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Preface

This book concerns the numerical simulation of dynamicateays whose trajecto-
ries may not be differentiable everywhere. They are nanmtsmootidynamical
systems. They make an important class of systems, first beaduhe many appli-
cations in which nhonsmooth models are useful, secondlyusecthey give rise to
new problems in various fields of science. Usually nhonsmalgtiemical systems
are represented as differential inclusions, complemiytsrstems, evolution vari-
ational inequalities, each of these classes itself beifigispp several subclasses.
The book is divided into four parts, the first three parts esketched in Fig. 0.1.
The aim of the first part is to present the main tools from maidsaand applied
mathematics which are necessary to understand how nonlsipaamical systems
may be numerically simulated in a reliable way. Many exammdlastrate the theo-
retical results, and an emphasis is put on mechanical sgstsnwvell as on electrical
circuits (the so-called Filippov’s systems are also exauiim some detail, due to
their importance in control applications). The second dmiditparts are dedicated
to a detailed presentation of the numerical schemes. AHqatt is devoted to the
presentation of the software platformc®Nos. This book is not a textbook on nu-
merical analysis of nonsmooth systems, in the sense thpiteléise main results of
numerical analysis (convergence, order of consistency) being presented, their
proofs are not provided. Our main concern is rather to ptaseatetail how the al-
gorithms are constructed and what kind of advantages ambdicks they possess.
Nonsmooth mechanics (resp. nonsmooth electrical cilcisita topic that has
been pioneered and developed in parallel with convex aisalyshe 1960s and the
1970s in western Europe by J.J. Moreau, M. Schatzman, and?giiagiotopoulos
(resp. by the Dutch school of van Bockhoven and Leenaekksi, followed by sev-
eral groups of researchers in Montpellier, Munich, Eindirg\Marseille, Stockholm,
Lausanne, Lisbon, Grenoble, Zurich, etc. More recentlysnoooth dynamical sys-
tems (especially complementarity systems) emerged in 8%, 1d country in which,
paradoxically, complementarity theory and convex analgshich are central tools
for the study of nonsmooth mechanical and electrical systérave been developed
since a long time. Though nonsmooth mechanics and morea@gneonsmooth dy-
namical systems have long been studied by mechanical esrgifimpact mechanics
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Preface IX

can be traced back to ancient Greeks!) and applied mathaaret]j their study has
more recently attracted researchers of other scientifimmonities like systems and
control, robotics, physics of granular media, civil engineg, virtual reality, haptic
systems, image synthesis. We hope that this book will irseréa dissemination.

We warmly thank Claude Lemaréchal (INRIA Bipop) for his masgmments
and discussions on Chap. 12 and Mathieu Renouf (LAMCOS-CNIR&) whose
joint work with the first author contributed to Chap. 13. Wsaathank Professor
F. Pfeiffer (Munich), an ardent promoter of nonsmooth medte systems, for his
encouragements to us for writing this monograph, and Deilger (Springer Ver-
lag). This work originated from a set of draft notes for a CEAF-INRIA spring
school that occurred in Rocquencourt from May 29 to June 0862The authors
thank M. Jean (LMA-CNRS, Marseille, France) for his colledtn to this school
and part of the preliminary draft. We would finally like to niiem that part of this
work was made in the framework of the European project®0sIST 2001-37172,
from which the software platformiSoNOS emerged. In particular the works of
F. Pérignon and P. Denoyelle, expert engineers in the INRBXtproject Bipop,
are here acknowledged.

Montbonnot, Vincent Acary
August 2007 Bernard Brogliato
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1

Nonsmooth Dynamical Systems: Motivating Examples
and Basic Concepts

The aim of this introductory material is to show how one majtevthe dynamical
equations of several physical systems like simple eleadtdiccuits with nonsmooth
elements, and simple mechanical systems with unilateradtcaints on the position
and impacts, Coulomb friction. We start with circuits witteal diodes, then circuits
with ideal Zener diodes. Then a mechanical system with Gobléiction is ana-
lyzed, and the bouncing ball system is presented. Theseqgathgsamples illustrate
gradually how one may construct various mathematical égustsome of which
are equivalent (i.e., the same “initial” data produce thaeaolutions). In each case
we also derive the time-discretization of the continudosetdynamics, and gradu-
ally highlight the discrepancy from one system to the neftitfe presented tools
and algorithms that are briefly presented in this chaptérogiimore deeply studied
further in the book.

1.1 Electrical Circuits with Ideal Diodes

Though this book is mainly concerned with mechanical systestectrical circuits
will also be considered. The reasons are that on one handedécircuits with non-
smooth elements are an important class of physical systamtbe other hand their
dynamics can nicely be recast in the family of evolution peafs like differential
inclusions, variational inequalities, complementariggtems, and some piecewise
smooth systems. There is therefore a strong analogy betm@esmooth circuits
and nonsmooth mechanical systems. This similarity wiluraty exist also at the
level of numerical simulation, which is the main object asthook.

The objective of this section is to show that electrical wit® containing so-
called ideal diodes possess a dynamics which can be intecprevarious ways. It
can be written as a complementarity system, a differemigusion, an evolution
variational inequality, or a variable structure system.aivhese several formalisms
really mean will be made clear with simple examples.
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1.1.1 Mathematical Modeling Issues

Let us consider the four electrical circuits depicted in.Ri. The diodes are sup-
posed to be ideal, i.e., the characteristic between thewtift) and the voltage(t)
(see Fig. 1.1a for the notation) satisfies tmenplementaritgonditions:

0<i(t) Lv(t)>0. (1.1)

This set of conditions merely means that both the variahlesati(t) and voltage
v(t) have to remain nonnegative at all tinteend that they have to be orthogonal one
to each other. Sigt) can be positive only if(t) = 0, and vice versa. The complemen-
tarity condition (1.1) between the current across the dext its voltage certainly
represents the most natural way to define the diode chaisditelt is quite similar

Fig. 1.1a.The diode component

i(t)

v(t)

Fig. 1.1b.Characteristics of an ideal diode. A complementarity cthonli

it)

v(t)

Fig. 1.1c.The graph of the Shockley’s law
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to the relations between the contact force and the distagivecken the system and
an obstacle, in unilateral mechanicsee Sect. 1.4.

Naturally, other models can be considered for the diode corapt. The well-
known Shockley’s law, which is one of the numerous models ¢ha be found in
standard simulation software, can be defined as

i— isexp(—% _1), (1.2)

where the constard depends mainly on the temperature. This law is depicted in
Fig. 1.1c. This model may be considered to be more physieal the ideal one,
because the residual saturation currénis taken into account as a function of the
voltage across the diode. The same remark applies in mexfania compliant con-
tact model with respect to unilateral rigid contact modedvattheless, in the numer-
ical practice, the ideal model reveals to be better from theditative point of view
and also from the quantitative point of view. One of the reass that exchanging
the highly stiff nonlinear model as in (1.2) by a nonsmootHtivalued model (1.1)
leads to more robust numerical schemes. Moreover it is @aisyroduce a residual
current in the complementarity formalism as follows:

O0<i(t)+e& Lv(t)+&=0 (1.3)

for someg; > 0, & > 0. This results in a shift of the characteristic of Fig. 1.1b.

The relation in (1.1) will necessarily enter the dynamicsacfircuit contain-
ing ideal diodes. It is consequently crucial to clearly uistind its meaning. Let us
notice that the relation in (1.1) defines thmphof a multivalued functior{(or mul-
tifunction, or set-valued function), as it is clear thatsitsatisfied for any(t) > O if
v(t) = 0. This graph is depicted in Fig. 1.1b.

Using basic convex analysis (which in particular will allexw to accurately de-
fine what is meant by the gradient of a function that is noedéhtiable in the usual
way), a nice interpretation of the relation in (1.1) and efgtaph in Fig. 1.1b can be
obtained withindicator functions of convex sefbhe indicator of a sé is defined as

wn {0 1sk

This function is highly nonsmooth on the bounda#y of K, since it even possesses
an infinite jJump at such points! It is therefore nondiffeiabte atx € K. Neverthe-
less, ifK is a convex set thethik (-) is a convex function, and it isubdifferentiablén
the sense of convex analysis. Roughly speaking, one wikidensubgradientm-
stead of the usual gradient of a differentiable functiore $hbgradients of a convex
function are vectorg defining the directions “under” the graph of the function.riglo
precisely,y is a subgradient of a convex functidfr) atx if and only if it satisfies

1 At this stage the similarity between both remains at a purméb level. Indeed a more
physical analogy would lead us to consider that it is ratheglation between a velocity
and a force that corresponds to (1.1).
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fly)—f(x) =y (y—X) (1.5)

for all y. Normally the subdifferential is denoted a$(-), anddf(x) can be a set
(containing the subgradieng.

Let us now consider the particular case of the indicator tionoof K = RT =
{x € IR | x > 0}. Though this might be at first sight surprising, this funatis subd-
ifferentiable atx = 0. Its subdifferential is given by

O (X) = { go’o] :]f iig . (1.6)

Indeed one checks that wher> 0, thenye: (y) > y(y —x) for all y € R can be
satisfied if and only ify = 0. Now if x = 0, () (y) > yy is satisfied for ally € R
if and only if y < 0. One sees that at= 0 the subdifferential is a set, since it is a
complete half space. In fact the s#f: (x) is equal to the so-called normal cone
to R" at the pointx (Fig. 1.2). This can be generalized to convex $éts R", so
that the subdifferentialk (X) is the normal cone to the skt computed at the point
x € K and denoted biNk (). If the boundary oK is differentiable, this is simply a
half-line normal to the tangent planekoatx, and in the direction outward.

It becomes apparent that the graph of the subdifferentitiiefndicator ofR™
resembles a lot the corner law depicted in Fig. 1.1b. Acquale can now deduce
from (1.6) and (1.1) that

i) €~ (V1)) <= V(t) € =0 (i(t)) . (1.7)

The symmetry between these two inclusions is clear fromFEi: if one inverts the
multifunction (exchanggt) andv(t) in Fig. 1.1b), then one obtains exactly the same
graph. Actually this is a very particular case of dualityvae¢n two variables. In a
more general setting the graph inversion procedure doegieldtthe graph of the
same multifunction, but the graph of its conjugate. And iting once again allows

YR+ (X

Nk(0) O

Fig. 1.2.The indicator function oR" and the normal cone at= 0, Nk (0) = dyjp+ (0) = R~
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one to recover the original graph under some convexity aodgrness assumption:
this is the very basic principle of duality (Luenberger, 229

Let us focus now on théclusionsin (1.7). As a matter of fact, one may check
that the first one is equivalent to: for amft) > 0,

(i(t),u—v(t)) >0,vu=0 (1.8)
and to: for anyi(t) > 0,
(v(t),u—i(t))>0,Yu=0. (1.9)

The objects in (1.8) and (1.9) are calletariational Inequality (VI)

We therefore have three different ways of looking at the lidéade character-
istic: the complementarity relations in (1.1), the inctrsiin (1.7), and the varia-
tional inequality in (1.8). Our objective now is to show theten introduced into
the dynamics of an electrical circuit, these formalismsgige to various types of
dynamical systems as enumerated at the beginning of thisisec

Remark 1.1Another variational inequality can also be written: for gH) > O,
v(t) > 0,

Having attained this point, the reader might legitimatelgnder what is the use-
fulness of doing such an operation, and what has been gainesbiting (1.1) as
in (1.7) or as in (1.8). Let us answer a bit vaguely: severahfdisms are likely
to be useful for different tasks which occur in the coursehef $tudy of a dynam-
ical system (mathematical analysis, time-discretizafiod numerical simulation,
analysis for control, feedback control design, and so andhis introductory chap-
ter, we just ask the reader to trust us: all these formalismaiseful and are used.
We will see in the sequel that there exists a lot of other waysrite the comple-
mentary condition such as zeroes of special functions el points of a func-
tional. All these formulations will lead to specific ways ¢fidying and solving the
system.

