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Abstract: Since most of private communication schemes based on chaotic synchronization are
not robust again plain-texts attacks, the introduction of delays in the schemes can be regarded as
an efficient method to improve the security degree with respect to such attack. As an extension
of our recent work, this paper proposes a new analogue private communication scheme based
on hybrid chaotic systems with delays. The proposed scheme is based on the notation of weakly
left invertibility of switched systems, and an illustrative example is given for the purpose of
highlighting the feasibility of the proposed method.
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1. INTRODUCTION

After Pecora and Carroll (1990) successfully synchronized
two identical chaotic systems with different initial condi-
tions, chaos synchronization has been intensively studied
in various fields. Since the work of Nijmeijer and Mareels
(1997), unidirectional synchronization can be viewed as a
special case of observer design problem, i.e. the state recon-
struction from measurements of an output variable under
the assumption that the system structure and parameters
are known. For the private communication system based
on the synchronization of chaotic systems, a receiver (an
observer from a control theory point of view) is designed in
order to be synchronized with respect to the transmitter
(a chaotic system with unknown inputs from a control
theory point of view) and to reconstruct the confidential
messages (the unknown inputs of the chaotic systems from
a control theory point of view). Many techniques arising
from observation theory have been applied to the problem
of synchronization, such as observers with linearizable
dynamics in Huijberts et al. (2001), adaptive in Fradkov
et al. (2000), generalized hamiltonian form based observers
in Sira-Ramirez and Cruz-Hernandez (2001), algebraic
method in Sira-Ramirez and Fliess (2006), Barbot et al.
(2007) or inverse system in Feldmann et al. (1996). How-
ever, for most of private communication schemes based
on chaotic synchronization and message inclusion, it is
shown that they are not robust to known plain-texts at-
tacks (see Anstett et al. (2006)). According to the famous
Kerkhoff (1883) principe, it is assumed that hackers know
all the details about the cryptosystem except the secret
key. Roughly speaking, if the keys are only the parameters
of chaotic systems, it can be proved that all the “useful” 1

parameters can be identifiable when trying the known
plain-texts attacks.

1 It means the parameters which play a role in the message trans-
mission.

Recently, in Zheng et al. (2008) delays were used in chaotic
systems in order to improve the robustness of cryptosys-
tems with respect to known plain-texts attacks, since de-
lays are more difficult to be identified (see Richard (2003)).
As an extension of our previous work, we propose a new
strategy in this paper for the purpose of improving the
robustness of private communication, and this extension is
based on hybrid systems with delays. From control theory
point of view, the problem of recovering the message in
the private communication scheme based on chaotic syn-
chronization can be regarded as a left invertibility prob-
lem (Hirschorn (1979), Singh (1982), Respondek (1990)),
on which the new private communication scheme is also
based. Some sufficient conditions are also given in order
to solve the left invertibility problem for systems with
delays. In addition, as there exist lost packets in the private
communication in practice, a resynchronization technique
will be proposed as well.

This paper is organized as follows: Section 2 gives a
presentation of the problem statement. In Section 3, a
new scheme based on hybrid chaotic systems with delays
is proposed. Then the robustness of the proposed scheme
is analyzed in Section 4. And Section 5 is devoted to
highlighting the feasibility of the proposed scheme by an
illustrative example.

2. PROBLEM STATEMENT

This section is devoted to analyzing the robustness of
most proposed schemes. Without loss of generality, we con-
sider first a n-dimensional chaotic system in the following
generic form:

ẋ = f(x) (1)
where x ∈ U is the state vector, U is an open set of Rn,
and f : Rn → Rn is analytic.

Hence, the private communication system based on (1) can
be represented in the following form:



{
ẋ = f (x,K) + g (x,K) u
y = h (x) (2)

where K ∈ Rq is the key vector, y ∈ R is the output
vector and u ∈ R represents the confidential information
to be transmitted. The vector fields f : Rn × Rq → Rn,
g : Rn × Rq → Rn and h : Rn → R are assumed to be
sufficiently smooth on U .

