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Abstract. Numerous works in computational mechanics are dedicateduiti-body systems.
This leads to the use of various methods to simulate thestatiynamic evolution of complex
systems. The case of dense multi-contact assemblies i$ threernore complex one: the prob-
lem have often a large number of unknown and have a infinitglafisn due to the definition of
the matrix of the system. Moreover this problem become hartden friction or more complex
laws are introduced in the system. Thus we need fast andtrebly&rs to perform mechanical
studies. These performances can be increased when thalgpetilem structure is considered
(sparse matrices, block structured problem).

Our work is based on the Non Smooth Contact Dynamic frameintrdduced by Moreau.
The method uses a time-stepping integrator without exmhent-handling procedure and an
unilateral contact impact formulation associated to Caulws friction. In this paper we use
and compare different iterative algorithms such as Gausged, projected conjugate gradient
and direct ones as Lemke and Quadratic programming solvérs.efficiency of the methods is
compared in terms of complexity, convergence criterion@mndPU time.

To illustrate the results, we focus on granular assemb[B&s frictional contact simulations
are performed with ConF&TiS and the Numerics library of tieaos project.
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1 INTRODUCTION

Numerous works in computational mechanics are dedicatdtetsimulation of multi-body
systemsl]l1] with application fields in soil mechanicks [2}jlcengineeringl[3] and also in com-
puter graphics]4]. This multiplicity of applications angegific constraints lead to use a large
panel of methods to simulate the static or dynamic evolutiocomplex systems. The case of
dense multi-contact assemblies is one of the more complexTme problem have often a large
number of unknown and have a infinity of solutions due to thiend®n of the matrix of the
problem. If for frictionless system, theoritical resulinche exhibit when friction is take into
account the problem become harder and leads some authas toation approximatiori|5].

Granular material are a specific case of large dense multy-bgstem. To the mathematical
complexity we must add the physical one due to a behaviouwitwtan be liquidl5] or solid]2].
When local contact impulses are used as primal unknown, #gtexssue from the formulation
of the frictional contact problem presents a block struetiwith or without approximation of
the friction cone). In the general case a standard blockisyglimethod is used][7], call also Non
Smooth Block Gauss-Seidel algorithm. The numerical efficyeis critical (robust but slowly
converence) justifying studies and improvemehis [8]. Mowenplex algorithm as Projected
Conjugate Gradient onél[9] are faster for two-dimensiomabjem but does not allow in the
case of three-dimensional frictional contact problem ttamba large CPU time gain. Direct
method such as Lemke method can also be used but need speatiaépearch[10]. Quadratic
programming solver are also an alternative but presenttr@suilar than Lemke algorithm. In
the multi-contact case, pivot method appear to be slowar itlesative ones, especially for a
large number of unknown[4]. But for small system, direct hoels are often more efficient
and faster than iterative ones for some kind of problem. Nbe&ess for three-dimensional
frictional contact problem approximation of the frictioaree must be used.

The aim of this paper is to present a combination of algor#tlwcording to the block struc-
ture of three-dimensional frictional contact problemdigiulti-body systeme. We focus on the
case of granular material simulations. This combinatigreidormed using different algorithms
(direct or iterative) with a global standard block spligimethod. After a presentation of the
framework used for our three-dimensional frictional cahfaroblem in sectiofill2, we present
in details the block structure formulation in sectidn 3 formhulation based or not based on an
approximation of the friction cone. The sectldn 4 gives aaroiew of the different algorithms.
Results are presented in sectidn 5 and se€lion 6 concluees(er.

2 FORMULATION OF THE FRICTIONAL CONTACT PROBLEMS

In computational mechanics, when we look for approaches$ suiled for the rigid body
dynamics with contact, friction and impact, we found theldyd&etween compliant/unilateral
model and event-driven/time-stepping scheme. In the gbotfgranular materials, where large
collections of bodies are encountered, Cundall [11] waditeeto propose a numerical tools
based on a Euler scheme and where contacts are governed péasd model. With a def-
initely different approach, Moreal [12] and Jeah [7] présetreatment of rigid bodies with
unilateral contact, Coulomb’s dry friction and impact i thhamework of the non-smooth me-
chanics and convex analysis. This framework yields a titepgsng scheme (without explicit
event-handling) where velocity and impulses are the pymariables. Still in a non-smooth
framework, Pfeiffer and Glockel][1] or Stewart and Trinkl&l] designed an event-driven al-
gorithm as time integration scheme and proposed a genenalfation of the dynamics at the
acceleration-force level. The resolution is performedgsiirect method 5], quadratic pro-
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graming solver[[14] or MCP solvel [15]. But this kind of intagijon scheme are out of the
scope of this paper a well as Mixed Complementary Probleme dpproach used to simu-
late our multi-body system is based on then Smooth Contact DynamiblSCD) framework