1.1.2 Four Nonsmooth Electrical Circuits

In order to derive the dynamics of an electrical circuit weaht consider Kirchoff’s
laws as well as the constitutive relations of devices lik@sters, inductors, and ca-
pacitors (Chua et al., 1991). The constitutive relationhefideal diode is the com-
plementarity relation (1.1) while in the case of resistimgluctors, and capacitors
we have the classical linear relations between variabkesvibltages, currents, and
charges. Thus, taking into account those constitutiveiogla and using Kirchoff’s
laws it follows that the dynamical equations of the four aits depicted in Fig. 1.3
are given by
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X1(t) =Xo(t) — RiCX (t)— &Rt)

@ 4ol = a1V (L11)
o< Lwit) =204 Za) x>0
X1(t) = =xo(t) + A(t)

(b) X(t) = L—]éxl(t) (1.12)
0<A() L wit) = 2xa(t) +RA(M) >0
Xl(t) =X2(t)

(©) q %(t)= —?xz(t) — éxl(t) - iLt) (1.13)
0<A(t) Lw(t)=—x(t) >0

1

*1(t) = xe(t) — paxa(t)

@) 9 50) = —éxl(tHiLt) (1.14)
0<A(t) Lw(t)=x2(t) =0

where we considered the current through the inductors véhniablex,(t), and for
the variable (t) the charge on the capacitors as state variables.

Let us now make use of the above equivalent formalisms toessghe dynam-
icsin (1.11)—(1.14) in various ways. We will genericalljithe dynamicsin (1.11)—
(1.14) a Linear Complementarity System (LCS), a terminglotroduced in van der
Schaft & Schumacher (1996). An LCS therefore consists ofeali differential equa-
tion with state(x;, x2), an external signal (-) entering the differential equation, and
a set of complementarity conditions which relate a varialfl¢ andA (-). Sincew(:)
is itself a function of the state and possibly/of-), the complementarity conditions
play a crucial role in the dynamics. The varia@lenay be interpreted as a Lagrange
multiplier.
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. b . <
X2 X2
(a) (b)
L
YY)
of «
X2 X2
(©) (d)

Fig. 1.3.RLC circuits with an ideal diode

1.1.3 Continuous System (Ordinary Differential Equation)

Let us consider for instance the circudl) (vhose dynamics is in (1.11). Its comple-
mentarity conditions are given by
At 1
wit) = 205 2 0) %t

R RE (1.15)

O<A(t) Lw(t)>0

If we considerA (t) as the unknown of this problem, then the question we have to
answer to is: does it possess a solution, and if yes is thigisnlunique? Here we
must introduce a basic tool that is ubiquitous in complemetytsystems: the Linear
Complementarity Problem (LCP). An LCP is a problem whichsists of solving a

set of complementarity relations as

w=MA +q
(1.16)
0<AlLw>=0
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whereM is a constant matrix ang a constant vector, both of appropriate dimen-
sions. The inequalities have to be understood componesg-avid the relatiow L A
meansv'A = 0. A fundamental result on LCP (see Sect. 12.4) guaranteethiére
is a uniqueA that solves the LCP in (1.16) for amyif and only if M is a so-called
P-matrix (i.e., all its principal minors are positive). lanticular, positive definite
matrices are P-matrices.

Taking this into account, it is an easy task to see that thsegeuinique solution
A(t) to the LCP in (1.15) given by

At)=0 if %Xl(t) —X(t) >0, (1.17)
Alt) = —éxl(t) PR >0 if R—lcxl(t) %) <0.  (1.18)

Evidently we could have solved this LCP without resortingatay general re-
sult on existence and uniqueness of solutions. However, ieofien encounter
LCPs with several tenth or even hundreds of variables (he.,dimension oM
in (1.16) can be very large in many applications). In suckesalving the LCP
“with the hands” rapidly becomes intractable. @) in (1.11) considered as the
solution at timet of the LCP in (1.15) can take two values, and only two, for all
t>0.

Another way to arrive at the same result for circw@} {s to use once again the
equivalence between (1.1) and (1.7). It is straightforwtaeh to see that (1.15) is
equivalent to

1
A(t)+ Exl(t) —Rx(t) € =0We+ (A (1)) (1.19)
(we have multiplied the left-hand side IR®/and sinced Y+ (A (t)) is a coneRd Yeg:
(A(t)) = dPr-(A(1))). It is well known in convex analysis (see Appendix A) that
(1.19) is equivalent to

A(t) = Proj,: —éxl(t)Jrsz(t) ) (1.20)

where Prqj. is the projection oflR™. SinceR" is convex (1.20) possesses a unique
solution. Once again we arrive at the same conclusion. THacthat splits the
phase spacéxi,xp) in two parts corresponding to the “switching” of the LCP is
the Iine—%xl(t) + Rx(t) = 0. On one side of this lind (t) = 0, and on the other
sideA (t) = —&x.(t) + Rx(t) > 0. We may write (1.11) as
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[ S (t) = xo(t) — R—lcxl(t) o
) if _Exl(t) +Rx(t) <0,
1) = ——Xq(t
| Xe(t) = —e%alt) 1.21)
Sa(t) = 0
. i —2xa(t) +Rolt) >0,
_Xz(t) = —EXQ(t)

that is a piecewise linear system, or as
. . 1
X(t) — AX(t) = B Proj,. _Exl(t) +Rx(t)] , (1.22)

where the matrice& andB can be easily identified.

The fact that the projection operator in (1.20) is a Lipszigibntinuous single-
valued function (Goeleven et al., 2003a) shows that thetequ@..22) is an Ordinary
Differential Equation (ODE) with a Lipschitz-continuousator field? We therefore
conclude that this complementarity system possesses alglalmue and differen-
tiable solution, as a standard result on ODEs (Coddingtoregirison, 1955).

Exactly the same analysis can be done for the cir@itvhich is also an ODE.

1.1.4 Hints on the Numerical Simulation of Circuits (a) and )

The circuit @) can be simulated with any standard one-step and multisethads
like explicit or implicit (backward) Euler, mid-point, orapezoidal rules (Hairer
et al., 1993, Chap. I1.7), which apply to ordinary diffefi@htequations with a
Lipschitz right-hand side. Nevertheless, all these methbehave globally as a
method of order one as the right-hand side is not differbigiaverywhere (Hairer
et al., 1993; Calvo et al., 2003).

As an illustration, a simple trajectory of the circud) (s computed with an ex-
plicit Euler scheme and a standard Runge—Kutta of order drsehThe results are
depicted in Fig. 1.4. With the initial conditions, (0) = 1, x2(0) = —1, we observe
only one event or switch from one mode to the other. Beforaswiteh, the dynamics
is a linear oscillator irx; and after the switch, it corresponds to a exponential decay
N Xz.

We present in Fig. 1.5 a slightly more rich dynamics with tirewdt (b), which
corresponds to a half-wave rectifier. When the diode blde&strrentd =0,w > 0,
the dynamics of the circuit is a pure linear LC oscillatoxy When the constraint
is activeA > 0,w = 0 and the diode lets the positive current pass: the dynamics i
a damped linear oscillator ir;. The interest of the circuith) with respect to the
circuit () is that ifRis small other switches are possible in circii. (

2t is also known that the solutions of LCPs as in (1.16) witha P-matrix are Lipschitz-
continuous functions of] (Cottle et al., 1992, Sect. 7.2). So we could have deduced thi
result from (1.15) and the complementarity formalism of ¢freuit.
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Fig. 1.4. Simulation of the circuit&) with the initial conditionsx; (0) = 1, x2(0) = —1 and
R=10L=1C= Time steph=5x 103

(2m?’

The Question of the Order

Itis noteworthy that even in this simple case, where the feetof nonsmoothness is
rather low (said otherwise, the system is a gentle nonsnsystem), applying higher
order “time-stepping” methods which preserve the ofer2 is not straightforward.
By time-stepping methqave mean here a time-discretization method which does not
consider explicitly the possible times at which the solai®not differentiable in the
process of integration.

Let us now quote some ideas from Grine & Kloeden (2006) whodu@ately
explain the problem of applying standard higher order sa@sm principle known
numerical schemes for ordinary differential equationgsas Runge—Kutta schemes
can be applied to switching systems, changing the vectat &fter each switch
has occurred. However, in order to maintain the usual cdesisy order of these
schemes, the integration time steps need to be adjusted swikching times in such
a way that switching always occurs at the end of an integratiderval. This is
impractical in the case of fast switching, because in thisecan adjustment of the
scheme’s integration step size to the switching times wiead to very small time
steps causing an undesirably high computational [d&dich a method for the time
integration of nonsmooth systems, which consists in lagadind adjusting the time
step to the events will be called awent-driven methadf the location of the events
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Fig. 1.5. Simulation of the circuitlf) with the initial conditionsx;(0) = 1, x»(0) = 1 and
R=10,L=1,C= LZ Time steph=5x 103
(2m)

is sufficiently accurate, the global order of the integnatizethod can be retrieved. If
one is not interested in maintaining the order of the schemyel than one, however,
one may apply Runge—Kutta methods directly to an ODE as )1.22

There are three main conclusions to be retained from this:

1. When the instants of nondifferentiability are not knowmadvance, or when there
are too many such times, then applying an “event-driven’ho@twith order
larger than one may not be tractable.

2. We may add another drawback of event-driven methods taptmot be present in
the system we have just studied, but will frequently occuithsystems studied
in this book. Suppose that the events (or times of nondifibility, or switching
times) possess a finite accumulation point. Then an eveverdscheme will not
be able to go further than the accumulation, except at tloe @f continuing the
integration with some ad hoc, physically and mathematicatjustified trick.

3. Finally, there exist higher order standard numericaksads which continue to
perform well for some classes of nonsmooth systems, buegiribe of decreas-
ing the global order to one (see Sect. 9.2). However, thisajllow-order behav-
ior can be compensated by an adaptive time-step strategshvidkes benefits
from the high accuracy of the time-integration scheme onamphases.



12 1 Nonsmooth Dynamical Systems: Motivating Examples aamsi®Concepts

It is noteworthy that the events that will be encounterechim $ystems examined
throughout the book usually are not exogenous events listdtpendent, hence not
known in advance. Therefore, the choice between the evar@rdmethods or the
time-stepping methods depends strongly on the type of mygsteder study. We will
come back later on the difference between time-steppingeaadt-driven numeri-
cal schemes and their respective ranges of applicatiopge¢edly for mechanical
systems).

The Question of the Stability of Explicit Schemes

As we said earlier, the nonsmoothness of the right-handdsgéoys the order of
convergence of the standard time-stepping integratioeraeh Another aspect is the
stability, especially for explicit schemes. Most of theules on the stability of nu-
merical integration schemes are based on the assumptiarifizient regularity of
the right-hand side.

The question of the simulation of ODEs with discontinuitvei be discussed
in Sects. 7.2 and 9.1. Some numerical illustrations of tlesim terms of the order
of convergence and the stability of the methods are giveneict. 9.1 where the
dynamics of the circuitéa) and(b) are simulated.

1.1.5 Unilateral Differential Inclusion

Let us now turn our attention to circuit)( This time the complementarity relations
are given by
O0<A(t) Lw(t) =—x2(t)>0. (1.23)

Contrary to (1.15), it is not possible to calculdté&) directly from this set of rela-
tions. At first sight there is no LCP that can be constructaddged now we have a
zero matrixiv).

