have divided the results into two groups
according to the memory a�nity management (automatic: First-Touch and
Minas-MApp; explicit: Minas-MAi, numactl and libnuma). In this work, for
FFT, we only present results with Opteron platform.

Figure 11 shows the speedups for FFT on Opteron platform with the auto-
matic (Figure 11 (a)) and the explicit (Figure 11 (b)) memory a�nity solutions.
As it can be observed, Minas has outperformed all other memory a�nity solu-
tions.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

FFT - Opteron

First-Touch
Minas-MApp

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

FFT - Opteron

numactl
libnuma

Minas-MAi

(a) (b)

Figure 11: Performance of FFT on the Opteron Platform (a) Automatic (b)
Explicit.

As we can observe in Figure 11 (a), Minas-MApp have obtained better re-
sults than �rst_touch. Considering the characteristics of Opteron platform,
Minas-MApp heuristic have chosen cyclic as memory policy to be applied in the
eligible arrays of FFT. Such platform has a small NUMA factor and bandwidth
optimizations are important. Additionally, FFT is an irregular application in
which three dimensional arrays are accessed in a non linear way. On general,
�rst-touch, have not presented good results. As discussed earlier, this memory
policy optimizes latency and considering this platform and application �rst-
touch is not a e�cient choice. We can also observe that the results with Minas-
MApp and �rst-touch have been similar for two, four and sixteen threads. When
a small number of threads is used memory contention is not high, thus di�er-
ent memory policies may have the similar performance on platforms with small
NUMA factor (remote access costs are not high). First-touch and Minas-MApp
have obtained similar results with sixteen threads because in this case, both
memory policies spread memory pages over all memory banks of the platform.

Considering the explicit solutions applied to FFT, Minas-MAi have presented
better results when compared with libnuma and numactl. In this application,
we have used the prime_mapp memory policy of Minas-MAi. Such policy aims
at providing a non-uniform distribution of memory pages among the ccNUMA
nodes. Due to this fact, it spreads memory pages better than cyclic memory
policies, since it avoids any patterns during data distribution. On libnuma

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 19

A
ut
om
at
ic

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

CG - SGI

First-Touch
Minas-MApp

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

CG - Opteron

First-Touch
Minas-MApp

(a) (b)

(c) (d)

Ex
pl
ic
it

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

CG - Opteron

numactl
libnuma

Minas-MAi

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

CG - SGI

numactl
libnuma

Minas-MAi

Figure 12: Performance of CG on Opteron and SGI platforms.

and numactl, we have implemented FFT using interleave memory policy, since
these solutions do not have prime_mappmemory policy. They presented similar
results for FFT, but libnuma improvement gains have been greater than numactl.
Libnuma allows developers to apply memory policies to a speci�c memory range
whereas numactl applies a memory policy for all application data.

In Figure 12, we present the speedups obtained with CG on the two ccNUMA
platforms using the automatic and explicit solutions. As we can observe, Minas
has performed well on both platforms. Considering the automatic solutions
(Figure 12 (a) and (b)), we have noticed that Minas-MApp generally presented
better results (11% better than �rst_touch, on average). Even though the
results of libnuma and Minas-MAi were very similar (Figure 12 (c) and (d)),
Minas-MAi has presented higher performance gains (on average, 3% on Opteron
and 24% on SGI). We can also notice that numactl presented the worst results
within the explicit solutions group.

Concerning the CG results with automatic solutions, �rst_touch generally
has resulted in worse performance when compared to Minas-MApp. This policy
is not suited to irregular applications since it optimizes latency instead of reduc-
ing memory contention. This optimization results in several memory accesses
on the same memory banks. In this case, considering the platforms network
interconnections, the heuristic implemented in Minas-MApp has selected cyclic

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

20 Ribeiro & Méhaut

A
ut
om
at
ic

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

ICTM - Opteron

First-Touch
Minas-MApp

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

ICTM - SGI

First-Touch
Minas-MApp

(a) (b)

(c) (d)

Ex
pl
ic
it

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

ICTM - Opteron

numactl
libnuma

Minas-MAi

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

ICTM - SGI

numactl
libnuma

Minas-MAi

Figure 13: Performance of ICTM on Opteron and SGI platforms.

as the best memory policy for both platforms, which has minimized the memory
contention problem.