In this paper, we focus only on the analysis of the scheme
based on inverse system, which implies, according to (2),
one can express all states and unknown inputs as functions
of the original outputs y, their time derivatives and the key
vector as follows (see Diop and Fliess (1991) for details):




x = Ξ
(
y, ẏ, ..., y(n−1),K

)

u = Ψ
(
y, ẏ, ..., y(n−1),K

) (3)

However, (3) cannot resist against known plain-texts at-
tacks when all plain-texts are known. Indeed, consider the
second equation of (3) at different instants ti for 1 ≤ i ≤ l,
it is possible to obtain several independent equations with
respect to K:

u(ti) = Ψ
(
y(ti), ẏ(ti), ..., y(n−1)(ti),K

)
(4)

Remark 1. If we can obtain q = l independent equations
from (4), thus all useful parameters are identifiable. If
l < q, which means that q − l parameters are not
identifiable, then they can not play the role of the key.
Thus, the knowledge of these parameters is not necessary
for recovering the message and those parameters are of no
interest in the transmitter design.

Consequently such a scheme is not robust against known
plain-texts attacks. For the data transmission scheme
based on discrete chaotic system, the similar expression
between all states and unknown inputs could be deduced
as that of (3), replacing time derivatives of outputs by
time delays of outputs. Analogously, those schemes are not
robust against known plain-texts attacks as well.

3. PROPOSED SCHEME

In order to overcome this drawback, in Zheng et al.
(2008) we proposed a more robust scheme with respect to
known plain-texts attacks by introducing delays in multi-
input multi-output continuous chaotic system, which is
also a part of the unknown parameters (part of the key).
Consequently, the introduction of the delay operator into
the input-output relation equation seems to exhibit a
robust characteristics with respect to known plain-texts
attacks. Inspired by the work of Tan et al. (2008), as
an extension of our previous work, we propose a new
analogue private communication scheme based on hybrid
chaotic systems with delays, which is described in Fig. 1.
For the transmitter, the switching signal is generated by
the discrete system with the message and the partition
block. It was used to activate the corresponding chaotic
subsystem for the purpose of encoding the message. For
the receiver, the received signal is decoded according to
activated subobserver, determined by the switching signal
generated by the discrete system and partition block in
the receiver.

Fig. 1. Scheme for private communication system based on
hybrid chaotic systems with delays.

3.1 Description of transmitter

The discrete system (ΣD) of the transmitter in this scheme
can be described as

ΣD :
{

z(k + 1) = F (z(k), u(kη),K)
yD = H(z(k)) (5)

where z ∈ RND is the state vector, K ∈ Rq is the key
vector, yD ∈ O is the output vector where O is the
output space such that O ⊆ ROD , u ∈ R represents
the confidential information and η represents the sampled
period. The vector fields F : RND × R × Rq → RND and
H : RND → O are assumed to be sufficiently smooth. Since
ΣD is discrete chaotic system, such that it is sensitive to
its initial condition and parameters, hence those variables
(initial condition and some critique parameters of ΣD) can
be served as part of keys.

The function of partition block in the scheme acts as a
generator of switching signal from yD (the output of ΣD).

Definition 1. Given the output space of ΣD, its associated
partition S1, . . . , Sm can be defined

m⋃

i=1

Si = O and Si

⋂
Sj = Ø, for 1 ≤ i, j ≤ m, i 6= j

Consequently, the switching signal generated by the dis-
crete system and partition block can be defined as follows.
Definition 2. The switching signal is a piecewise constant
function S : R+

0 ×O×N ×N →M where R+
0 represents

the non negative real, N represents the natural and M =
{1, . . . , m} ⊂ N . For a given yD ∈ O, we have

S(t, yD, I, I0) =
{

i, if yD(t) ⊂ Si ⊆ O and mod(t, Iη) = 0
i0, if mod(t, I0η) = 0

where I ∈ N is a predefined natural characterizing iter-
ation times of the discrete system, I0 ∈ N represents a
predefined positive reinitialization period of the proposed
scheme, i ∈M is the value of the switching signal, i0 ∈M
is the default value of the switching signal, determined
by the initial conditions of z and u in (5) and mod(a, b)
represents a modulo b.