Let us, however, imagine that there is a time intefvat + ¢), € > 0, on which
the solutionxz(t) = 0 for allt € [t,T+ €). Then on[t,T + €) one has necessar-
ily —xo(t) > 0, otherwise the unilateral constraint,(t) > 0 would be violated.
Actually all the derivatives oky(-) are identically 0 ont, 7 + €). The interesting
question is: what happens on the rightef T+ € ? Is there one derivative of(-)
that becomes positive, so that the system starts to detacttire constraint, =0 at
t = 7+ €? Such a question is important, think for instance of nunaéstnulation:
one will need to implement a correct test to determine whetherot the system
keeps evolving on the constraint, or quits it. In fact the temsists of considering
the further complementarity condition

A(tT)
L

0KA(tT) L —%(t) = sz(ﬁ) + ixl(t) +

> .
3 c >0 (1.24)

which is an LCP to be solved only wheg(t) = 0. The fact that this LCP possesses
a solution (t) —x,(t) > 0 is a sufficient condition for the system to changenitsde
of evolution. We can solve fok (t) in (1.24) exactly as we did for (1.15). Both are
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LCPs with a unique solution. However, this time the resglitynamical system is
not quite the same, since we have been obliged to follow argifft path to get the
LCPin (1.24).

In order to better realize this big discrepancy, let us usg@yain the equiva-
lence between (1.1) and (1.7). We obtain théf) € —9 e (—x2(t)). Inserting this
inclusion in the dynamics (1.13) yields

X1(t) —x2(t) =0

(c) (1.25)

Xo(t) + ?Xz(t) + %Xl(t) S %dwm (—x2(1))
where it is implicitly assumed that;(0) < 0 so that the inequality constraint
X2(t) < 0 will be satisfied for alt > 0.

Passing from the LCP (1.23) to the LCP (1.24) and then frorh3(1to (1.25)
can be viewed similarly as the index-reduction operatiom Differential Algebraic
Equation (DAE). Indeed, the LCP o@ in (1.23) is replaced by the LCP oa in
(1.24).

Unilateral Differential Inclusion
More compactly, (1.25) can be rewritten as
—X(t) + AX(t) € BO W+ (W(t)) (1.26)

which we can call a Unilateral Differential Inclusion (UDihere the matriced and

B can be easily identified. The reason why we employ the woithteral should be
obvious. Itis noteworthy that the right-hand side of (1.B&enerally a set that is not
reduced to a single element, see (1.6). It is also notewdhtitythe complementarity
conditions are included in the UDI in (1.26). Obviously, tiiynamics in (1.26) is
not a variable structure or discontinuous vector field systéis something else.

Evolution Variational Inequality

Using a suitable change of coordinate- Rx R=R" > 0, it is possible to show

(Goeleven & Brogliato, 2004; Brogliato, 2004) that (1.2@ncalso be seen as an
Evolution Variational Inequality (EVI). This time we makeei of the equivalence
between (1.7) and (1.8) and of a property of electrical éisccomposed of resis-

tors, capacitors, and inductances (they are dissipafivedn (1.26) is equivalent to

the EVI

<%Z(t) - RAFrlz(t),v—z(t)> >0,YveK, aet>0
(1.27)

Z(t) €K t>0,
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whereK = {(z1,22)| — (01) R"1z> 0} and a.e. means almost everywhere (the so-
lution not being a priori differentiable everywhere). As @ansequence of how the
setK is constructed, havingt) € K is equivalent to havingy(t) < 0. In fact it can

be shown that the EVI in (1.27) possesses unique continubuas which are
right differentiable (Goeleven & Brogliato, 2004). It ismarkable at this stage to
notice that both (1.22) and (1.26) possess unique contgsolutions, however, the
solutions of the inclusion (1.26) are less regular.

1.1.6 Hints on the Numerical Simulation
of Circuits (c) and (d)

Let us now see how the differential inclusion (1.26) and tl&SLin (1.13) may
be time-discretized for numerical simulation purpose. liestart with the LCS in
(1.13).

A Direct Backward Euler Scheme

Mimicking the backward Euler discretization for ODESs, a ¢hdiscretization of
(2.13)is

X1 k41— X1k = X kp1

R h
X2 k+1— X2k = —hEX27k+1 - Exl,k+1 - E)\k+1 ) (1.28)

0< A1 L X010

wherex, is the value, at timay of a gridtg <t; < --- <ty=T, N < 40, h=
T—1o

X(+).

R 1 .
Let us denota(h) =1+ hE + hZE' Then we can rewrite (1.28) as

=t —ty_1, of a step functioN(-) that approximates the analytical solution

X1 k1 — X1k = N ki1

h h
Xeki1 = (a(h))~* {Xz,k— Xk~ [/\k+1} . (1.29)

0< Ar L —(a(h))‘l {XZ,k — %X]ﬂk} + (a(h))—lg)\kﬂ >0

Remark 1.2This time-stepping scheme is made of a discretization oftim¢inuous
dynamics (the first two lines of (1.29)) and of a LCP whose wwkmis Ay, 1. We
shall call later on the LCP resolution a one-step algorithiere the LCP is scalar
and can easily be solved by inspection. In higher dimenspasific solvers will be
necessary. This is the object of Part 111 of this book.
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. . h
Remark 1.3The LCP matrixM (here a scalar) is equal I(@(h))‘1E > 0 for all

h > 0, which tends to 0 als — 0. This is not very good in practice when very small
steps are chosen. To cope with this issue, let us choose aslkthewn the variable
Aks1 = hAgs1. We then solve the LCP

0< A1 L —(a(h)) ™t {XZ.k— Exl.k} + (a(h))_ltf\kﬂ >0. (1.30)

It is noteworthy that this does not change the result of tgerithm, because the set
of nonnegative reals is a cone. This LCP is easily solved:

h —
If Xox — EXl'k <0, then A 1=0. (1.32)
If x hx >0 then A1 =L{x hx >0 (1.32)
2.k LC 1k = k+1— 2.k LC 1k = VY. .

Inserting these values into (1.29) we get:

LC LC

h . h
(a(h))~* {Xz.k - _Xl.k} if Xok ——=X1k <0
X2 kt1 = . (1.33)

. h
0 if X — EXLK >0

A Discretization of the Differential Inclusion (1.26)

Let us now propose an implicit time-discretization of th&edential inclusion in
(1.26), as follows:

Xik+1— X1k = WX ki1

hR h 1 (1.34)
Xoji1 = Xok+ T Xeki 1+ Xk € Ea W (—X2 k41)
Notice that we can rewrite the second line of (1.34) as
_ h
Xokr1— (a(h)) 7t {XZ,k - Exl,k} € O (—X2k+1) (1.35)

where we have dropped the fac%)becauseﬂww (—X2k41) is @ cone.
Let us now use two properties from convex analysis.K et R" be a convex set,
and letx andy be vectors ofR". Then

X=Yy € —0k(X) < x = proxK;y], (1.36)

where “prox” means the closest elementkofto y in the Euclidean metric, i.e.,
X :argminzeK% || z=y|/? (see (A.8) for a generalization in a metit). Moreover
using the chain rule of Proposition A.3 one has
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OWr+ (—X) = —0We-(X) . (1.37)
Using (1.36) and (1.37) one deduces from (1.35) that
h
Xoki1— (a(h) {sz - EXLk} € =0 (X2kt1) (1.38)

so that the algorithm becomes

Xik+1— X1k = WX ki1

H . (1.39)
X2 k41 = Prox {R‘; (a(h))~* {sz - EkaH

We therefore have proved the following:

Proposition 1.4.The algorithm (1.28) is equivalent to the algorithm (1.3%hey
both allow one to advance from step k to stepX solving the proximationin (1.39).

In Figs. 1.6 and 1.7, simulation results of the presentedrdlgn are given.

1.1.6.1 Approximating the Measure of an Interval

It is worthy to come back on the trick presented in Remark a8 has been used to
calculate the solution of the LCP in (1.29), i.e., to calteia. 1 = hAx, 1 rather than
)\k+1-

1 -
08 Implicit Euler —— -
0.6 -
04 -
02 -
=-02 E
—-04 4
<06 -
08 | .
-1
1 -
0 Implicit Euler
L
-1 i
2 i
3 .
&4 4
x5 ]
-6 -
-7
40 = -
35+ Implicit euler ——
30 - -
25+ -
—20 7
15 B
~10} -
5 F -
0
0 1 2 3 4 5

Timet

Fig. 1.6. Simulation of the circuit € with the initial conditionsx; (0) = 1, x2(0) = 0 and

R=01L=1C= ﬁ.Timestepﬁ:lxlCﬁ3
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04 Implicit Euler ——

Impliclt Euler ——

Xa(t)
S or N w A
oI OIOT

Implicit Euler ——

0 1 2 3 4 5
Timet

Fig. 1.7. Simulation of the circuitq) with the initial conditionsx; (0) = 1, x2(0) = —1 and

R=10,L=1, C:(2—;>2.Timeste|ah:1x1(r~’3

First of all, it follows from (1.34) and (1.28) that the elemieof the set
OWer (—X2 k1 1) iS NOtAg, 1, but A, 1. Retrospectively, our “trick” therefore appears
not to be a trick, but a natural thing to do. Second, this méaeisthe primary vari-
ables which are used in the integration are (x@k, X2 k, Ak+1), BUt (X1, X2k, Akt-1)-
Suppose that the initial value for the variabig-) is negative. Then its right limit
(supposed at this stage of the study to exist) has to satig®y’) > 0. Thus a jump
occurs initially inx,(-), so that the multiplied is att = 0 a Dirac measuré:

A =—L((0") —%2(07))% (1.40)

The numerical scheme has to be able to approximate this me2disis not possible
numerically to achieve such a task, because this would megarozimating some
kind of infinitely large value over one integration intervelowever, what is quite
possible is to calculate the value of

dA(toa) = [ A (1.41)

[t by 1]

i.e., the measure of the interal, ty 1].

3 Throughout the book, right and left limits of a function-F(ill be denoted as
F(t*) or F(t), andF(t~) or F~(t), respectively.
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Outside atoms oA this is easy a4 is simply the Lebesgue measure. At atoms
of A this is again a bounded value. In fagt, 1 = hAc, 1 is an approximation of the
measure of the interval byAdi.e.,

Mert = hAgiq ~ / dA (1.42)
[ttt

for each time-step interval.

Such an algorithm is therefore guaranteed to computelmyndedsalues, even
if state jJumps occur. Such a situation is common when we densnechanical sys-
tems (see Sect. 1.4), dynamical complementarity systeegs@bap. 4), or higher
relative degree systems (see Chap. 5).

Remark 1.5A noticeable discrepancy between the equations (1.11)etittuit
(a) and the equations (1.13) of the circud) (s as follows. The complementarity
relations in (1.11) are such that for any initial valuexgf-) andx,(-), there always
exist a bounded value of the multiplidr (which is a function of time and of the
states) such that the integration proceeds. Such is noateefor (1.13), as pointed
out just above. Theelative degree betweenwv andA plays a significant role in the
dynamics (the relative degree is the number of times onesgedifferentiatew
in order to make\ appear explicitly: in (1.11) one hais= 0, but in (1.13) one has
r = 1). A comprehensible presentation of the notion of relatiegree is given in
Chap. 4.

1.1.6.2 The Necessity of an Implicit Discretization

Another reason why considering the discretization of thetuision in (1.25) is im-
portant is the following. Suppose one writes an explicibtipand side g (—X2 k)

in (1.34) instead of the implicit fornd? Y+ (—X2 k1) Then after few manipulations
and using (1.36) one obtains

h
a(h)xg 1+ [k —Xek € OYer (—X2k)

(1.43)

h
Xk = Prox|R"; —a(h)xz 11— [k

which is absurd.

The implicit way of discretizing the inclusion is thus thelpmvay that leads
to a sound algorithm. This will still be the case with more @&t inclusions with
right-hand sides of the formx (x) for some domaik C R".

