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Abstract

A new way to interact with small devices consists in em-

bedding tiny Web servers, allowing the devices to serve

fully-fledged Web applications. When the device needs to

keep its users up-to-date of its internal state, the Web ap-

plication has to use an event publication solution. Several

works have recently been conducted in order to evaluate

the trade-offs of various Web-based event notification solu-

tions. In this paper, we propose to evaluate the feasibility of

event notification in embedded Web applications. We con-

duct a large set of experiments in order to compare various

push and pull based approaches for embedded systems. We

show that a push-based approach can be very efficient in

most situations, both in terms of client consistency and of

scalability.

1. Introduction

A new way to implement embedded systems software

consists in embedding Web servers in devices. Such servers

can be used in sensors, home automation or routers, mak-

ing these devices accessible from any computer, PDA or

smart phone. Furthermore, Web application development

is well-known and widespread. The global interconnection

of devices based on Web technologies is called the Web of

Things [26, 15, 14, 11].

Web technologies are based on a request/response

model. HTTP allows clients to retrieve resources from

servers, but disallows servers to push data to the clients.

However, there are many use cases where servers would

like to notify clients for event, e.g., auction Web site, stock

ticker, news portal, forums, chat-rooms, etc. Usually, such

behavior is implemented in AJAX applications by polling

the server at a given interval. A new model named Comet

[22] allows servers to push data over HTTP. Works have

been conducted in order to evaluate the best strategies for

Web-based event-notification [18, 1].

Intuitively pull-based approaches are simple to handle

on the server-side, because it is stateless. Push-based ap-

proaches are not trivial to design, and require more re-

sources on the server-side, which has to keep and manage

information about the clients listening to events. Web push

is often considered as a luxury for clients, with huge cost on

the server-side [4, 18, 2].

Many Web of Things use cases also require event-

notification: sensors, routers, and home automation systems

would like to trigger alerts or to notify some changes on

their environment or internal state. In this context, where

the server runs on a tiny device, the choice between push

and pull-based approach is very important. It has a great im-

pact on the scalability of the application, on the energy con-

sumption of the system, on its hardware requirements, and

on the reactivity and consistency obtained on the clients-

side (some applications are very critical and require excel-

lent reactivity).

We focus on the approach where each device runs a

whole HTTP/TCP/IP stack rather than on solutions where

the management of HTTP, TCP and IP are delegated to a

gateway located between the client and the targeted device.

This model is a user-centric architecture, where the embed-

ded Web servers are organized around the client. This ap-

proach has been discussed in [10]. We showed in a previous

work [11] that it is possible to serve efficiently interactive

AJAX [13] applications over TCP/IP from devices with a

CPU cadenced at a few MHz, with a few hundred of bytes

of RAM and a few kilo-bytes of EEPROM.

In this paper, we discuss and evaluate the costs of the em-

beddability of server push for embedded Web applications.

We compare push and pull based approaches in the context

of the Web of Things, in order to highlight the trade-offs of



each methodology. We base this analysis on the works of

Bozdag et al. [1]: they evaluate the pros and cons of push

and pull based event notification for usual (non embedded)

AJAX applications.

This paper is organized as follows: Section 2 presents

a state of the art of embedded Web servers and Web-based

event notification. In Section 3, we present the challenges

for embedding Comet in tiny Web servers. We conduct ex-

periments in order to find the trade-offs of push and pull

based approaches for the Web of Things in Section 4. We

finally conclude in Section 5.

2. State of the art

In this section, we present a state of the art of embedded

Web servers and Web-based event notification.

2.1. Embedded Web servers

Several works [7, 17, 21] have shown that it is possi-

ble to embed Web servers in tiny devices. Proposed so-

lutions such as iPic [24], WebIt [16] and Miniweb [9] are

stand-alone Web servers, with no underlaying operating

system, but thought as the operating system itself. They

do not rely on usual general-purpose networking interfaces

like Berkeley sockets, but implement their own dedicated

TCP/IP stack. That allows to design a cross-layer architec-

ture instead of usual layered architectures, making possible

many optimizations, thus saving memory, code size and en-

ergy. Their memory footprint is around one or two hundreds

bytes of RAM and a few kilo-bytes of EEPROM.