The generated switching signal plays the role to determine
how and when to activate a subsystem. A simple determi-



nation rule can be defined as follows.

Rule 1. Activate the jth subsystem when S(t, yD, I, I0) =
j for t ∈ R+

0 , yD(t) ⊆ O, I ∈ N , I ∈ N and j ∈M.
Remarks 1. i) The reinitialization procedure will be pro-
posed in Section 4 to handle loss packets during data
transmission. A predefined period is given by I0η, and
at the reinitialization instant the switching signal will be
reset, the same as those of the discrete system and the
switched systems in the scheme, which will be explained
in the next section.

ii) It can be seen that the associated partition of the output
space O of ΣD is not unique, and the activate rule of
subsystem can be different as well. Hence the partition
manner and the activate rule can be served as part of keys
in order to improve the robustness of the proposed scheme.

3.2 Left invertibility of delayed system

In order to simplify the presentation of the description of
transmitter, we introduce the following notations. Clas-
sically, δi ∈ R+

0 for i ∈ N , denotes the delay operator
defined for any function a(·), such as δia(t) = a(t− τi). As
usual, δ0

i a(t) = a(t), and recursively, one has δk
i a(t) =

δi(δk−1
i a(t)), for k ≥ 1. Moreover, the delay operator

satisfies: δi (a + b) = δia + δib and δi (a · b) = δia · δib.
For any function f , we note

fδi(x(t)) = f(δix(t)) = f(x(t− τi)) (6)
which is homogeneous with the delay τi for state x (i.e.
it contains only the delay τi), satisfying fδi

= δif and
f(0) = 0. Let us remark that the derivative and the delay
operators are commutative, i.e. ∂fδi

∂x = δi
∂f
∂x , based on

which the derivative of Lie can be extended to systems
with delays.

Let us now consider the switched system in the transmit-
ter. In the following we will focus on the left invertibility
problem of the jth subsystem, hence for the sake of sim-
plicity we drop the superscript j, and then the jth single-
input single-output subsystem: Σj for j ∈ M is described
as follows

ΣSj
:

{
ẋ = f0(x, K) + fδ1 (x, K) + g2(x, K)δ2u + gδ3 (x, K)u
x(t) = φ(t), u(t) = ψ(t) t ∈ [−τm, 0]
y = h(x)

(7)

where x ∈ RNj , K ∈ Rq, u ∈ R, y ∈ R and δi for
1 ≤ i ≤ 3 represents the time delays of x or u for the
jth subsystem. The functions φ(t) ∈ C([−τm, 0], Rn) and
ψ(t) ∈ C([−τm, 0], Rn) represent the initial condition of the
jth subsystem, defined over the interval [−τm, 0], where
τm is a positive constant such that τm = max{τ1, τ2, τ3},
C([−τm, 0], Rn) is the Banach space of continuous func-
tion mapping [−τm, 0] into Rn, with the norm ‖φ‖ =
supt∈[−τm,0] |φ(t)| with the Euclidean norm of φ(t) ∈ Rn

denoted by |φ(t)|. The functions f0 and g2 are smooth
functions of x without delays, while fδ1 and gδ3 are smooth
functions which are homogeneous with δ1 and δ3, respec-
tively. Moreover we note fδ1 = f1 and gδ3 = g3 for the
sake of simplicity.

Inspired by the work of Vu and Liberzon (2008) and
Tanwani and Liberzon (2008), we define the weakly left
invertibility for system (7) as follows.

Definition 3. System (7) is weakly left invertible if un-
known input u(t) and state x(t) can be recovered for any
t from the knowledge of the output y(t) for t ∈ [0, b] with
b positive, the initial condition of states φ(t) and initial
condition of input ψ(t) for t ∈ [−τm, 0].