Regarding the explicit solutions, in CG with Minas-MAi, we have used cyclic
and bind_block memory policies on Opteron and skew_mapp memory policy on
SGI platform. Since Opteron has a low NUMA factor and a simple intercon-
nection network, we have applied cyclic for arrays that are accessed irregularly,
whereas bind_block has been applied for those accessed regularly. Thus, we
can both optimize bandwidth and reduce memory contention. On the contrary,
SGI has a complex network topology (fat-tree) and bandwidth optimization is
also an important concern. Because of that, skew_mapp has been used in CG
kernel on SGI platform, since it distributes memory pages in a non-uniform
way, reducing the number of concurrent accesses on nodes. On both platforms,
numactl has shown less performance improvements in comparison with other
explicit solutions. Since it applies a memory policy for all application data, we
cannot express memory access patterns.

Figure 13 shows the speedups for ICTM on Opteron and SGI platforms with
the automatic (Figure 13 (a) and (b)) and the explicit (Figure 13 (c) and (d))
memory a�nity solutions. As it can be observed, Minas has outperformed all
other memory a�nity solutions on both platforms.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 21

A
ut
om
at
ic

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

Ondes 3D - SGI

First-Touch
Minas-MApp

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

Ondes 3D - Opteron

First-Touch
Minas-MApp

(a) (b)

(c) (d)

Ex
pl
ic
it

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

Number of threads

Ondes 3D - SGI

numactl
libnuma

Minas-MAi

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

Ondes 3D - Opteron

numactl
libnuma

Minas-MAi

Figure 14: Performance of Ondes 3D on Opteron and SGI platforms.

Considering the automatic solutions applied to ICTM, Minas-MApp has pre-
sented satisfactory results on both platforms (Figure 13 (a) and (b)). Minas-
MApp has chosen cyclicmemory policy to control data allocation and placement
on both platforms. This chosen policy has resulted in better performance gains
than �rst_touch (on average, 10% Opteron and 8% on SGI). After a deep anal-
ysis of these results, we have concluded that �rst_touch policy has generated
more remote accesses. This behavior has had an impact on its gains on Opteron,
which has a higher NUMA factor.

The explicit solutions have presented di�erent behaviors depending on the
platform (Figure 13 (c) and (d)). On Opteron, the Minas-MAi cyclic memory
policy has presented the best results. However, there is not a signi�cant di�er-
ence between Minas-MAi and other explicit solutions (libnuma and numactl).
This can be explained by the fact that libnuma and numactl also o�er a sim-
ilar policy, named interleave. We believe that the slight performance gains of
Minas-MAi are due to the array optimizations (specialized allocation functions
and false sharing reduction). On SGI, the three solutions have presented di�er-
ent performance gains. We believe that Minas-MAi has also presented a better
performance thanks to the array optimization included in allocation functions
and memory policies. However, the platform network interconnection charac-
teristics could have had an impact on data distribution and accesses to memory

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

22 Ribeiro & Méhaut

on ICTM (irregular accesses). For this application and this platform, more
experiments must be performed to better comprehend these results.

In Figure 14, we show the speedups for Ondes 3D application on Opteron
and SGI platforms with the automatic (Figure 14 (a) and (b)) and the explicit
(Figure 14 (c) and (d)) memory a�nity solutions. On both platforms, Ondes 3D
application with Minas has presented better performance gains than the other
solutions for memory a�nity control.

The results obtained with automatic solutions in Ondes 3D have shown that
�rst_touch had an overall performance gains compared to Minas-MApp. The
Minas-MApp heuristic has chosen cyclic as the best policy according to the
platform characteristics. However, as discussed before, the best policy for this
application on such platforms is Minas-MAi bind_block. Since, �rst_touch and
bind_block have similar behavior, their results are expected to be equivalent or
superior to the Minas-MApp choice.

Finally, the results with explicit solutions in Ondes 3D (Figure 14 (c) and
(d)) have shown that libnuma and numactl have had a worse performance than
Minas. Since this application has a regular memory access, it is important to
maintain both thread and their data as close as possible. In order to do so,
data should be divided among NUMA nodes and threads should be �xed on
cores/cpus of such nodes. This strategy can be achieved by either Minas-MAi
or libnuma. However, libnuma demands considerable codi�cation e�orts, since
developers must implement all data distribution algorithm and thread schedul-
ing. Additionally, the same solution may not work on platforms with di�erent
architecture characteristics. In contrast with libnuma, Minas-MAi provides a
speci�c policy for this purpose which is called bind_block. This policy automat-
ically �xes threads and distributes data among the NUMA nodes (architecture
abstraction). Thus, no source changes are needed when the same solution is ap-
plied on di�erent platforms. Numactl is the less �exible of all explicit solutions
and it does not provide such data distribution strategy (in this case we have
used the interleave policy).