Other works have been done on a more generic context,

focusing on TCP/IP stack support for embedded systems:

TinyTCP [3], mIP [23] and uIP [8]. It is possible to run a

Web server on such stacks, but this forbids cross-layer opti-

mizations for efficient Web contents service over TCP. The

memory footprint of this kind of TCP/IP stack is of a few

kilo-bytes of RAM and dozens of kilo-bytes of EEPROM.

As far as we know, no work has been done about the em-

beddability of push-based Web applications on tiny devices.

In fact, many previous works on embedded Web servers

mainly focus on the service of static Web pages, which are

pre-processed and statically embedded in the server at com-

pile time.

In [11], we propose new solutions for efficient embedded

Web applications support with very low memory require-

ments. We propose solutions based on off-line computa-

tions and cross-layer optimizations, where TCP is special-

ized for supporting an HTTP server. Our prototype, named

Smews, is publicly available1 and has been ported to various

1Smews source code available at: http://smews.gforge.

inria.fr/

targets such as sensors and smart cards. It is able to serve ef-

ficiently fully-fledged Web applications made of static and

dynamic contents, including push-based notification.

2.2. Web based event notification

HTTP was initially designed for retrieving resources on

the Internet, so it is based on a simple request/response

model. Today, Web servers manage dynamic applications,

and sometimes need to keep their clients up-to date, in ade-

quacy with the server state.

The simpler approach for keeping clients up-to date in

a Web context consists in polling the server with an empir-

ically chosen time interval. That can be done in dynamic

AJAX [13] Web applications. Small intervals improve the

client-side coherence while big intervals improve scalability

by saving network and server resources. A common solu-

tion for this problem is based on an adaptive Time To Re-

fresh (TTR) [25, 4], trying to calculate a polling interval that

fits with event publications. This approach is only efficient

when the event publication tends to be constant.

Netscape introduced in 1996 a solution for pushing data

from Web servers [20], based on HTTP streaming. A long-

lived HTTP connection (initiated by the client) was used in

order to send a streamed content. When a client notification

is needed, a new part of the content is sent by the server, and

the connection remains open. The browser has to be still

waiting for the end of the HTTP response, which possibly

never occurs. It receives notifications by chunks.

The usage of this solution in AJAX Web applications is

known under the name of Comet [22]. A protocol draft

(based on JSON and on a publish/subscribe model) named

Bayeux [6] has been proposed for Comet support. The

Cometd project [5] provides Bayeux implementations for

various Web servers, such as Jetty [19]. Google’s DWR [12]

also provides a Comet support, without relying on Bayeux.

Bozdag et al. propose a study of push and pull ap-

proaches for AJAX applications [18, 1]. They provide key

metrics for performance analysis of Web-based event no-

tification. They also conducted a large set of experiments

in order to compare existing approaches (push vs. pull)

and implementations (Cometd vs. DWR). The conclusion

of this work is that Comet provides great reactivity, client

coherence and low traffic overheads, while polling provides

a better scalability in term of server-side CPU usage.

Both push and pull-based solutions have their own ad-

vantages. That is why some works [4, 2] propose adaptive

solutions where the choice between push or pull is done at

runtime, depending on the current server congestion and on

the client requirements.



3. On Comet for embedded Web servers

In this section, we describe the challenges of Comet sup-

port on embedded Web servers.

3.1. Why supporting Comet?

Embedded devices such as sensors or home automation

systems may offer various services, such requiring various

interaction models with the client accessing them. We pro-

pose a classification of the different interactions schemes

that can be needed by such systems:

On-demand information exchange: the client needs to

send/receive data to/from the device (e.g., get-

ting/sending applicative information, driving or man-

aging the device).