evoked previously. The scheme is a very efficient numermall @n a great number of appli-

79

cations that are well-known for theirs difficultied [3, 2].eWidresent here the headlines of the

2.1 Discretization of equation of motion

Formalism of the method lays on a special formulation of tipgegion of motion. When we
deal with multi-contact systems, shocks must be expectedglthe evolution of the system.
This shocks lead to velocity discontinuities and cannaivalio define the acceleration as the
usual second time derivative of the configuration paran{emoteq). Consequently equation
of motion must be formulated in terms of a measure diffeeg tguation,

Mdq = F(t,q,q)dt + dR, (1)

wheredt is the Lebesgue measure Bndq is a differential measure representing the accelera-
tion measure andR is a non-negative real measure. In the equafibn\{ljepresents the mass
matrix andF (¢, q, q) the external forces (internal forces vanish in rigid bodstegns).

The contact problem is solved over the time discretizatimervallt;, t;.1] in the sense de-
fined previously. In this way, the equatidg (1) is integrabedeach time interval and approxi-
mated using & method, an implicit first-order scheme, using the configareparameter and
its first derivative [[7]. Its stability condition implies &hf must remain betweeh/2 and 1.
Successive approximations of equatioh (1) lead to thevatig system

{ Qi+1 = élzfree + (Mil)RiJrl (2)
Qit1 = q; + h0q;1 + h(1 —0)q;
with

& = & + M h(0F 1 + (1 — O)F,).

where¢/m¢ denotes the free velocity (velocity computed without cobfarces). Index (resp.
1+ 1) refers to time; (resp.t;.1). Global quantities such as the sum of contact foRemd the
body velocityq are related to local variables via two linear mappings deHadnd its transpose
H*. Thus the local forces vector expressed in the local frame, are relateRtby the relation

R = H(q),r, 3)

whereq is the index over the contact set. In the same way, the vglotthe bodies is related
to the contact relative velocities vectotby the relation,

v =H(q),q, (4)

Using the equation§X3) and (4), the discretization of theaiqn of motion and the contact law
can be summarised in the following system:

{ Wrip —vig1 = —Viree (5)

laws [Va,it1, Taiv1] = true., a=1,...,n,

whereW (= H*M~'H) is the Delassus operator. The right-hand-side of the fingaton in
@) represents the free relative velocity similar¢gfec. The second equation il (5) denotes

3
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the contact law which must be satisfied by each componeneatdhple(v, r),. The contact
law used in the context of this paper is a classical Signaondition coupled with Coulomb’s
friction. An extension of the Newton impact law to multi-dant assemblie$ [12] is coupled to
the friction law.

3 DELASSUS OPERATOR FORMULATION

With the NSCD framework, the Delassus operator present®ek dtructure. When we
related this theoritical structure to the physical stroetaf granular material, each block on
the diagonal of the operator contains the local informatibaach contact, and the blocks out
the diagonal represent the connectivity between contaetpi&sent in this section the explicit
formulation of the Delassus operator used in the probldm ®)is explicit formulation is
dressed for a one contact case in a non approximated probléreapproximated one.

3.1 Without approximation

The linear mappindl introduced in sectiofl2 can be decomposed in a normalfarand
a tangential onél; and expressed &8 = [ Hy Hy } Using the definition oV we obtain

W= { Worr Woen } B [H*TM%T H M~ Hy

War Whan H;M_lHT H}(VM_lHN
As M is diagonal (in the rigid body context), the matrix is easilyertible. Here the contact
index is omitted to keep a pleasant reading.