In order to prove our main result, we introduce the
following technical definitions.
Definition 4. An input-output relation for system (7) is
defined as

LgiLfjk
· · ·Lfj1

h 6= 0 (8)
with i ∈ {2, 3} and jl ∈ {0, 1} with 0 ≤ l ≤ k < n,
where j represents the number of input-output relation.
Moreover for each input-output relation j, it is associated
with a delay index dj =

(∑k
l=1 τjl

)
+τi for jl ∈ {0, 1} and

i ∈ {2, 3}. The input-output relation set for system (7) is
the set of all input-output relations for this system.
Remark 2. Obviously, as the derivative of u is also un-
known, the input-output relation with the derivative of the
input is not considered. However, if we take into account
the derivative of the input, then a derivative of Lie-Backlun
must be considered.

Now similarly to systems without delays, we define the
relative degree for system (7) as follows.
Definition 5. The relative degree r of system (7) is equal
to k∗ + 1 where k∗ is the greatest value of k in the input-
output relation set which satisfies the rank condition

Rank




dh
dLfl

h
...

dLfjk
· · ·Lfj1

h


 = k∗ + 1

At the relative degree r, we also associate a delay index
dr which is the smallest delay index of all input-output
relations with k = k∗ which satisfies the rank condition.
Remark 3. If Lg2Lf0h = 0 and Lg2Lf1Lf0h 6= 0, this
implies that the delay in this Lie derivative between the
input and the output is equal to τ2 + τ1. This fact is the
starting point of the previous definition and it is with the
rank condition the origin of the next theorem.

From the previous definition, we are able to give the
following theorem.
Theorem 1. System (7) is weakly left invertible if:

• the relative degree r for this system is equal to n;
• all delay indices of input-output relations with k <

n− 1 are strictly greater than dr.
Proof 1. From the definition of the relative degree, it is
clear that from the knowledge of the previous state and
input we can recover the input at time t − dr. Moreover
from the same definition of relative degree, the system
is ‘observable’ with respect to the knowledge of previous
states and input. Consequently we can ‘observe’ or esti-
mate the state at least at time t−dr. Consequently system
(7) is weakly left invertible in the sense of Definition 3.

3.3 Description of receiver

The receiver part in the scheme is to decode the encoded
messages receiving through the public channel. At the end



of receiver, the discrete system Σ̂D is the same structure
used in the transmitter, i.e.

Σ̂D :
{

ẑ(k + 1) = F (ẑ(k), û(kη),K)
ŷD = H(ẑ(k)) (9)

where ẑ, û and ŷD are of the same dimension as those
defined in ΣD for the transmitter, representing their esti-
mates. K represents the key shared by both the transmit-
ter and receiver.
Proposition 1. If all the subsystems are weakly left invert-
ible and the key K of the proposed scheme contains the
following elements:

• for discrete system ΣD: the initial conditions of mes-
sages and states, and some parameters of ΣD;

• the partition manner and activate rule;
• for each subsystem ΣSj for j ∈ M: the initial

conditions of states and messages, some parameters
and time delays of x and u for ΣSj

;

then we can design a receiver, which might successfully
recover the messages encoded by the transmitter.
Proof 2. It can be seen that if the initial conditions and
some parameters of the discrete system are used as part
of keys, and if one knows the initial condition of u, one
can have ŷD → yD if one can prove û → u. Moreover,
if the partition manner and activate rule are served as
part of keys as well, one has Ŝ → S which implies
the switching signal could be recovered and consequently
the correct corresponding subsystem might be activated.
According to Theorem 1, one can design an observer
in order to retrieve the encoded messages (i.e. û → u)
from the active subsystem, provided one knows the initial
conditions, the parameters and time delays of x and u for
the active subsystem. It should be noted that this recovery
of message may be with delays, and that is the reason why
in Fig. 1 a block of predefined delays is placed in front of
the discrete system for the purpose of keeping the applied
input synchronized. Consequently, if the key K contains all
the elements mentioned above, one can design a receiver,
which might successfully recover the messages encoded by
the transmitter.