Event triggering: the server needs to notify the client

that something happened (e.g., the environment has

changed, a precessing has ended).

Data sampling: the client needs to collect continuously

data from the device (e.g., monitoring of the environ-

ment).

Since the Web of Things aims at designing embedded

software using the Web applicative model, it has to provide

solutions for handling each of these interaction schemes.

The original REST model of HTTP (based on a request-

response scheme) is well suited for on-demand information

exchange (using GET/POST to retrieve/send data).

For supporting triggering or sampling, the device needs

to push information to the client, which cannot be be done

with the REST model in Web applications. That is why the

support of Comet (i.e., server push in Web applications) is

a key point in the design of the future Web of Things.

3.2. Long polling vs. streaming

In a general context, event-notification can be imple-

mented easily by opening a connection from the server to

the client, sending a data and closing the connection. In a

Web context, a server can not establish a connection to the

client, because (i) if the client is in a local network and uses

address translation (NAT), it is not publicly visible and (ii)

the request/response model of HTTP is always used in Web

applications.

Comet implementations mainly propose two ways to no-

tify clients on a Web context: long polling and streaming.

Long polling Each time a client needs to register to an

event, it sends an HTTP request to the server. The server

idles, sends the HTTP response when needed. The client

connects again if it needs a new notification;

Client Server
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request

notification
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request

notification
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request

notification

(a) Long polling approach

Client Server
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Figure 1. Comparison of long polling and

streaming

Streaming When a client needs to listen for an event, it

sends an HTTP request to the server. When event occurs,

the server sends notifications in a chunk-encoded HTTP re-

sponse, without ending it. The client is still listening. Next

notification will be the following of this potentially never-

ending HTTP response.

Figure 1 shows the behavior of long polling and stream-

ing approaches when notifying a client several times. With

long polling, a single notification is involved per client re-

quest, while in streaming, the client receives multiples no-

tifications per request. When the client needs to be notified

multiples times, streaming generates a lighter traffic.

The Bayeux protocol provides a support for both long

polling and streaming, but Cometd, the most common im-

plementation, only provides a support for long polling.

Google’s DWR supports both approaches.

3.3. Server-side support of Comet

On usual Web servers, Comet is considered as heavy be-

cause it requires to manage many clients simultaneously,

compared to pull-based approaches where connections are

idle as soon as requests have been served.

Usual Web application containers associate server-side

code to URLs (in Java for Servlets containers), and call this

code for each incoming HTTP request.

Most Web servers (e.g., Apache, IIS, . . . ) allocate one

thread/process per connected client, because they need one

socket per connection, and because sockets are the most of-

ten managed via blocking routines. URLs handlers (e.g.,

Servlets) have to generate an output and to return. In Comet,

this code has to enter a passive wait for an undetermined du-

ration. As a consequence, for each client, a server based on

this approach has an idle thread and TCP connection, thus



wasting a lot of resources on the server.

New frameworks such as Cometd and DWR have been

designed including a native support for Comet. Instead of

using one blocking thread/process per client sockets, they

use a common blocking routine that allows to listen on mul-

tiple sockets (based on the select POSIX system call). They

provide special routines to URLs handlers (e.g., Servlets)

allowing them to wait for events without idling a thread (as

an example, Jetty uses continuations). When an event oc-

curs, all URLs handlers listening for it are awaken and their

associated clients receive the notification. With such strat-

egy, no more resource is wasted for threads.

3.4. Breaking sockets, saving memory

Web servers for tiny embedded systems can work with

no underlaying operating system. They use their own dedi-

cated TCP implementation instead of usual Berkeley sock-

ets. The most often, they are event-driven systems (they

schedule their task with no thread). At a given time, only

one packet is managed, either in input or in output.