3.2 Delassus operator for an inner approximation
3.2.1 Definition

To use direct resolution methods such as Lemke or Quadnatgr&mnming solvers [16, 17]
to solve the frictional contact problem, an approximatidrihe friction cone must be used.
For this kind of approximation, contrary to the first one, goexistence of solutions can be
exhibit [13].

Figure 1: Inner approximation

Different kind of approximations can be performed : regualanot, inner or outer. We will
describe here the global form of the matrix using an regulaei approximation as represented
on figurel. First we define the approximated friction cone as

4
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FC={ryn+DB|ry >0, 3>0,eB < pry}
with
D=[d;]|..|d, ].
Each vectod,;, Vi € {1,...,v} (see Fidll) and the dimension of vectoare related to the
approximation by the-gon.

3.2.2 One contact case

Using the previous definition of the approximation of thetion cone and the definition
of W, we can build the matri%V and the right hand side;,.. of the approximated frictional
contact as follow

~ ]D)*WTT]D ]D)*WTN e D*Vfree,T
W = WNT]D WNN 0 and {/free - Ufree,N
—e* 1 0 0

Note that this kind of approximation leads to increase theedision of the problem and
generate some problem with strong impact in special agmitsisuch as haptic control [4].

3.3 Multi-contact strategy

When multi-contact assemblies are considered, the si¥¥ o&n increase. In the context
of granular material, the case of this paper, numericalnupttion have been performed to
preserve the CPU time during computationi[18]. When we ugecaimation of the friction
cone, the size increase with the accuracy of the approxamat/ioreover with pivot method
the matrix must be considered in its all dimension .

The idea here is to keep the structure found’in [7] and extitaccombination with LCP or QP
solver. Thus when we considered an approximate problengpgpsximation is performed at
the local level on the local Delassus operator and not onlitgracture. Then we considered
only small problem where pivot or direct can be efficient arel san take advantage of this
kind of method. Moreover the construction of eddhcan be performed one times only to
preserve CPU time. The only the right hand side of probldmm{6$t be updated to take into
account the evolution of the system. This method is diffefiem the theoretical results and
the methodology presented [n]19].

4 ALGORITHM PANEL
4.1 Block Splitting method

To solve probleni{5) we use a general block splitting methothatrix W or W. The idea is
to solve the local frictional contact problem using an aldpon such as Newton algorithrin [20],
Lemke [10] and to use a block splitting method to solve cadrftgcontact each local problem.
Method such as CPG algorithin [9] or NCP solveri[21] will be comsidered here.
Using the notation of systerl(5), the global splitting schesrequal to

V];—H — Waar’;“ = Vz’free + zﬁ<a WagrEH + zﬁ>a Waﬁrg (6)
=b
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where the index refers to the splitting method iterations. The time indegnsitted to make
pleasant reading. Using the global scheme to propagataftenation, we must now define
what kind of algorithm used to the local problem.

4.2 Lexicographic Lemke

Pivoting methods are often used to solve LGRY) [], but the good results obtain with such
method depend strongly of the properties of the mat¥ixin multi-contact assemblies (of rigid
bodies), the matri¥V is almost always a positive semi-definite (PSD) matrix andeads to
degenerate problem. In this case classical pivoting metkadnot be used and we must have
resorts to some adaptation in pivoting algorithms to avgiing during the pivoting process.
To face this problem with the Lemke method, a solution is teehiie choice of the pivot and
the minimum ratio on a lexicographic ordering [L0} 22]. Ths choice of the pivot variable is
unique and allows to obtain a solution when the problem i®derated.

4.3 Quadratic Programming Solver

The interests of Quadratic Programming Solver leads orialtreformulation of the contact
problem as an optimisation problem. Moreover, minimisaatgorithm used ensure a strong
stability and are reliable for semi-definite positive magg. For frictional simulation, Non
Symmetric Quadratic Programming solver must be used. Thaulation of the frictional
contact problem leads to a non symmetric matrix. To facehblem we use an QP solver
based on the generalised Fletcher's methaod [23]. Theseowaprents ensure an algorithm
termination extending to the case of round-off error

4.4 Dedicated Local Newton Method

The non smooth frictional contact problem can also be sobyed Newton method [20].
Resolution of systeni{5) can be reduce to looking for the péeofunction (v, r) define as