Concerning the observer design for each subsystem, ac-
cording to Theorem 1 one can deduce an input-output
relation with delays for the purpose of reconstructing
the message. Based on Barbot et al. (2007), an algebraic
observer can be applied for this situation. This algebraic
approach is based on the numerical differentiation tech-
nique used in Sira-Ramirez and Fliess (2006), Fliess and
Sira-Ramirez (2004), Fliess et al. (2006), Fliess et al.
(2008) and Mboup et al. (2007). Roughly speaking, for
an analytic signal x(t), its Taylor expansion at t = 0 can

be written as x(t) =
∞∑

i=0

x(i)(0) ti

i! . Then the corresponding

truncated Taylor expansion is xN (t) =
N∑

i=0

x(i)(0) ti

i! with

dN+1

dtN+1 xN (t) = 0. Rewrite it in the well-known notation of
operational calculus:

xN (s) =
N∑

i=0

x(i)(0)
si+1

where d
ds corresponds to the multiplication by −t in the

time domain. By multiplying both sides dj

dsj sN+1 with
0 ≤ j ≤ N and s−v with v > N , it yields the following
triangular linear equations

s−v dj(sN+1xN )
dsj

= s−v dj

dsj

(
N∑

i=0

x(i)(0)sN−i

)
(10)

and we can obtain the numerical differentiation of x(t) by
applying the inverse Laplace transform to (10).

4. ANALYSIS OF ROBUSTNESS

For a new proposed private communication scheme, one of
the main tasks is to analyze its robustness with respect to
attacks.

4.1 Robustness to known plain-texts attacks

Due to the introduced delays for the state variables and the
inputs, the proposed scheme becomes robustness against
known plain-texts attacks. More precisely, one can obtain
the input-output relation with delays, hence at different
instants t it is possible to obtain independent equations
with respect to K, such that

u = Ψ(y, . . . , y(n−1), δy, . . . , δy(n−1), δ̃u, . . . , δ̃u(n−1), K) (11)

where δ and δ̃ represent the delays for the output and
input, respectively. However since at each instant t, the
output and the derivative of the output with delays are not
known because the delays are part of key, it becomes more
difficult to identify K according to (11). Consequently the
proposed scheme seems more robust than schemes without
delays to the known plain-texts attacks.

Another firewall against known plain-texts attacks of the
proposed scheme is the combination effect of the discrete
system affected by the unknown input and the partition
block, which implicitly implies that one can find out a
relation between the unknown input and the generated
switching signal

i(t) = Γ(t, z, u,K) (12)
In the situation of known plain-texts attacks, according to
the relation (12) it is possible to identify some part of keys
of K with the knowledge of the generated switching signal
i(t). However, since (12) is function of the unknown input
u, for different u the output space of the discrete system
is different, and after the partition block the generated
switching signal i(t) becomes difficult to be predicted,
which signifies that the combination technique seems to
be robust to the known plain-texts attacks.

4.2 Robustness to lost packets

From practical point of view, there exists an eventuality
of lost packets during the data transmission, which will
lead absolutely bad estimate of the states and messages.
Since the chaotic system is quite sensitive to the initial
condition and its parameters, those bad estimates will
make future estimates totally worst. In order to rectify the
bad influence of the lost packet during data transmission,
we impose reinitilization rule in the proposed scheme.
Rule 2. At the instant treset ∈ R+

0 , i.e. mod(treset, I0η) =
0, then set S(t+reset, yD, I, I0) = i0 ∈ M, and reinitialize



the active subsystem ΣSi0
at the instant treset by setting

x(treset) = φ(t) and u(treset) = ψ(t) for t ∈ [treset −
τm, treset].

Since this rule is shared by both the transmitter and
receiver, if there exists lost packets phenomenon, the bad
estimates of messages will occur only until the next reset
time. When the reinitialization operation is imposed for
the transmitter and the receiver, a new synchronization is
established, and consequently the influence of lost packets
for future estimates of state variables and messages is
avoided.