In Smews, the structure used to store connections con-

tains information about IP, TCP and HTTP. Smews is event

driven and uses of only a few global buffers, shared by

all the connections. Each connection only require almost

30 bytes of RAM. This allows to handle easily a large num-

ber of clients even in very constrained hardware.

Intuitively, event-driven architectures fit well with event

notification. Instead of managing threads waiting for events,

a simple event pool is used. This point makes possible

Comet support in tiny Web servers. In Smews, when an

event is generated in order to notify a set of clients, the

HTTP response is built only once. It is placed in a buffer

that will be used to send the notification to every listen-

ing clients in separate TCP segments (multi-cast is not sup-

ported by standard TCP). In usual OS architectures, the data

is generated once per client and replicated on each socket.

4. Life size experiments

In this section, we put to the test various Web-based

event notification methods on an embedded Web server.

4.1. Goals of the experiments

The objective of the experiments is to know the trade-

offs of various Comet and polling implementation for em-

bedded Web applications. One of our aims is to know if the

results of Bozdag et al. work [1] can be applied to tiny Web

servers. We also evaluate the usability of push-based ap-

proach in embedded devices. The steps for achieving these

goals are:

1. identifying the parameters of the various experiments,

in order to benchmark different approaches on various

context;

2. identifying relevant metrics in order to evaluate the

trade-offs of each solution;

3. creating a Web application and implementing it for all

push and pull-based approaches;

4. simulating clients connections in order to run the ex-

periments;

5. analyzing the results of the experiments.

4.2. Experiments description

We describe here the environment of the experiments

we conducted in order to compare various notification ap-

proaches in the context of the Web of Things.

4.2.1 Settings

We start from Bozdag et al. work, which describes a pro-

tocol for evaluating event-notification solutions. So use the

same variables for the settings of our experiments.

Number of concurrent users This variable allows to

evaluate the scalability of each approach. Even in the con-

text of Web of Things, scalability may be required: several

clients may be each listening on several events of a same

device. Because of embedded devices constraints and ap-

plicative needs, we choose lower interval than Bozdag et al.:

[1;256], instead of [100;10000].

Publish interval This is the frequency of event pub-

lication by the server. We used the same values than

Bozdag et al.: 1, 5, 15, 30 and 50 seconds. We added a

sixth configuration based on a random choice between 1 and

50 seconds, making the publication no more regular.

Pull interval When a pull approach is used, we used var-

ious intervals. We use the same values than Bozdag et al.:

1, 5, 15, 30 and 50 seconds. It may be interesting to try

a strategy based on adaptive TTR, but since we measure

asymptotic performance, it will provide the same result as a

static interval equals to the publication interval.

Application mode For this variable, Bozdag et al. used

three modes: polling, Cometd, DWR. Since Cometd and

DWR can not be executed in tiny devices with no oper-

ating systems, we use our own Comet implementations.

Our three modes are: polling, long polling, and streaming.

Bozdag et al. did not use any streaming implementation.
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4.2.2 Experiments configuration

We designed Web applications with event notification for

the experiments. They are executed by our embedded Web

server prototype, Smews (this is the only available embed-

ded Web server that supports Comet). The device we choose

for our experiments is a sensor named WSN430, with the

following hardware configuration: 16 bits MSP430 CPU at

8 MHz, 10 kB of RAM, 48 kB of EEPROM and a serial line

at 14400 B/s as communication interface. With its smallest

configuration, Smews only requires 200 bytes of RAM and

8 kB of EEPROM.

The sample application is very simple: the server gets

a new value at a given interval. Each time, it notifies ev-

ery listening clients. The application supports polling, long

polling and streaming. During an experiment, a given num-

ber of clients connect to the server in order to receive noti-

fications. All the clients use the same notification method.

The four variables described in Section 4.2.1 can be com-

bined in 210 experiment settings. Each experiment has a

duration between 5 and 10 minutes, and has been run 10

times. The results presented here are the mean of these 10

iterations, after the removal of the 2 lower and higher sam-

pled values.