Let us now start from the complementarity formalism (1.28th an explicit

form
0< A1 L =Xk >0. (1.44)
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Then we get the complementarity problem

h h h
0< Ay L — (1+ §L> X2 k41— Exl,kJrl - E/\k+1 >0. (1.45)

Clearly this complementarity problem cannot be used to ackvéhe algorithm from
stepk to stepk+ 1. This intrinsic implicit form of the discretization of thgfferential
Inclusion (DI) we work with here is not present in other typésnclusions, where
explicit discretizations are possible, see Chap. 9.

1.1.7 Calculation of the Equilibrium Points

It is expected that studying the equilibrium points of coempéntarity systems as in
(1.13) and (1.11) will lead either to a Complementarity Peab(CP) (like LCPs), or
inclusions (see (1.7)), or variational inequalities (sk&)). Let us point out briefly
the usefulness of the tools that have been introduced afmnve characterization
of the equilibria of the class of nonsmooth systems we arénpaith.

In general one cannot expect that even simple complemgnsgstems possess
a unique equilibrium. Consider for instance circaiify (1.13). It is not difficult to
see that the set of equilibria is given bg<, x5)| x; < 0,X; = 0}.

Let us consider now (1.26) and its equivalent (1.27). Thedfixeintsz* of the
EVIin (1.27) have to satisfy

(-RAR 'z, v—7) > 0¥V € K. (1.46)

This is a variational inequality, and the studies conceagmixistence and unique-
ness of solutions of a Variational Inequality (VI)are numes. We may for instance
use results in Yao (1994) which relate the set of solutior{4 @f6) to the monotonic-
ity of the operatox — —RAR x. In this case, monotonicity is equivalent to semi-
positive definiteness of RAR™! and strong monotonicity is equivalent to positive
definiteness of-RAR ! (Facchinei & Pang, 2003, p. 155). If the matrsRAR ! is
semi-positive definite, then Yao (1994, theorem 3.3) guaesithat the set of equi-
libria is nonempty, compact, and convex+4RAR ! is positive definite, then from
Yao (1994, theorem 3.5) there is a unique solution to (1.d@&)sequently a unique
equilibrium for the system (1.26).

The monotonicity is of course a sufficient condition onlyohdler to see this, let
us consider a linear complementarity system

X(t) = AX(t) + BA ()

. (1.47)
0<Cxt)+DLA(t)=0
The fixed points of this LCS are the solutions of the problem
0=Ax"+BA
(1.48)

0<Cx'+DLA=0



20 1 Nonsmooth Dynamical Systems: Motivating Examples aamsi®Concepts
If we assume thaA is invertible, then we can construct the following LCP
0<-CABA+DLA>0 (1.49)

which is not to be confused with the LCP in (1.24). If the matdiCA B is aP-
matrix then this LCP has a unique solutidhand we conclude that there is a unique
equilibrium state<* = —A~1BA*. Clearly there is no monotonicity argument in this
reasoning as the set Bfmatrices contains that of positive definite matrices,(ae.
P-matrix is not necessarily positive definite).

As an illustration we may consider once again the circuits@hand @). In the
case of (1.13) we have

0o 1

_ _cAlp — —

A= 1 R CA™"B=0,andD=0. (1.50)
LC L

There is an infinity of solutions for the LCP in (1.49), as gethout above. In the
case of (1.14) we have

1
-—1
RC 1 1
A= ,—CA™ B=§>O, andD =0. (1.51)
1
_E 0

There is a unique solution. We leave it to the reader to calewdxplicitly the solu-
tions (or the set of solutions). It is easily checked that ne of the two matrices A
is semi-positive definite and they therefore do not define atmme operators. The
sufficient criterion alluded to above is therefore not aqadie.

In the case of circuitd) with dynamicsin (1.11), the fixed points are given as the
solutions of a complementarity problem of the form

0= AX + BA
, (1.52)
0<CX'+DA LA >0
where
1y 1
A RC ] B Rlc=(X 1 dD= = 153
- 1 U= E ) _<R_C > 7an _ﬁ ( . )
-5 0 L

SinceA is invertible, with inverse

0 -1
At=(1 1
LC RC

one can express’ asx* = —A~!BA. ThereforeCx* +- DA = (D —CA™!B)A, and
the LCP is: 0< A L (D —CA1B)A > 0. The solution isk = 0 independently of
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the sign of the scalab — CA1B. This can also be seen from the inclusidre
—0d g+ ((D—CA1B)A), taking into account (1.6).

It is noteworthy that computing the fixed points of our citsunay be done
by solving LCPs. In dimension 1 or 2, this may be done by cheglkihe two or
four possible cases, respectively. In higher dimensiarg) snumerative procedures
become impossible, and specific algorithms for solving L@&Psther kinds of CPs)
have to be used. Such algorithms will be described laterinlPa

1.2 Electrical Circuits with Ideal Zener Diodes

1.2.1 The Zener Diode

Let us consider, now, a further electrical device: the idéaher diode whose
schematic symbol is depicted in Fig. 1.8a. A Zener diode igpa of diode that
permits current to flow in the forward direction like a normdéde, but also in the
reverse direction if the voltage is larger than the rateckdewn voltage known as
“Zener knee voltage” or “Zener voltage” denoted\py> 0. The ideal characteristic
between the currenft) and the voltage(t) can be seen in Fig. 1.8b.

Let us seek an analytical representation of the currentagelcharacteristic of
the ideal Zener diode. For this we are going to use some caavalysis tools and
make some manipulations: subdifferentiate, conjugaterinLet us see how this
works, with Fig. 1.9 as a guide.

The inversion consists of expressing) as a function of-i(t): this is done in
Fig. 1.9b. Computing the subderivative of the functfdn) of Fig. 1.9c, one gets the
multivalued mapping of Fig. 1.9b. Indeed we have

i(t)

-

v(t)

Fig. 1.8a.The Zener diode schematic symbol

ity A

Vz

Fig. 1.8b.The ideal characteristic of a Zener diode
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—i(t) (2

+o0 I
subdifferentiate : z
JE— V(t) <—\ !

0 Vz 0 VZ
CY (d)
invert conjugate
v(t) y=1( VX
Vz
subdifferentiate
S 0
0 .
—i(t) X

(b) (©

Fig. 1.9.The Zener diode characteristic

Voxif x>0
0 ifx<0
from which it follows that the subdifferential df(-) is
V, if x>0
0f(x) =4 [0,V if x=0 . (1.55)
0 ifx<O

Notice that the functiorf(-) is convex, proper, continuous, and that the graphs of
the multivalued mappings of Fig. 1.9a and b are maximal mmm&tVonotonicity
means that if you pick any two pointsi; and—i», on the abscissa of Fig. 1.9b, and
the corresponding; andv,, then it is always true that

(—=i1—(=i2),va—Vv2) >0 (1.56)
Similarly for Fig. 1.9amaximalitymeans that it is not possible to add any new branch

to the graphs of these mappings, without destroying the memmgity. This is indeed
the case for the graphs of Fig. 1.9a and b.
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Let us now introduce the notion of the conjugate of a convextion f(-) that is
defined as
f*(z2) = sup({x,2) — (X)) . (1.57)

XER

Let us calculate the conjugate of the functibf) above:

XZ—Voxif x>0 X(z—Vy) ifx=0
f*(z) = SURck = SURcr

XZ if x<0 XZ if x<O0
4o if 2>V,
0 ifzgV, +o0 if z< 0andz >V, (1.58)
0 ifz=0 0 ifo<z<V,
4o ifz< 0
=Y\, (2,

where we retrieve the indicator function that was already wieen we considered
the ideal diode, see Sect. 1.1.1.
We therefore deduce from Fig. 1.9 that

—i(t) € IYjpy, (V(1)), whereas/(t) € I f(—i(t)) . (1.59)

The functionf(-) = "UEE)NZ] (+) is called in convex analysis theipporfunction of the
set[0,V;]. Itis known that the support function and the indicator fimtof a convex
set are conjugate to one another.

We saw earlier that the subderivative of the indicator fiomcbf a convex set
is also the normal cone to this convex set. Here we obtaindia, (v(t)) is the
normal coneNjpy,j (V(t)), thatisSR™ whenv(t) = 0 andR* whenv(t) = V;. Itis the
singleton{0} when 0< v(t) < V.

1.2.2 The Dynamics of a Simple Circuit
Differential Inclusions and Filippov’'s Systems

Now that these calculations have been led, let us considafythamics of the circuit
in Fig. 1.3c, where we replace the ideal diode by an ideal Zéiogle. Choosing the
same state variablez(is the capacitor chargg; is the current through the circuit),
we obtain:

Xa(t) = xa(t)
, (1.60)

Solt) + relt) + exalt) = vt

wherev(-) is the voltage of the Zener diode. We saw thét) € o f(—i(t)), thus
we get
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X (t) —%2(t) =0

R : (1.61)

Xo(t) + EXQ(t) + %Xl(t) S %(9 f(—x2(t))

which is a differential inclusion.

Compare the inclusions in (1.25) and in (1.61). They lookeygimilar, how-
ever, the sets in their right-hand sides are quite diffedexieed the set in the right-
hand side of (1.25) is unbounded, whereas the set in the igyind side of (1.61) is
bounded, as it is included ii®,V;]. More precisely, the set-valued mappidd(-)
is nonempty, compact, convex, upper semi-continuous, atigfies a linear growth
condition: for allv € d f (x) there exists constanksanda such that| v || < k|| x || +a.

The differential inclusion (1.61) possesses an absolgtalyinuous solution, and
we may even assert here that this solution is unique for esttdl icondition, because
in addition the considered set-valued mapping is maximatotane, see Lemma
2.13, Theorem 2.41. This is also sometimes called a FilijgEystem or a Filippov's
DI, associated with the switching surfaEe= {x € R? | x, = 0}. See Sect. 2.1 for
a precise definition of Filippov’s systems. Simple caldolas yield that the vector
field in the neighborhood df is as depicted in Fig. 1.10. The surfatés crossed
transversally by the trajectories when(t) < 0 andxy(t) > C\,. It is an attracting
surface wherx; (t) € [0,V;] (wheret means the time when the trajectory attal)s
According to Filippov’s definition of the solutior, is a sliding surface in the latter
case, which means thai(t) = 0 after the trajectory has reached this portiorzof
Notice that we may rewrite the second line in (1.61) as

%o(t) + ?xz(t) + %xl(t) =A(t), A(t) e %ﬁf(—xz(t)) . (1.62)
X2
> t
0 c\/? X1

sliding motion'

Fig. 1.10.The vector field on the switching surfaze
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Despite passing from (1.61) to (1.62) looks like wastedréfibomeans that the in-
clusionin (1.61) is equivalent to integrate its left-hamtedy looking for an element
of the set in its right-hand side, at each time instant. This fact the case fall the

differential inclusions that we shall deal with in this bodk other words the inte-
gration proceeds alorgwith an elemenf € df(0) such that\ (t) = Xlét), wheret
is the “entry” time of the trajectory il (notice that as long as = 0 thenx; remains
constant).

Remark 1.6The fact that the switching surfaceis attracting inx; (t) € [0,V], is
intimately linked with the maximal monotonicity of the sattued mapping f(-).
This mapping is sometimes callededay function in the systems and control com-

munity (Fig. 1.11).