V = Vfpee — Wr = 0,

Flvr) =0 { r—,in—proj(v;C(v,f))t =0,

(7)

with v = r — pu = v,n + v etv," = proj(v,; RT) ety, € R% Problem[[¥) is equivalent to
problem presented in [20] with partial properties of cogesgrce. The principle of the Newton’s
method is to determine the cougfe = (v, t) which satisfied7(X) = 0. For that, we define
the different iterat¢X?), as

OF (XP)AX = —F(XP), (8)

wheredF (XP?) is one of the Jacobian matrices, element of the Jacobiandia@SEX?). Then
we introduced the iteration indigeto obtain

9)

S

AP BP

wherel, A? etB? € R3. Using a formulation based on the definition of Newton itiers, we
can introduced(9) in a iterative scheme functioméfandB?.

To determineA\?, B? and solve our problem, we must determine the different corapts of
F as well as their partial derivative in regardsgf v, r; andv,.
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4.5 About granular dedicated solver

When granular assemblies are considered, it is possibkrtefib of the geometry of particles
to simplify the problem. When spherical particles are cdesad, it is not necessary to used
complex solver because the resolution become explicitavithithout friction. These dedicated
strategies, well known in the numerical granular commuihigyve been presented in [4] and we
refer to this work for more details. Note that for more compdgstems such as masonry or
complex rigid body structure, this kind of explicit resotut cannot be used. Their excessive
use can generate instabilities and leads to non physicavimir. Thus previous methods
present a large interest in the case of more general muty-bimulations.

5 SIMULATION RESULTS

To start our comparisons, we simulate a sphere packing. tAlsgeometry of particles is
smooth, the process reaches from a dynamic phase to a statitoreover the contact number
increases during the simulation. Thus algorithms must Hesuéable to this change of state.
Figure presents results obtain with a dedicate solver tasamce result), QP solver, Lemke and
Newton algorithm.

For this example the combination with the Newton method appt be the more efficient.
The QP method is the worse in term of CPU time. Lemke give gesdlt but less efficient than
the Newton method. Note that for this last one the choice éenntfaximal number of pivot is
very important. Direct method must finish all pivot beforgigg a solution. On the over case,
the result do not have any physical sense. This value isuliffic determine because any result
of convergence exist for PSD matrices. Nevertheless, nad® precaution assure to found a
solution.

We also compare the different method on the simulation of kkm®wn mechanical phe-
nomenon: the brazil nut effect (figue 3). To check the goodhmaaical result of simulations,
we perform its with the different algorithm presented intseti4, compare the CPU time as
well as the mechanical behaviour.

Time: 10s

Figure 2: Reproduction of the brazil nut effect
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The sample is composed &0 spheres of radius equal taand a big sphere of radias All
particles are in a box. Small particle lay on the big one. Aquic displacement is given to the
floor to generate fluctuation in the sample. The motion of tigephrticle is tracked during the
simulation.

Figure 3: Numerical reproduction of Chateau Gombert expenit

As we mention on Seél 4, spherical assemblies do not needlepmigorithms due to the
specific simplification induces by their geometry. But we Wwanconsider masonry [3] or
assemblies composed of more complex shape [2], this sicgildin cannot be considered. The
example of masonry simulations as shown on figlire 3b are esitsve. The result must be
the most accurate one to ensure the stability of the streickigurd B represents the numerical
reproduction of the experiment performed at Chateau Gonfi8er The ground is composed
of two part and one of the part go down. Thus we can observeldetachments in specific
area of the wall. Experiment and simulation give similaufess The block splitting method
combined to the Newton algorithm allow to perform the siniolain 1200s. Lemke and QP
solver are slower than Newton method but results keep aatqrhgsical behaviour.

6 CONCLUSION

A brief overview of combined algorithm have been presentetitasted for the simulation
of granular material. In a previous work the author have gmesd results underlining the ef-
ficiency of iterative method for the simulation of multi-bpdystems. The conclusions of this
short study appear as the same. Also direct methods appeéicaant on small system, their
integration in a iterative system does not lead to so goadtsedf result keep a physical sense,
the CPU time of simulation is not reasonable. The Newton ottppear as the only one to
be the most well-suitable algorithm for a coupling with ameel splitting method. CPU time
as well as mechanical behaviour are preserved. To completstidy, combinations with the
PATH solver [?] and NCP [[21] will be performed.
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