We used a script written in Python in order simulate the

clients, allowing to run the experiments in the various set-

tings described in Section 4.2.1. All the clients are simu-

lated on the same machine and access the sensor using the

same serial line.

The experiments we conduce aim at being as general as

possible. The usage of a serial line, which is full-duplex

and collision-free, allows the experiments to be independent

from specific physical layer properties. In future works, we

plan to analyze the impact of lossy links such as ZigBee,

Wifi, or other shared lines.

4.3. Experimental results

In order to evaluate the trade-offs of each approach,

we identified a set of relevant metrics and extracted them

from our experiments. These metrics are inspired from

Bozdag et al. works. In the following sections, we present

and synthesize our benchmarks results (only a relevant sub-

set of all the experiments conduced are shown).

4.3.1 Mean Publish Trip time (MPT)

The publish trip-time is the time elapsed between the cre-

ation of a data by the server and its reception by the client.

It shows how long it takes for the client to be updated when

an event occurs. In their study, Bozdag et al. showed that

push-based approaches provide a lower Trip Time, so a bet-

ter consistency.

Figure 2 shows the MPT we measured from our exper-

iments, with a publication interval of 5 seconds or varying

between 1 and 50 seconds.

With a few clients (less than 64), both streaming and

long polling provide excellent trip times in comparison with

polling. This is because with Comet, the server pushes data

to all the clients as soon as an event occurs.

Long polling generates more traffic than streaming be-

cause it forces the client to send a HTTP request (around

600 bytes) between each notification (see Section 3.2). With

more than 64 clients, long polling does not provide a signif-

icantly shorter trip time than polling, because clients regis-

trations saturate the traffic.

Streaming provides the shortest trip times, because it

generates a lightweight traffic. With a growing number of

clients, it makes a gap with both long polling and polling ap-

proaches. Streaming approach provides low trip time with
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no scalability issue.

With a publish interval of 5 seconds, the traffic is sat-

urated in most configurations. Logically, in such case, the

mean trip time is almost half the publication interval. In this

context and with 256 clients, the streaming approach allows

to reach a mean trip time of only 1 second.

4.3.2 Server Performance (SP)

The server performance shows the CPU usage of the server

software. In Bozdag et al. experiments, it was used as

the indicator of the server charge. The authors concluded

that SP grows faster with Comet solutions, possibly causing

scalability issues. In our experimental configuration, the

performance bottleneck is the network capacity rather than

the CPU, so we did not measure SP in our experiments.

4.3.3 Received Publish Messages (RPM)

The RPM is the mean amount of messages received by

the clients. When presented as a percent of the published

events, it shows the possible traffic overhead.

Figure 3 shows the RPM for a publish interval of 1 sec-

ond and of 50 seconds. With Comet (long polling as well

as streaming), the RPM never exceeds 100% because each

published data is received only once by the clients.

With polling, the lower is the polling interval, the higher

is the RPM. With 16 or less clients, a polling interval of

1 second and a publication interval of 50 seconds, 5000% of

the publications are received; in other words, 98% percent

of requests were unnecessary. We also notice that when us-

ing polling with a high rate, the RPM decreases with higher

number of clients. This occurs when the serial line of the

sensor is saturated with the traffic.

4.3.4 Received Unique Publish Messages (RUPM)

The RUPM is the mean amount of unique publications re-

ceived by clients. It is given as a percent of the published

events, and shows if clients miss any items.

Figure 4 shows the RUPM for a publish interval of 1 sec-

ond or of 30 seconds. It shows that with a too big polling in-

terval, the clients may miss many notifications. With many

clients, the network bandwidth is saturated, also involving

misses. The long polling approach provides a RUPM that

is comparable (in fact, a bit worse) to the polling approach

with an interval equals to the publication rate. This is be-

cause long polling requires one HTTP requests per notifica-

tion, as well as polling.