A First Complementarity System Formulation

Let us now seek a complementarity formulation of the mulitied mappin@ f(-) =
oy, () whose graphiis in Fig. 1.9a. Let us introduce two slack véggfor mul-

tipliérs))\l andA,, and the set of conditions:

0< Ag(t) L —i(t)+i(t) >0

0< Ao(t) Li(t)+i(t)| =0

(1.63)
A1(t) +Az(t) =
v(t) = Az(t)
-~ =N \\\\\\\\
A \\\\\\\\s
SRS SRR\
e IR RN
/////0-2*\\»HHH
AT TR e e
\\\S\\\\¥‘<;%/
\ \ \OSE AU N NN P
\ \_o\\\\\\ ~ < o«
\\\\ \\\\\\\\\e

Fig. 1.11.Example of the vector field on the switching surfacer R=C=L =V, =1
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Let us check by inspection that indeed (1.63) representmtqaping of Fig. 1.9a.
If —i(t) >0, then—i(t) +]i(t)| > 0, soA1(t) = 0 andAx(t) =V, = v(t) (andi(t) +
[i(t)] = 0). If —i(t) < 0 theni(t)+i(t)] > 0, soAy(t) =0, andA¢(t) =V, (and
—i(t) +]i(t)] = 0) andv(t) = A(t) = 0. Now if i(t) = O, then one easily calculates
that 0< Aq(t) < V5, 0< Ax(t) < Vo Thus O v(t) < Vs

Thanks to the complementary formulation (1.63), the inclug1.61) can be
formulated as a Dynamical (or Differential) ComplemeritaBystem (DCS)

X1 (t) = %2(t)

Xo(t) + ?xz(t) + L—lcxl(t) = %v(t)

0< A1(t) L —xa(t) + [x2(t)| >0 (1.64)

0<A2(t) L %o(t) +[%e(t)[ >0

M)+ Aalt) = Vo

v(t) = Aalt)

This DCS is not an LCS due to the presence of the absolute fahation in the
complementarity condition and the two last algebraic équnat We notice that the
variablesA;(t) andAx(t) can be eliminated from (1.64) using the last two equalities,
leading to another formulation of the DCS:

Xl(t) = Xz(t)

Xg(t) + ?Xz(t) J=
(1.65)

0<Vo—v(t) L —xo(t) + [x2(t)] =0

0<Vv(t) L Xo(t) + [x2(t)| = O
which is neither an LCS.
A Mixed Linear Complementarity Formulation

It is possible from (1.63) to obtain a so-called Mixed Lin€amplementarity Sys-
tem (MLCS) which is a generalization of an LCS with an additibsystem of linear
equations. The goal is to obtain after discretization aated Mixed Linear Comple-
mentarity Problem (MLCP) which is a generalization of an L@ith an additional
system of linear equations, such that

Au+Cw+a=0
(1.66)
O<w.lDu+Bw+d>0
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To obtain an MLCS formulation, let us introduce the posifpgt and the negative
part of the curreni(t) as

(1) = 50+ () = max0,i(t) >0, (1.67)
(1) = 50~ ()] = min0,i(t)) <0. (1.68)
The system (1.63) can be rewritten equivalently as
0< A(t) Lit(t)—i(t)=0
0< A(t) Lit(t) =0
it)y=i"(t)+it(t) : (1.69)

A1(t) +A2(t) =V,

v(t) = Aa(t)

where the absolute value has disappeared, but a linearieouets been added.
Substitution of two of the last three equations into the clemgntarity conditions
leads to an intermediate complementarity formulation efrélay function as

0< Au(t) Li*(t) —~i(t) >0
0< V() Lit(t)=0 (1.70)

A1(t) +v(t) =V,

oras

{ 0<Vz—v(t) Lit(t)—i(t)=0
(1.71)

0<V(t) Lit(t) >0

The linear dynamical system (1.60) together with one of #fermulations (1.69),
(1.70), or (1.71) leads to an MLCS formulation. Neverthglese complete substi-
tution of the equation into the complementarity conditioelgs a DCS

Xl(t) = Xz(t)

R 1 1
Yo(t) + xe(t) + axa(t) = V() 7 (1.72)

0<Vz—V(t) Lxg(t) —x(t) =0

O<v(t) Lxg(t) =0

which is neither an LCS nor an MLCS.



28 1 Nonsmooth Dynamical Systems: Motivating Examples aamsi®Concepts

A Linear Complementarity Formulation

Due to the simplicity of the equations involved in the MLC$rfwulation (1.71), itis
possible to find an LCS formulation of the dynamics. Indekd following system

Xi(t) =% (t)
Xg(t) + ?Xz(t) +—

x5 (1) = Xa(t) — %5 (1) (1.73)

x5 (t) A2(t)
o< (2 s - >0
(M(U) (_xz (t)
can be recast into the following LCS form

X(t) = AX(t) + BA(t)

w(t) =Cx(t) + DA(t)+g (1.74)

o<w(t)LA(t)>0

0o 1
00 01 01 0
1 _B]’B:[10}’02{00}’[):[—10}’9:[vz]' (1.75)
IC L

The reformulation appears to be a special case for more gleredormulations of
relay systems or two-dimensional friction problems intoS.E&or more details, we
refer to Pfeiffer & Glocker (1996) and to Sect. 9.3.3. In therexgeneral framework
of ODE with discontinuous right-hand side, an LCS reforrtiolacan be found in
Chap. 7.

with

A:

1.2.3 Numerical Simulation by Means of Time-Stepping Schees

In view of this preliminary material, we may consider now tirae-discretization
of our system. Clearly our objective here is still to intrgduthe topic, and the
reader should not expect an exhaustive description of theenigal simulation of the
system.

1.2.3.1 Explicit Time-Stepping Schemes Based on ODE with &iontinuities
Formulations

A forward Euler scheme may be applied on an ODE with discaiittas of the form,
x= f(x,t), where the right-hand side may possess discontinuities3set. 2.8). For
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the right-hand side of the circuit with the Zener diode, atshed model may be

given by

L L

1 « ] for —xo <0
Lc™*
for —xo =0
X2
1 for —xo > 0.
EX]_—VZ 2

(1.76a)

(1.76b)

(1.76C)

The simulation for this choice of the right-hand side issthated in Fig. 1.12. We
can observe that some “chattering” effects due to the fatthe sliding mode given
by (1.76b) cannot be reached due to the numerical approximax,. This artifact
results in spurious oscillations of the diode voltafle = A (t) and the diode current
X2(t) = w(t) as we can observe on the zoom in Fig. 1.13.
One way to circumvent the spurious oscillations is to introgla “sliding band”,
i.e., an interval where the variable is small in order to approximate the sliding
mode. This interval can be for instance chosetxgs< n such that the new right-

hand side is given by

—Explici

Euler —— 4

xa(t)

O00S oooo

Explic

Euler —— |

Xa(t)

SANONDMD ORNWAO & ANONA O OOMONRDR

o
[N
N

Fig. 1.12.Simulation of the RLC circuit with a Zener diode with the ialtconditionsx; (0) =

1,%(0)=1andR=01,L=1C= (2—,11)2

defined by (1.76). Time stdp=5x 103

Timet

. Explicit Euler scheme with the right-hand side
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Fig. 1.13.Zoom on the “chattering” behavior simulation of the RLC citavith a Zener diode

with the initial conditions¢;(0) = 1,x2(0) =1 andR=0.1,L=1,C = (2—711)2 Explicit Euler

scheme with the right-hand side defined by (1.76). Time btefb x 103

X
—Bx _Zix for —xo < —n (1.77a)
L™ c™
X2
f(x,t) = —sz] for [xo| < n (1.77b)
L
X2
__EQXZ_ %Xl—vz for —x2 > n (1.77¢)

Simulation results depicted in the Figs. 1.14 and 1.15 shaivthe spurious oscilla-
tions have been cancelled.

The switched models (1.76) and (1.77) are incomplete motfelsore general
situations they may fail due the lack of conditions for thensition from the sliding
mode to the other modes. Clearly, the value of the dual vierdaft) = v(t) has to be
checked to know. if the system stays in the sliding mode. Wesegi in Sect. 9.3.3
that all these conditional statements can be in numerogsaaplaced by an LCP
formulation.

It is noteworthy that the previous numerical trick is not ariversal solution for
the problem of chattering. Indeed, the switched model giwethe right-hand side
(1.77) allows the solution to stay near the boundary of tiding) band. The new
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Fig. 1.14.Simulation of the RLC circuit with a Zener diode with the ialtconditionsx; (0) =
1,x(0)=1andR=0.1,L=1C= (2—711)2 Euler and four order Runge—Kutta explicit scheme

with the right-hand side defined by (1.77). Time step 5x 103

model is still a discontinuous system and therefore someenigal instabilities of
the ODE solver can appear. More smart approaches for theebbthe right-hand
side in the sliding band can be found in Karnopp (1985), Leired. (1998), Leine &
Nijmeijer (2004) and will be described in Sect. 9.3.2.

The fact that we are able to express the Filippov’s DI as aivatpnt model of
ODE with a switched right-hand side allows one to use anyraiplicit schemes
such as explicit Runge—Kutta methods. In Figs. 1.15 and, ttk6results of the
simulation with the right-hand side (1.76) and (1.77) arpicted. The conclusions
are the same as above. One notices also that two differehbaeprovide different
results (see Figs. 1.14 and 1.15). We will discuss in Sezth@. question of the order
and the stability of such a higher order method for Filipjsdvls.

1.2.3.2 Explicit Discretization of the Differential Inclusion
and the Complementarity Systems

Explicit Discretization of the Differential Inclusion @1)

Consider the forward Euler method
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Fig. 1.15.Simulation of the RLC circuit with a Zener diode with the ialtconditionsx; (0) =
1,x(0)=1andR=0.1,L=1C= (2—711)2 Euler and four order Runge—Kutta explicit scheme

with the right-hand side defined by (1.77). Time step 5x 103

X1 k41— X1k = hXok
(1.78)

X x+th +hx ehﬁf(x)
2kl Xok T T Xek B EXLKE 2k) 5

wherex, is the value, at timay of a gridtg <t; < --- <ty=T, N < 40, h=
T—1o

N
X(+).
Compare with the time-discretization of the inclusion 8).that is proposed in
Sect. 1.1.5. This time considering an implicit scheme ismandatory (this may
improve the overall quality of the numerical integratiopesially from the stability
point of view, but is not a consequence of the dynamics contawhat happens
with (1.25)). One of the major discrepancies with the cir¢Li25) is that the values
of X, are no longer constrained to stay in a set by the inclusioi8j1.

=ty —t_1, of a step functio(-) that approximates the analytical solution

Explicit Discretization of the Complementarity System6%1L

Let us investigate how the complementarity system (1.6%)lmeadiscretized. We get



1.2 Electrical Circuits with Ideal Zener Diodes 33

12

éé RK4 — 1
02
. g
= Q.
X:g:g
s

4 RK4 —— |
2
—0
.2
i
6

5 KA ——

4
3
<
S 1
0
6

4 RK4 —— |
2
—~ 0
= 2
T 4
6

0 1 2 3 4 5

Timet

Fig. 1.16.Simulation of the RLC circuit with a Zener diode with the ialtconditionsx; (0) =
1,x(0)=1andR=0.1,L=1C= (2—711)2 Four order Runge—Kutta explicit scheme with the

right-hand side defined by (1.76). Time step: 5 x 103

X1 k1 — XLk = hXok

X Xo k + Rx + —X h)\
2k+1— X2kt =Xkt =X k = A2k
L LC L (1.79)

0<Vz— Ao L —Xok+ [Xok| >0

0< Aokl Xok+ XK =0

One computes that i > 0 thenA; = 0, whilexyc < 0 impliesA, = V,. More-
overxyx = 0 implies thatA, x € [0,V,]. We conclude that the two schemes in (1.78)
and (1.79) are the same.

However, the complementarity formalism does not bring adyaatage over
the inclusion formalism, as it does not yield neither an LGP an MLCP, even
with the reformulation proposed in the preceding sectidre main reason for that
is not the presence of absolute values in the complementarinalism which can
be avoided by adding an equality, but the fact that has to be complementary to
the positive part ok which is not an unknown at the beginning of the step.
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For instance, if we choose the MLCS formulation given by thmainical
system (1.60) and the formulation (1.70), we get the follmyvcomplementarity
problem

X1 k1 — X1k = hXok

hR h h
Xo ki1~ Xok+ —Xok+ =X k= E)\Zk

L LC

0< )\l7kJ—sz_X27k> 0 . (1.80)

0< A2k L x5, >0

Ark+A2k =V,

In such a “fake” complementarity problem, one has to perftimen procedure de-

scribed in the Remark 1.7, which implies to choose a threshiolthe value ok, k.
To conclude this part, whatever the mathematical formaligmch is used to

formulate the dynamics, explicit discretizations leadlgmathms without any sense.