Table 1: Impact of Minas automatic tuning (Minas-MApp) mechanism.
FFT CG ICTM Ondes 3D

Opteron [4%; 12%] [1%; 25%] [0%; 0%] [0%; 3%]
SGI - [0%; 21%] [0%; 0, 5%] [10%; 13%]

In Table 1, we present the minimum and maximum performance losses of
Minas automatic tuning mechanism (Minas-MApp) in comparison with Minas
explicit tuning mechanism (Minas-MAi) for each application and platform. We
can notice that in some cases, Minas-MApp had an insigni�cant impact in terms
of performance in relation with Minas-MAi (ICTM on both platforms and Ondes
3D on Opteron). However, according to our experiments, the performance loss
may be important (up to 25%). Thus, Minas-MApp could be a possible solution
when developers do not choose to explicitly modify the application source code.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

Minas 23

5 Conclusion and Future Work

In this paper, we have focused our work on Minas, a memory a�nity man-
agement software to deal with memory placement on ccNUMA platforms for
scienti�c HPC applications based on arrays. We also have presented its design,
its approaches (MAi and MApp), its main functionalities, its implementation de-
tails and advantages (simplicity, e�ciency, and portability). In order to evaluate
its performance, we have carried out experiments over two ccNUMA platforms
using CG and FFT form NPB's and two Geophysics applications.

Our experiments show that Minas performance improvement up to 44% in
relation to the �rst-touch (CG kernel over opteron platform). Gains with both
Minas approaches were observed for all applications over the two ccNUMA
platforms used in our experiments. For these experiments, Minas presented
better results than �rst_touch policy, numactl and libnuma.

Future work on Minas includes providing dynamic memory policies (next-
touch, adaptive policies, etc), support for Fortran code and other threads li-
braries (Intel Thread Building Blocks, Posix Threads etc) on Minas preproces-
sor, de�ning hierarchical tiles for 3D/4D arrays, design and implementation of
a runtime for OpenMP under GCC with implicit memory a�nity control.

Acknowledgment

This research was supported by the French ANR under grant NUMASIS ANR-
05-CIGC and CAPES (Brazil) under grant 4874-06-4.

References

[1] T. Mu, J. Tao, M. Schulz, and S. A. McKee, �Interactive Locality Opti-
mization on NUMA Architectures,� in SoftVis '03: Proceedings of the 2003
ACM Symposium on Software Visualization. New York, NY, USA: ACM,
2003, pp. 133��.

[2] J. Marathe and F. Mueller, �Hardware Pro�le-Guided Automatic Page
Placement for ccNUMA Systems,� in PPoPP '06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming. New York, NY, USA: ACM, 2006, pp. 90�99. [Online].
Available: http://portal.acm.org/citation.cfm?id=1122987

[3] A. Carissimi, F. Dupros, J.-F. Mehaut, and R. V. Polanczyk, �Aspectos
de Programação Paralela em arquiteturas NUMA,� in VIII Workshop em
Sistemas Computacionais de Alto Desempenho, 2007.

[4] H. Löf and S. Holmgren, �A�nity-on-next-touch: Increasing the
Performance of an Industrial PDE Solver on a cc-NUMA System,� in
ICS '05: Proceedings of the 19th Annual International Conference on
Supercomputing. New York, NY, USA: ACM, 2005, pp. 387�392. [Online].
Available: http://portal.acm.org/citation.cfm?id=1088149.1088201

[5] C. Terboven, D. A. Mey, D. Schmidl, H. Jin, and T. Reichstein,
�Data and Thread A�nity in OpenMP Programs,� in MAW '08:

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

http://portal.acm.org/citation.cfm?id=1122987
http://portal.acm.org/citation.cfm?id=1088149.1088201

24 Ribeiro & Méhaut

Proceedings of the 2008 workshop on Memory access on future processors.
New York, NY, USA: ACM, 2008, pp. 377�384. [Online]. Available:
http://dx.doi.org/10.1145/1366219.1366222

[6] B. Goglin and N. Furmento, �Enabling High-Performance Memory
Migration for Multithreaded Applications on Linux,� in MTAAP'09:
Workshop on Multithreaded Architectures and Applications, held in
conjunction with IPDPS 2009, IEEE, Ed., Rome Italie, 2009. [Online].
Available: http://hal.inria.fr/inria-00358172/en/

[7] R. Iyer, H. Wang, and L. Bhuyan, �Design and Analysis of Static Mem-
ory Management Policies for CC-NUMA Multiprocessors,� College Station,
TX, USA, Tech. Rep., 1998.

[8] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos,
J. Labarta, and E. Ayguadé, �User-Level Dynamic Page Migration for Mul-
tiprogrammed Shared-Memory Multiprocessors,� in ICPP '00: Proceedings
of the 2000 International Conference on Parallel Processing, 2000, pp. 95�
104.