With the streaming method, misses are quite rare. The

RUPM is close to 100% even with 128 clients for a pub-

lication interval of 1 second. The only situation in which

we obtained a RUPM significantly lower than 100% with

streaming was with a publication interval of 1 second and

more than 128 clients.

Logically, with slow publication rate, clients misses be-

come more rare.

4.3.5 Received Message Percentage (RMP)

This variable was used by Bozdag et al. to have an indicator

on packet losses. In our configuration, the network bottle-

neck was the serial line of the sensor, where losses never

occur, so we did not measure the RMP.

4.3.6 Network Traffic in Packets (NTP)

The NTP allows to evaluate the network usage of a strategy.

Figure 5 shows the NTP for a publish interval of 1 second

or varying between 1 and 50 seconds. For polling and long
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polling approaches, the network comes to saturation from

almost 50 packets per second. This highlights the situations

where the bottleneck is the traffic (with many clients and/or

short polling intervals).

With streaming, NTP grows up to 250 packets/second

with a publication every second and 128 or more clients.

This is because with streaming, the traffic is made of a lot

of small TCP segments, allowing to send more packets with

the same bandwidth limitations. In fact, this point helps the

streaming approach in providing good performances.

4.3.7 Network Traffic in bytes (NTB)

This metric was not used by Bozdag et al., but our analysis

of the NTP shows that it is not the best way to synthesize

network congestions. That is why we also evaluate the net-

work traffic in bytes per seconds.

Figure 5 shows the NTP for a publish interval of 1 sec-

ond or varying between 1 and 50 seconds. It provides a

precise overview of the network usage. It shows that long

polling generates a heavy traffic; this is because it involves

requests between each publication. With a large polling in-

terval, polling allows a very low network usage (but pro-

vides less data coherence).

Streaming provides a lower traffic usage than long

polling or polling with a short interval.

4.3.8 Mean Coherent Time (MCT)

Finally, we introduce a new metric in order to evaluate the

client-side data coherence. Bozdag et al. made use of the

MPT to evaluate it, but this metric is perfectible because it
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does not take into account client misses. A low trip time

can be obtained even with many misses. MCT represents

the amount of time spent by the clients with up-to-date data.

It provides a synthesis of all the metrics.

Figure 7(a) and 7(b) show the MCT for a publication

interval of respectively 1 and 50 seconds.

With a publication interval of 1 second, streaming makes

a gap with long polling and polling with any frequency.

With 128 clients, it reaches 50%, compared to results be-

tween 1% and 7% for polling and long polling.

With a publication interval of 50 seconds, MCT values

are higher than with an interval of 1 second. Note that when

polling exactly at the publication interval and when no con-

gestion occur, the mean coherent time is of 50%. This is

due to the lack of synchronization between the server and

the clients. Some clients send their requests and retrieve a

data that has just been published by the server, while other

clients get their notifications a few seconds before their ex-

piration.

4.4. Results analysis

We propose a summary of the results we presented in

Section 4.3. We highlight the trade-offs of various event

notification approaches in various contexts.

4.4.1 Impact of the network

The network capacity plays an important role in the quality

of Web-based notification. In our experiments, the server

is accessed via a serial line at 14400 B/s. Such a small

throughput is common in embedded devices network links,



which networking hardware often has no DMA and is un-

able to manage packets queues. With such simple hardware,

which is very different from computer network interfaces,

the network capacity is limited by the CPU speed.

The most efficient strategy in term of traffic usage is

polling with big interval. In fact, with polling, the traf-

fic generated by each client is very predictable and easy to

control. The polling interval can be chosen depending on

the number of clients and the network capacity. This is the

main advantage of polling approaches.