Remark 1.70ne has to choose a value b5 in the interval[0,V,] whenxp =

0. More concretely when implementing the algorithm on a cotep one has to
choose a thresholgl > 0 such thak;  is considered to be null whery k| < . One
possibility is to choose the Filippov’s solution that makies trajectory slide on the
surfaceZ = {x € IR? | xp = 0}. If X« ¢ [0,CV;] we have seen that the trajectories
cross transversally. Thus the chosen value 85 y is not important. If; x € [0,CV;]
one may simply choost, x = “&* or Ay = ~ Exok + Rk + & to keepxa1 in

the required neighborhood &t With the solution, we have also to check the value
of the dual variable/(t) = A,(t) to know when the application of this rule has to be
stopped.

1.2.3.3 An Implicit Time-Stepping Scheme
Implicit Discretization of the Differential Inclusion @1)
Let us try the following implicit schenfe

XLk+1— X1k = "X ki1

X X +th + h X € hdf( X2 k1) oo
2,k+1 2.k L 2,k+1 LC 1.k+1 L 2k+1) -
After some manipulations this may be rewritten as
X1kl — X1k = X kp1
(1.82)

h h
e al) | e € Lof(i).

4 The scheme chosen here is fully implicit for the sake of siaityl
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hR h?\
wherea(h)_<1+T+E> .

Denoting
h
b= a(h) [Exl,k - X2,k]

the second line of (1.82) may be rewritten as

h
Xokt1+beah) It (—Xeke1) - (1.83)

It is this inclusion that we are going to examine now. Thid aflow us to illustrate
graphically why the monotonicity is a crucial property. ligFL.17 the graph of the
linear function

Do ={(Aaks1.%ek1) ERP | Agksr=Xos1+b}

is depicted for three values bf together with the graph of the set-valued function,

h
¢ = {()‘27k+1,X2,k+1) ER*| Myi1€ a(h)Eaf(—szJrl)} :

It is apparent that for any value of there is always a single intersection between
the two graphs. One concludes that the generalized equdti®88) with unknown
X2 ki1 has a unique solution, which allows one to advance the dkgorfrom k
tok+ 1.

If there is an exogenous inputt) that acts on the system so that the dynamics is
changed to

A2ki1

X2 k+1

Dy

Dy

‘sliding motion

Fig. 1.17.Implicit scheme: the maximal monotone case
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Xz(t)-f—EXz(t)-i-%Xl(t)-i-&Lt) S %df(—X2(t)) (1.84)

: . u : .
then the variableis changed tb+a(h) . Varyinguy 1 corresponds to a horizontal
translations of the straight lines in Fig. 1.17.

Remark 1.8 (A nonmonotone examp&)ppose now that the dynamics is

h
Xok+1+bE —a(h)Ed f(—Xakr1) - (1.85)

We know this is not possible with the circuit we are studyiRgr the sake of the
reasoning we are leading let us imagine this is the case. \WMeeget the situation
depicted in Fig. 1.18. There exist valuesbdbr which the generalized equation has
two or three solutions. Uniqueness is lost.

Remark 1.9 (Comparison with the procedure in Remark 1CHming back to
Fig. 1.17, one sees that the valuesdhat yield a sliding motion along the surface
>, correspond to all the values such that the graph of therifugection intersects
the vertical segment of the graph of the multifunction. Canily to what happens
with the explicit scheme where a threshold has to be intredifdetecting” the slid-
ing motion is now the result of a resolution of the intersaciproblem. No artificial
threshold is needed due to the fact that we have to verifyntlasion of a value into
a set of nonempty interior.

Implicit Discretization of the Complementarity Systems

Let us choose one of the LCS formulations described in theique section given
by the dynamics (1.73). An implicit time-discretizatiorgisen by

A2kl

X2 kt1

7 T T

Fig. 1.18.Implicit scheme: the nonmonotone case
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X1 k41— X1k = X kst
hR h
Xoke1— Xok+ Xk 1t [EXIkL = E)\Z,k-s-l

+ _ —
X k1 = X2 kt1 T X i1 . (1.86)

Atki1=Vz— Aok

+

X A

0< ()\2,1(-&-1) 1 <_§,k+1 ) >0
1k+1 2,k+1

Using the previous notations fafh) andb, we get the following system

Xik+1— X1k = N kr1
h
Xok+1+b=a(h) E)‘Z,k+1

+ _ —
X k1 = X2k+1 = Xo ki1 : (1.87)

Apr1=Vz— Aok

0< (szﬂ) 1 ( A2ki1 ) >0
Akl Xkt

The value ofA, 1 is obtained at each time step by the following LCP

a(h)h 1 b]
W= L Z+ Vv

-1.0 z (1.88)
oO<wlz>0

with w =[x}, ;Arkea]” andz= [Azji1 %5, 4]T- We see in this case that the
interest of the LCS formulation is to open the door to LCP smhinstead of having
to check the modes.

Simulation Results

The simulation results are presented in Fig. 1.19. We caicenthiat the spurious
oscillations in Figs. 1.12, 1.13 and 1.16 have disappeavedtad the fact that the
sliding is correctly modeled with the implicit approach.

1.2.3.4 Convergence Properties

Consider the explicit Euler scheme in (1.78). Then therstex subsequence of the
sequencéx(-)}, that converges uniformly as— +co to some (the) solution of the



38 1 Nonsmooth Dynamical Systems: Motivating Examples aamsi®Concepts

Evnli [=Y]
CAPNCIUCUIC

Xq(t)

L -

. Xa(t)
UIRONFFOFENWAOT O F N W A 01 OUTRODINIRO-NWAUT CORNONAOO0N)

T

X

C

F

)

m

c

@

11

= H =11
EXplcitediel ——

o
|—\
N

3 4 5
Timet

Fig. 1.19. Simulation of the RLC circuit with a Zener diode with the ialt conditions

x1(0) = Lxp(0) =1 andR=0.1,L =1C = (2;)2.

Implicit Euler scheme. Time step

h=5x103

inclusion in (1.78). This is a consequence of Theorem 9.5nmAlar result applies
to the implicit scheme in (1.81), considered as a partiotdae of a linear multistep
algorithm.

More details will be given in Chap. 9 on one-step and mulpigise-stepping
methods for differential inclusion with absolutely contous solutions such as
Filippov’s DI. When uniqueness of solutions holds, more bansaid on the con-
vergence of the scheme, see Theorems 9.8, 9.9 and 9.11.

1.2.4 Numerical Simulation by Means of Event-Driven Schense

The Filippov’s DI (1.61) may also be simulated by meangwént-driven schemes
We recall that the event-driven approach is based on a titegration of an ODE or
a DAE between two nonsmoo#vents At events, if the evolution of the system is
nonsmooth, then a reinitialization is applied. From the atigal point of view, the
time integration on smooth phases is performed by any stdratae-step or multi-
step ODE or DAE solvers. This approach needs an accuratédocd the events in
time which is based on some root-finding procedure.
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In order to illustrate a little bit more what can be an ever:ah approach for
a Filippov’s differential inclusion with an exogenous sigu(t), we introduce the
notion of modeswhere the system evolves smoothly. Three modes can be define
follows,

mode” %a(t) + xa(t) + 1)+ 1Y g Pee s
T Tot L
x1(t)=0
mode 0 : if Xo € %, (1.89)
*2(t)=0
Xa(t) = xo(t)
modet %a(t) + Pat) + e (1) + U _y; Pec s
T Tot L7
respectively associated with the three sets,
J_(t)={ieR|i<0}

FL(t)={ieR]i>0}

In each mode, the dynamical system is represented by an GidEah be integrated
by any ODE solver. The transition between two modes is aetilzevhen the sign of
a guard function changes, i.e., when an event is detected.

For the modes,~” and “+”, it suffices to check that the sign ofis changing
to detect an event. A naive approach is to check when thebtaria is crossing a
thresholde > 0 sufficiently small. This naive approach may lead to nunatiou-
bles, such as chattering due to the possible drift from thestraintx, = 0 in the
mode when we integrate(t) = 0. To avoid this artifact, it is better to check the
guard functions(t) andV; — v, which are dual to the currer andx; in the com-
plementarity formalism, see (1.71) wixa = i. We will see in Chap. 7 that consider-
ing a complementarity formulation, or more generally, arfatation that exhibits a
duality leads to powerful event-driven schemes.

Once the event is detected, a mode transition has to be pextoio provide the
time integrator with the new next mode. The operation is magd@specting the
sign of X(t) at the event by solving for instance the inclusion. We wit séso in
Chap. 7 that a good manner to perform this task is to relay theentransition onto
a CP resolution.
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1.2.5 Conclusions

The message of Sects. 1.2.3 and 1.2.4 is the following: @kgthemes, when ap-
plied to Filippov’s systems like (1.60), yield poor resuf@ne should prefer implicit
schemes. More details on the properties of various meth@pravided in Chap.
9. The picture is similar for event-driven algorithms, wé@mne has to be careful
with the choice of the variable to check mode transitionsdMtransitions should
preferably be steered by the multipliérrather than by the statg-). In mechan-
ics with Coulomb friction, this is equivalent to decide betm sticking and sliding,
watching whether or not the contact force lies strictly dresthe friction cone or on
its boundary. For Filippov’s inclusion Stewart’s methodiescribed in Sect. 7.1.2.

1.3 Mechanical Systems with Coulomb Friction

In this section we treat the case of a one-degree-of-freedeamanical system sub-
ject to Coulomb friction with a bilateral constraint and anstant normal force, as
depicted in Fig. 1.20. Its dynamics is given by

M) + () € —mau sgn(t)) . (1.91)

whereq(-) is the position of the mas${-) is some force acting on the magss the
gravity, u > 0 is the friction coefficient. The sign multifunction is defthas

1 ifx>0
sgnx) =< [—1,1 ifx=0 . (1.92)
-1 ifx<0

In view of the foregoing developments one deduces that
sgn(x) =9|x|, (1.93)

i.e., the subdifferential of the absolute value functidis basy to see that this system
is quite similar to the circuit with an ideal Zener diode ing1). It can also be
expressed using a complementarity formalism as follows:

q

Fig. 1.20.A one-degree-of-freedom mechanical system with Coulonetidn
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0< AL —x+I|x>0

0<A2 Lx+[x[>0

1.94
AM+Ar=2 ( )

sgrix) = 212

which is quite similar to the set of relations in (1.63). Ceqsently what has been
done for the Zener diode can be redone for such a simple systdgmCoulomb
friction, which is a Filippov’s DI.

Similarly to the Zener circuit, the one-degree-of-freedorachanical system
with Coulomb friction can be formulated as an LCS, introahgcthe positive and
the negative parts of the velocity:

vH(t) =v(t) —v (1) . (1.95)

Ma(t) = 2mgp — Aot
A1(t) —Vv (1)
o< (3 + (G )0

1.4 Mechanical Systems with Impacts: The Bouncing Ball
Paradigm

In this section some new notions are used, which are all dkfater in the book.