5. ILLUSTRATIVE EXAMPLE

This section is devoted to illustrating the feasibility of the
proposed scheme. We choose the simple Logistic map as
the discrete chaotic system described in the scheme:

ΣD :
{

z(k + 1) = µz(k)(1− z(k)) + 0.01u(kη)
yD = z(k) (13)

with µ = 1.38, u(t) = 1+sin(t)cos(15t+20), η = 0.0001s,
and with the initial condition z(0) = 0.01 and u(0) = 0.
The partition of the output space of (13) is set to be
S1 = [0, 0.6] and S2 =]0.6, 1]. The predefined constant
variable I is set to be 2000 and I0 = 40000, i0 = 1. Hence
the switching signal is defined

S(t, z, I, I0) =

{ 1, if 0 ≤ z ≤ 0.6 and mod(t, 2) = 0
2, if 0.6 < z ≤ 1 and mod(t, 2) = 0
1, if mod(t, 20) = 0

The uniform distribution of output space is illustrated in
Fig. 2.
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Fig. 2. Uniform distribution of the output state space of
discrete system (13)

Concerning the switched systems described in the trans-
mitter, we consider only two subsystems for the sake of
simplicity. The first chaotic system is based on Lorenz
system. After introducing delays into the state variable
and input, it can be written in the following form:

Σs1 :





(
ẋ1

ẋ2

ẋ3

)
=

(
a(x2 − x1)

x1(b− x3)− x2

x1x2 − cx3 + x2δ1u + δ1x1u

)

y = x1

(14)

with a = 10, b = 28, c = 8/3, δ1u = u(t − τ1) and
δ1x1 = x1(t − τ1) where τ1 = 7ms. In the simulation,
the initial conditions of x1(t) and u(t) for t ∈ [−τ1, 0] are
randomly generated over the time interval [−τ1, 0].

Note f0 =

(
a(x2 − x1)

x1(b− x3)− x2

x1x2 − cx3

)
, g2 =

( 0
0
x2

)
and g3 =

( 0
0

δ1x1

)
, and one can find the following input-output

relation Lg3Lf0Lf0h 6= 0 if −ax1δ1x1 6= 0. It is easy to
check such input-output relation has a regular relative
degree 3 since

Rank




dh
dLf0h
dL2

f0
h


 = 3

and consequently Theorem 1 is satisfied. More precisely,
the state variables and the unknown message can be
represented by the output and its derivative as follows:




x2 =
ẏ

a
+ y

x3 = b− ẋ2 + x2

x1

u =
ẋ3 + cx3 − x1x2 − x2δ1u

δ1x1

hence one can easily design a subobserver for ΣS1 . The
second subsystem is based on Chen chaotic system. Anal-
ogously by introducing the delays, ΣS2 can be described
as follows:

Σs2 :





(
ẋ1

ẋ2

ẋ3

)
=

(
β(x2 − x1)

x1(γ − β)− x1x3 + γx2

x1x2 − ρx3 + x2δ2u + δ1x2u

)

y = x1

(15)

with β = 35, γ = 28, ρ = 3 and τ2 = 6ms. It is easy
to check that Theorem 1 is also fulfilled and the state
variables and the unknown input can be recovered.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

time(s)

 

 

u
estimate of u
switched signal S

Fig. 3. Confidential message and its recovery.

By applying the algebraic approach to calculate the nu-
merical differentiation (see Mboup et al. (2007)), the sim-
ulation results are depicted in Fig. 3, where only confi-
dential message and its recovery are given. It is clear that
the encode message u is reconstructed when the active
subsystem is correctly determined.

6. CONCLUSION

This paper proposed a new analogue private communica-
tion scheme based on hybrid chaotic systems with delays in
order to improve the security degree. The proposed scheme



is based on the weakly left invertibility problem and suf-
ficient conditions are given in this paper in order to solve
such a problem. Moreover, the robustness of the proposed
scheme is discussed from two aspects: the robustness to
known plain-texts attacks and robustness to lost packets.
In addition, the algebraic derivative method is adopted to
compute the successive derivatives of the output. Finally
an example is studied in order to illustrative the proposed
scheme.
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