The traffic generated by Comet approaches is not de-

pending on a client interval but on the server publication

interval. Long polling is sensibly heavier than streaming in

practice, because it produces a lot of HTTP requests, which

are of typically around 600 bytes, while notifications often

contain only a few bytes of payload. Streaming produces

mainly very small packets, involving low bandwidth usage.

4.4.2 Data coherence

In their paper [1], Bozdag et al. showed that Comet pro-

vides the best coherence. They only used solutions based on

long polling, because streaming is still rarely implemented.

In the context of embedded Web servers, our results show

that long polling does not provide a great data coherence.

The MCT obtained with long polling or with polling at the

right interval are similar. Long polling allows to reach low

trip time, but it involves traffic overhead when compared to

polling, because of the cost of client registrations.

By implementing a support for HTTP streaming in our

prototype, we were able to compare streaming to long

polling and to polling. Our results show that streaming

makes a gap with other solutions for all of our 210 bench-

mark settings. This is because it generates a small amount

of requests, uses small packets and is very easy to manage

on the server-side since it makes incoming requests very

rare. Once the clients are registered, they are served very

efficiently. This approach is also the most scalable.

4.4.3 Summary

We showed that Web servers embedded in very constrained

devices are able to run Comet Web applications. Further-

more, thanks to very small dedicated connections, they are

able to handle a large number clients when compared to the

amount of volatile memory available.

Bozdag et al. obtained excellent performances with long

polling in the context of powerful Web servers in [1]. We

show that these results can not be applied directly on con-

strained Web servers, because tiny devices suffer of their

slow network interfaces.

By proposing a streaming support in our prototype, we

showed that Comet is a great solution for event notification

in embedded Web applications. In fact, the streaming ap-

proach provides the best results in term of publish trip time,

received events, non-redundancy of messages, data coher-

ence and scalability.

In practice, long polling is never better than streaming,

but is still interesting is some cases where a client needs to

be notified only once of an event.

Polling may be interesting for event-notification only

when a great number of clients are needed without requir-

ing a high data coherence: by using a very large interval, the

traffic required per client can decrease to very low values.

We identified in Section 3.1 three interactions schemes

for Web applications. We summarize here how each of them

should be handled in a Web of Things context:

On-demand information exchange: this is the basic

scheme for Web interactions, for which Comet is not

needed. Usual request-response interactions (like with

polling) are well suited for it.

Event triggering: event triggering should be implemented

with long polling, because this allows a client to listen

only once for an event.

Data sampling: data sampling should be implemented

with streaming, since this is the most efficient ap-

proach for continuous samples retrieval by a client, as

shown by our experiments.

5. Conclusions and perspectives

The support of Comet in embedded devices is a key point

in the design of the future Web of Things.

Server push solutions are known as reactive but not scal-

able. Bozdag et al. showed [1] that push-based approaches

in Web applications are efficient in terms of reactivity, con-

sistency and traffic. The only benefit of polling is the server-

side resources usages, allowing a better scalability.

Based on this work, we conducted similar experiments in

the context of the Web of Things. We first showed that by

using an fully integrated Web server (with its own commu-

nication stack, with no OS), Comet can be supported in very

constrained devices (256 simultaneous clients supported in

only 10 kB of RAM).

The results of our benchmarks showed that Comet pro-

vides heterogeneous performances depending on the way it

is implemented. Streaming makes a gap in term of perfor-

mance with both polling and long polling approaches. As

a big difference with Bozdag et al. results, streaming pro-

vides the best scalability.

The event-driven model used by embedded Web servers,

coupled with their dedicated TCP/IP stack, allows to sup-

port efficiently event-notification. In such model, the whole

system is event-driven, making push approaches easier to



support. In fact, the well-known scalability issues of push-

based approaches seem to be due to traditional OS con-

straints, which break the native event-driven model of the

hardware.

In future works, we plan extend the scope of this study

to contexts with link losses and collisions. We also would

like to analyze the energy consumption of the devices when

notifying events in order to study duty cycle management.
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