[9] A. Joseph, J. Pete, and R. Alistair, �Exploring Thread and Memory Place-
ment on NUMA Architectures: Solaris and Linux, UltraSPARC/FirePlane
and Opteron/HyperTransport,� 2006, pp. 338�352. [Online]. Available:
http://dx.doi.org/10.1007/11945918_35

[10] D. S. Nikolopoulos, E. Artiaga, E. Ayguadé, and J. Labarta, �Exploiting
Memory A�nity in OpenMP Through Schedule Reuse,� SIGARCH Com-
puter Architecture News, vol. 29, no. 5, pp. 49�55, 2001.

[11] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. A. Nelson,
and C. D. O�ner, �Extending OpenMP for NUMA Machines,� in SC '00:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Dallas,
Texas, USA, 2000.

[12] A. Kleen, �A NUMA API for Linux,� Tech. Rep. Novell-4621437, April
2005. [Online]. Available: http://whitepapers.zdnet.co.uk/0,1000000651,
260150330p,00.htm

[13] C. P. Ribeiro and J.-F. Méhaut, �Minas Project - Memory a�Inity
maNAgement System,� 2009. [Online]. Available: http://pousa.christiane.
googlepages.com/Minas

[14] C. Pousa, M. Castro, L. G. Fernandes, A. Carissimi, and J.-F. Méhaut,
�Memory A�nity for Hierarchical Shared Memory Multiprocessors,� in 21st
International Symposium on Computer Architecture and High Performance
Computing - SBAC-PAD (to appear). São Paulo, Brazil: IEEE, 2009.

[15] F. Dupros, C. Pousa, A. Carissimi, and J.-F. Méhaut, �Parallel Simulations
of Seismic Wave Propagation on NUMA Architectures,� in ParCo'09: In-
ternational Conference on Parallel Computing (to appear), Lyon, France,
2009.

INRIA

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

http://dx.doi.org/10.1145/1366219.1366222
http://hal.inria.fr/inria-00358172/en/
http://dx.doi.org/10.1007/11945918_35
http://whitepapers.zdnet.co.uk/0,1000000651,260150330p,00. htm
http://whitepapers.zdnet.co.uk/0,1000000651,260150330p,00. htm
http://pousa.christiane.googlepages.com/Minas
http://pousa.christiane.googlepages.com/Minas

Minas 25

[16] M. Castro, L. G. Fernandes, C. Pousa, J.-F. Méhaut, and M. S. de Aguiar,
�NUMA-ICTM: A Parallel Version of ICTM Exploiting Memory Place-
ment Strategies for NUMA Machines,� in PDSEC '09: Proceedings of the
23rd IEEE International Parallel and Distributed Processing Symposium -
IPDPS. Rome, Italy: IEEE Computer Society, 2009.

[17] J. Y. Haoqiang Jin, Michael Frumkin, �The OpenMP Implementation
of NAS Parallel Benchmarks and Its Performance,� NAS System
Division - NASA Ames Research Center, Tech. Rep. 99-011/1999,
1999. [Online]. Available: https://www.nas.nasa.gov/Research/Reports/
Techreports/1999/PDF/nas-99-011.pdf

[18] F. Dupros, H. Aochi, A. Ducellier, D. Komatitsch, and J. Roman, �Ex-
ploiting Intensive Multithreading for the E�cient Simulation of 3D Seis-
mic Wave Propagation,� in CSE '08: Proceedings of the 11th International
Conference on Computational Science and Engineerin, Sao Paulo, Brazil,
2008, pp. 253�260.

[19] AMD, �Advanced Micro Devices - AMD Opteron,� 2009. [Online].
Available: http://www.amd.com

[20] SGI, �SGI NUMAlink Interconnect Fabric,� 2009. [Online]. Available:
http://www.sgi.com/products/servers/altix/\numalink.html

RR n° 7051

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

https://www.nas.nasa.gov/Research/Reports/Techreports/1999/ PDF/nas-99-011.pdf
https://www.nas.nasa.gov/Research/Reports/Techreports/1999/ PDF/nas-99-011.pdf
http://www.amd.com
http://www.sgi.com/products/servers/altix/\numalink.html

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
04

21
54

6,
 v

er
si

on
 1

 -
2

O
ct

 2
00

9

	Introduction
	Memory Affinity Management Solutions
	Memory Affinity Policies
	Memory Affinity with OpenMP Directives
	Memory Affinity with Operating System Support
	Conclusion on Related Works

	Minas
	MAi: Memory Affinity Interface
	MApp: Memory Affinity Preprocessor
	Numarch

	Minas Evaluation
	ccNUMA Platforms
	Applications
	Architecture Abstraction
	Performance Evaluation

	Conclusion and Future Work