1.4.1 The Dynamics

Let us write down the dynamics of a ball with masssubjected to gravity and to a
unilateral constraint on its position, depicted in Fig.1t.2

md(t) 4 f(t) = —mg+A

0o<qt)LA>=0
(1.96)
q(t*) = —eq(t™) if q(t) = 0andq(t ) <0

g(0) =00 >0,q(0") =qo
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0

Fig. 1.21.The one-dimensional bouncing ball

The variableA is a Lagrange multiplier that represents the contact fatdeas to
remain nonnegative. The complementarity condition betvgge andA implies that
whenq(t) > 0thenA =0, whileA > 0 is possible only ifj(t) = 0. Thisis a particular
contact model which excludes effects like magnetism (namzentact force with
q(t) > 0) or gluing (negative contact force). This relationshipviEeng andA is a
set-valued function whose graph is as in Fig. 1.1b. The thigdedient in (1.96) is
an impact law, which reinitializes the velocity when theedcdory tends to violate
the inequality constraint.

Let us analyze the dynamics (1.96) on phases of smooth mat&an either
q(t) > 0orq(t) =0forallt € [a,b], for some 0< a < b. As seen above the comple-
mentarity condition implies that(t) = 0 in the first case. In the second case it allows
for A(t) > 0. Let us investigate how the multiplier may be calculatedpl®ying a
reasoning similar to the one in Sect. 1.1.5 to get the LCP.24(1Onla,b) one has
g(t) = 0 andq(t) = 0. So a necessary condition for the inequality constraihtmo
be violated in a right neighborhood bfis thatdq{t*) > 0 on [a, b].

Actually as shown by Glocker (2001, Chap. 7) it is possibleeformulate the
contact force law in (1.96), i.e.,

A (t) € 3 ((t) < 0<A() Lq(t) >0 (1.97)
(compare with (1.1), (1.6), (1.7)) at the acceleration lessfollows:
0 ifq(t)>0
0 ifg(t)=0andq(t") >0

“A(th) € . (1.98)
0 ifgt)=0ifg{t")=0andq(t") >0

[—,0]if q(t)=0if q(t*) =0andq{t™) =0
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All the functions are expressed as their right limits, sigisen the state of the system
at some instant of time, one is interested to know what hegpipethe very near future
of this time.
Let us now focus on the calculation dft™*) in the latter case. Using the dynam-
ics one has
mG(t™) + f(tT) = —mg+A(t"). (1.99)

From the third and fourth lines of (1.98) we deduce that

0<G(tt) LA(tY) >0ifq(t)=0 andqit™) =0
{ (1.100)

AtT)=0 if (a(t),q(t")) >0

where the lexicographical inequality means that the first z&ro element has to be
positive. Inserting (1.99) into the first line of (1.100) lgie

Og—%f(t*)—g—k%A(t*)iA(t*)}O (1.101)
which is an LCP with unknow (t ). We therefore have derived an LCP allowing us

to compute the multiplier. However, this time two differtions have been needed,
when only one differentiation was sufficient to get (1.24).

Remark 1.100ne can rewrite (1.100) as

—A(t") € I (G(t7)) if q(t) = 0 and g(t*) =0
(1.102)
Alt)=0 if (q(t),a(t*)) >0
Similarly a contact force law at the velocity level can betten as
—A(t") € 9Yri(g(tT)) if q(t) =0
. (1.103)
AtT)=0 ifq(t) >0

Such various formulations of the contact law strongly retyGlocker’s Proposition
C.8 in Appendix C. Notice that inserting (1.97) into (1.9@8pwas us to express the
first and second lines of (1.96) as an inclusion in the adiig (q(t))
To complete this remark, the whole system (1.103) can beittewras a single
inclusion as
=A%) € 0, (quy (ALH)) (1.104)

whereTg: (q(t)) is the tangent cone tR*™ atq(t): it is equal toR if q(t) > 0, and
equal toR™ if g(t) < 0. In the same way the whole system (1.102) can be rewritten as

A €0 o @i (GED) (1.105)

whereTr . ) (G(t*)) is the tangent cone gft™ ) to the tangent cone gft) to IR™.
We will see again such cones in Sect. 5.4.2, for higher orgems.
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1.4.2 A Measure Differential Inclusion

Suppose that the velocity is a function of local boundedatem (LBV). This im-
plies that the discontinuity instants are countable, aatlftr anyt > O there exists
ane > 0 such that orft,t 4 €) the velocity is smooth. This also implies that at jump
instants the acceleration is a Dirac measure. In fact, tbela@tion is theStieltjes
measureor thedifferential measuref the velocity (see Definition C.4).

If we assume that the positiari-) is an Absolutely Continuous (AC) function,
we may say that the velocity is equal to some Lebesgue irftégaad LBV function
v(+) such that

t
q(t)=q(0)+/0 v(s)ds. (1.106)

We denote the acceleration as the differential measuessbciated with(-).
With this material in mind, let us rewrite the system (1.98}tlae following DI
involving measures:

(1.107)

v(t+)+ev(t—)>
l+e '

—mdv — f(t)dt —mgdt € IYr_, (qq)) (

We recall thafT+ (q(t)) is the tangent cone tB™ atq(t). Therefore the right-hand
side of the inclusion in (1.107) is the normal cone to the &amgoneT.-(q(t)),

+ —f
calculated at the “averaged” veIocin ) +evt ), wherev(t™) is the right limit

1+e
of v(-) att, andv(t ™) is the left limit.
Let us check that (1.96) and (1.107) represent the same dgea@n an interval
(t,t + &) on which the solution is smooth (infinitely differentiabtagn

v(tT) +evt)

v(t) =q(t), dv=g(t)dt, 1ie

=qt). (1.108)

Thus we obtain
—mai(t) — f(t)=mge Iy, (qu)(alt)) . (1.109)

We considered intervals of time on which no impact occur, egherq(t) > 0 (free
motion) orq(t) = 0 (constrained motion). In the first ca3g: (q(t)) = R so that
awTW(q(t))(q(t)) = {0}. In the second cask: (q(t)) = R*. The right-hand side is
therefore equal to the normal codg.: (q(t)). Soifg(t) = 0 we getd - (0) = R~
If g(t) > 0 we getd e+ (q(t)) = {0}. In other words either the velocity is tangential
to the constraint (in this simple case zero) and we get tHasion —mdq(t) — f(t) —
mge R, or the velocity points inside the admissible domain amdj(t) — f(t) —
mg= 0. One may see the cone in the right-hand side of (1.107) ay éowapresent
in one shot the contact force law both at the position and &hecity levels.

Let us now consider an impact timieThen &/ = (v(t™) — v(t7))&. Since the
Lebesgue measure has no atoms, the terif($)dt — mgdt disappear and we get
v(t™) +ev(t))

(1.110)

—m(v(tT) —Vv(t7)) € O+ ( 1re
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The fact that the inclusion of the measundv into a cone can be written as in (1.110)
is proved rigorously in Monteiro Marques (1993) and Acarglet(in press). Since
the right-hand side is a cone we can simplify thand we finally obtain

v(tT) +evt) _ v(tT) +evt)
—T+V(t )EaWR+ (T) . (1111)

Now using (1.36) and the fact thet ~) < 0 it follows thatv(t ™) +eut ) = 0, which
is the impact rule in (1.96).

The measure differential inclusion in (1.107) therefore@mpasses all the
phases of motion in one compact formulation. It is a paréicahse of the so-called
Moreau’s sweeping process

1.4.3 Hints on the Numerical Simulation of the Bouncing Ball

Let us provide now some insights on the consequences of tienaigs in (1.96) and
in (1.107) in terms of numerical algorithms.

1.4.3.1 Event-Driven Schemes

One notices that (1.96) contains in its intrinsic formudatsome kind of conditional

statements (“if...then” test procedure). Such a formalisralose to event-driven

schemes. Therefore, we may name it an event-driven-likedbsm. Two smooth

dynamical modes can be defined from the dynamics in (1.96):

[ mg(t*) + f(t) =—mg

Mode 1 “free flight”: if (q(t),q(t™)) >0
A=0

mg(t™) + f(t) = —mg+ A
Mode 2 “contact’: if q(t)=0,g(t") =0
0<g(t™)LA >0

The sketch of the time integration is as follows:

0. Given the initial datagg o, apply the impact rule if necessargp(= 0 and
o < 0).

. Determine the next smooth dynamical mode.

2. Integrate the mode with a suitable ODE or a DAE solver uhélconstraint is
violated.

3. Make an accurate detection/localization of the impacttted the order is
preserved.

4. Apply the impact rule if necessary and go back to the step 1.

[
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In the implementation of this algorithm, three issues haveet solved:

e The time integration of the smooth dynamical modlesur simple example, the
mode “free flight” is a simple ODE which can be solved by any Ciolver. The
mode “contact” needs the computation of the Lagrange migltiprhis can be
done by solvingl assumingj(t) = 0 and then integrating an ODE or integrating
the free flight under the constrairgé )'= 0 with a DAE solver.

e The localization of the evenThe event detection in the mode “free flight” is
given by inspecting the sign af(-). In the mode “contact”, this can be done
efficiently by inspecting the sign of the Lagrange multiplle All these event
detection procedures are implemented with root-finding@dares.

e The mode transition procedurafter an event has been detected, the next smooth
dynamical mode has to be selected. For that, the sign of ¢fm limit of the
acceleration and the Lagrange multipllehas to be inspected.

The problem one will face when implementing such an eveivedrscheme is that
the algorithm stops if there is an accumulation of eventse(llee impacts). This
is the case for the bouncing ball in (1.96) whéf) = 0 and 0< e < 1. How to
go “through” the accumulation point? One needs to know wilzgiplens after the
accumulation, an information which usually is unavailable

It may be concluded that event-driven algorithms are slgttihere are not too
many impacts, and that in such a case an accurate deteatializhtion of the events
may assure an ord@r> 2 and a good precision during the smooth phases of motion.
We had already reached such conclusions in Sect. 1.1.4.

1.4.3.2 Moreau’s Time-Stepping Scheme
Let us now turn our attention to the sweeping process in {):10

—mdv — f(t)dt — mgdt = dA

vitt) + e\,(t_)) | (1.112)

dA € Y. (aw) ( Tre

The time integration on a time intervey,ty. 1] of the first line of this dynamics can
be written as

1]
/ mav- [ () + mgdt = —dA ((te.tesa]) - (1.113)
(totiera]

T

Using the definition of a differential measure, we get
n n (351
miv(tf,) V() + [ 1)+ modt = ~dA (b beea]) (1.114)
k

Let us adopt the convention that

Virs A V(L) (1.115)
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and
M1~ A ((t, tey 1) (1.116)

thatis, the right limit of the velocity(tktl) is approximated byy. 1, and the measure
of the interval(ty,tc; 1] by dA is approximated by, 1. Let us propose the follow-
ing implicit scheme, which we may call the discrete-time Blu’s second-order
sweeping process:

Ok4+1— Ok = Vi1

M(Vicy 1 — Vi) + h(fer1+mg) = — iy 1 . (1.117)
Vi1 + €W
M1 € 0P (g0 <ﬁ)

After some manipulations (1.117) is rewritten as

Ok+1 — Ok = Vi1

Vi1 = —€V+ (14 @)proxXTe: (ai)i=bi] (1.118)
h hg
by = —w+ m(1+e) firn + 1t+e

Though it looks like that, such a schemaatan implicit Euler scheme. The reasons
why have already been detailed in the context of the eledticcuit () in Sect. 1.1.6
and are recalled here:

e First of all notice that the time stép> 0 does not appear in the right-hand side
of (1.117). Indeed the set

Viep1 + €W
aLIJTRJr (qk) ( 1+ e )

is a cone, whose value does not change when pre-multiplied pwpsitive
constant.

e Secondly, notice that the termdy, 1 +hmgdo not represent forces, but forces
times one integration intervhli.e., an impulse. This is the copy of (1.107) in the
discrete-time setting. As alluded to above, the dynamid<)() is an inclusion of
measuresin other wordsmgis a force, and it may be interpreted as the density
of the measurengdt. The integral ofmgdt over some time interval is in turn
an impulse. As a consequence, the elemegnt inside the normal cone in the
right-hand side of (1.117) is the approximation of the ingeutalculated over
an interval(ty,t 1], as the equation (1.116) confirmed. It is alwayscunded
guantity, even at an impact time.

From a numerical point of view, two major lessons can be kedfnom this work.
First, the various terms manipulated by the numerical dlgorare of finite values.
The use of differential measures of the time interitpltc. 1], i.e., dv((t,tkr1]) =
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V(e 1) — V() andpi 1 = dA ((t, ty-1]), is fundamental and allows a rigorous treat-
ment of the nonsmooth evolutions. When the time $tep0 converges to zero, it
enables one to deal with finite jumps. When the evolution isam, the scheme is
equivalent to a backward Euler scheme. We can remark thater@an approxima-
tion of the acceleration is used. Secondly, the inclusioteims of velocity allows
us to treat the displacement as a secondary variable. Alityadbimma ensures that
the constraints og(-) will be respected at convergence. We will see further that th
formulation gives more stability to the scheme.

These remarks might be viewed only as some numerical tiickact, the math-
ematical study of the second-order MDI by Moreau providesund mathematical
ground to this numerical scheme.

1.4.3.3 Simulation of the Bouncing Ball

Let us now provide some numerical results when the timepatgpscheme is ap-
plied. They will illustrate some of its properties. In Fig22, the position, the veloc-
ity, and the impulse are depicted. We can observe that theradation of impact is
approximated without difficulties. The crucial fact thaéeté is no detection of the
impact times allows one to pass over the accumulation tirhe.r€sulting impulse
after the accumulation corresponds to the time integraticer a time step of the
weight of the ball.

In Fig. 1.23, the energy balance is drawn. We can observahbdbtal energy
is only dissipated at impact. This property is due to the flaat the external forces
are constant and therefore, the integration of the freetfigkexact. We will see
later in the book that these property is retrieved in mosegarcases by the use of
energy-conserving schemes basedemethods.

1.4.3.4 Convergence Properties of Moreau’s Time-Steppinglgorithm

The convergence of Moreau’s time-stepping scheme has lemmsin Monteiro
Marques (1993), Mabrouk (1998), Stewart (1998), and Dzofadvonteiro Mar-
ques (2007) under various assumptions. Various other veagistretize such mea-
sure differential inclusions with time-stepping algonith exist together with conver-
gence results. They will be described later in the book.

1.4.3.5 Analogy with the Electrical Circuit

Let us consider again the electrical circuit discrete-tagaamics in (1.34), where
we change the notation agy = g andx, k = Vi:

Ok+1 — Ok = Vi1
(1.119)

hR h
Vier1 = Vit Vi1 + TR0kt € — 0Pk (Vip1)
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Fig. 1.22.Simulation of the bouncing Ball. Moreau’s time-steppingeme. Time stejpn =

5x 103



50 1 Nonsmooth Dynamical Systems: Motivating Examples aamsi®Concepts

" Kinetic Energy
Potential Energy -------
Total Energy --------

energy
e IS

— - ‘
R——

-2

e

0 1 2 3 4 5
tt

Fig. 1.23.Simulation of the bouncing ball. Moreau’s time-steppingesoe. Time stefn =
5x 103, Energy vs. time

Let us now consider that the terfift) = ajv(t) + axq(t) for some positive constants
a; andap, and let us take = 0. Then the discretization in (1.117) becomes

Ok+1— Ok = hViy1
(1.120)
ha hap

Vier1 — Vk+ FleH + FQKH +hge =9y, (q) (Vk+1)

One concludes that the only difference between both diget&ins (1.119) and
(1.120) is that the tangent coifig (gk) in mechanics is changed to the et in elec-
tricity. This is a simplification, as the tangent cone “s\its” betweerR andR™.

With this in mind we may rely on several results to prove thevesgence prop-
erties of the schemes in (1.119) and (1.120). Convergesa#sdor dissipative elec-
trical circuits may be found in Sect. 9.5.

1.5 Stiff ODEs, Explicit and Implicit Methods,
and the Sweeping Process

The bouncing ball dynamics in (1.96) may be considered abrttiewhen the stiff-
nessk — 4o of a compliant problem in which the unilateral constraintaplaced
by a spring (a penalization) witk > 0. It is known that the discretization of a pe-
nalized system may lead to stiff systems wiken too large, see e.g. Sect. VII.7 in
Hairer et al. (1993). Explicit schemes fail and implicit soles have to be applied
to stiff problems, however, their efficiency may decreagaificantly when the re-
quired tolerance is small because of possible oscillatigtishigh frequency leading
to small step sizes (Hairer et al., 1993, p. 541). Clearkyrihid body modeling that



1.5 Stiff ODEs, Explicit and Implicit Methods, and the SwespProcess 51

yields a complementarity formalism and a discretizatiothefsweeping process via
Moreau’s time-stepping algorithm may then be of great help.

Let us illustrate this on an even simpler example. A m@ass 1 colliding a
massless spring-dashpot, whose dynamics is

—kq(t) —dq(t) if q(t) >0
u(t) + {

0 if q(t) <0
The limit ask — +oo is the relative degree two complementarity system

q(t) = (1.121)
d(t) = u(t) +A
0<Alqt)y=0 (1.122)
q(t*) = —eq(t) if q(t) = O andgit ) <0

1.5.1 Discretization of the Penalized System

An explicit discretization of (1.121) yields during the ¢act phases of moticn
Gi+1—Gi

= —kg —dgi+uisa
“ #(83) = (Chentna) (3) (2 o
Oi+1— G . Qi+1 —hk1—hd/ \ g h
h I ||
(1.123)
The eigenvaluesy and y, of (—tkl—hhd> have a modulus equal to

1/(2—hd)2+h2(4k—d?). The condition for the modulus to be 1 is h < %.
Therefore, ifk is too large then the explicit Euler method is unstable, tystesn
is stiff. Let us now try a fully implicit Euler method. In ord& simplify the calcula-
tions, we consided = 0, i.e. the system is conservative. One obtains

Gi+1— G -

h = K1t Ui .
& <qf+1)
Gi1—G_ e
B B

—a(h,k) (-lth (g: ) +ha(h,k) ('11) Uiir

(1.124)

with a(h,k) = (1+h?k)~1. This problem is no longer stiff since the modulus of the
eigenvalues in this time is equal to 1 (in cabe- 0 we would obtain a modulus
smaller than 1 for anp > 0). However, the ratio of the imaginary and the real part
of the eignevalues is\/k, indicating indeed possible high-frequency oscillations

5 The discretization is written withinstead ok to avoid confusion between the stiffness and
the number of steps.
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1.5.2 The Switching Conditions

We have not discussed yet about the switching condition éatvthe free and the
contact motions. Let us rewrite the system (1.121) with O as

4(t) = u(t) — maxkq(t),0) (1.125)

This is easily shown to be equivalent to the relative degese zomplementarity
system

6(t) = u(t) —A(t)
(1.126)
O<<A(t) LA(t)—kgt)=0
whose implicit Euler discretization is
Gi+1— G = hti 1 —hAi g
Gi+1— G = i1 (1.127)
0<Aiy1 L A1 —kg1 >0
which after few manipulations becomes the LCP
0< Airr L (14h%K)Ai1 — khg — khPui 1 —kg >0 (1.128)

that is easily solved fok;, 1 and permits to advance the method from stépstep
i + 1. With the switching conditio;; 1 > 0 orgi+1 < 0, one retrieves the implicit
method (1.124). If the complementarity relation is takef@ &sA; 1 | Aj; 1 —kg >0
andg;. 1 — g = hg;, one recovers the explicit method with a switching conditio>
0 org; < 0. We conclude that the complementarity formulation of 21 )lallows us
to clarify the choice of the switching variable and of the manto compute the new
statevia an LCP, but does not bring any novelty concerning the stfistiff issue.
One also notes that the explicit method for (1.125) yieldsm¢l.123). Therefore,
applying an explicit Euler method to (1.121), (1.125), o@b) is equivalent. The
implicit discretization of (1.125), i.e3i11 = ¢i + hui 1 — hmax(kg + khgi1,0), is
obviously also equivalent to (1.127). But its direct sotyinithout resorting to the
LCP in (1.128) is not quite clear. One may say that the CP fbsmais a way to
implicitly discretize the projection.

All these comments apply to the circuita) and (b) in (1.11) (1.12), and the
various formulations in (1.15) through (1.22).

Remark 1.11Without the complementarity interpretation in (1.126)tthields the
LCP (1.128), one may encounter difficulties in implementihg switching with
Oi+1 anddgir1 — g = hgi 1, because the system is a piecewise linear system with
an implicit switching condition. Consequently, one oftéimoses an implicit method
with an explicit switching variablej1 — gi = hg. This boils down to a semi ex-
plicit/implicit method which also yields a stiff system.
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1.5.3 Discretization of the Relative Degree Two Complemeatity System

Moreau’s time stepping method for (1.122) is

%f-TJ’:q = prOX[TR+ (Qi+1); Qi + ]__E]reu(tiJrl)]
(1.129)
Gi+1 = 0 + hq;

which is nothing else but solving a simple LCP (or a QP) at eségp. It is noteworthy
that we could have written a fully implicit scheme with, 1 = g; + hg;,1 without
modifying the conclusion: Moreau’s time stepping methodasstiff.

1.6 Summary of the Main Ideas

Simple physical systems yield different types of dynamics:

ODEs with Lipschitz-continuous vector field

Differential inclusions with compact, convex right-hasides (like Filippov's
inclusions)

Differential inclusions in normal cones (like Moreau’sesping process)
Measure differential inclusions

Evolution variational inequalities

Linear complementarity systems

Some of these formalisms may be shown to be equivalent, sexgl{&o
et al. (2006)).

The nonsmooth formalisms may be useful to avoid stiff protgdeAll these sys-
tems possess solutions which are not differentiable eveeygy and may even
jump (absolutely continuous, locally bounded variatiolusons).

There exist two types of numerical schemes for the integmaif these nons-
mooth systems:

The event-driven (or event-tracking) schem@se supposes that between
events (instants of nondifferentiability), the solutioase differentiable
enough, so that any standard high-order scheme (Runge-itethods, ex-
trapolation methods, multistep methods, ...) may be us¢itlamevent is
detected. The event detection/localization has to be ate@nough so that
the order is preserved. Once the event has been treatedhumtite integra-
tion with your favorite scheme. This procedure may fail wiieere are too
many events (like for instance an accumulation).

The time-stepping (or event-capturing) schenTége whole dynamics (dif-
ferential and algebraic parts) is discretized in one shabitdally low-order
(Euler-like) schemes are used (other, higher order methaoags in some
cases be applied, however, the nonsmoothness brings t@okdér to one).
Advancing the scheme from sté&go stepk+ 1 requires to solve a comple-
mentarity problem, or a quadratic problem, or a projectilgodthm. Con-
vergence results have been proved.
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Though the time-stepping schemes look like Euler scherhey, dre not. The
primary variables are chosen so that even in the presencead Deasures, all
the calculated quantities are bounded for all times. Theserses do not try to
approximate the Dirac measures at an impact. They approgitha measures
of the integration intervals, which indeed are always bashd-rom a mathe-
matical point of view, this may be explained from the facttttiee right-hand
sides are cones (hence pre-multiplication by the time lstef® is equivalent to
pre-multiplication by 1).

There are strong analogies between nonsmooth electricaltsiand nonsmooth
mechanical systems. More may be found in Mdller & Glocke0@0 The solu-
tions of nonsmooth electrical circuits may jump, so thay e rigorously repre-
sented bymeasure differential inclusion$ he fact that switching networks may
contain Dirac measures has been noticed since a long tine iciitcuits litera-
ture (Bedrosian & Vlach, 1992). Proper simulation toolsrfonsmooth systems
are necessary, because the integrators based on stifflled-tphysical” models
may provide poor, unreliable results (Bedrosian & Vlact920Q



