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Abstract. In functional Magnetic Resonance Imaging (fMRI) data analysis, 
normalization of time series is an important and sometimes necessary 
preprocessing step in many widely used methods. The space of normalized time 
series with � time points is the unit sphere ����, named the functional space. 
Riemannian framework on the sphere, including the geodesic, the exponential 
map, and the logarithmic map, has been well studied in Riemannian geometry. 
In this paper, by introducing the Riemannian framework in the functional space, 
we propose a novel nonparametric robust method, namely Mean Shift 
Functional Detection (MSFD), to explore the functional space. The first merit 
of the MSFD is that it does not need many assumptions on data which are 
assumed in many existing method, e.g. linear addition (GLM, PCA, ICA), 
uncorrelation (PCA), independence (ICA), the number and the shape of clusters 
(FCM). Second, MSFD takes into account the spatial information and can be 
seen as a multivariate extension of the functional connectivity analysis method. 
It is robust and works well for activation detection in task study even with a 
biased activation reference. It is also able to find the functional networks in 
resting-state study without a user-selected “seed” region. Third, it can enhance 
the boundary between different functional networks. Experiments were 
conducted on synthetic and real data to compare the performance of the 
proposed method with GLM and ICA. The experimental results validated the 
accuracy and robustness of MSFD, not only for activation detection in task 
study but also for functional network exploration in resting-state study. 

1   Introduction 

Functional Magnetic Resonance Imaging (fMRI) has become a powerful technique to 
study spatial-temporal neural activity in human brain. A large number of methods 
have been proposed for fMRI data analysis, including both task and resting state 
analysis. In general, the existing methods could be categorized into two families: 
model-based methods and model-free (or data-driven) methods. 

Model-based methods often parametrically fit a prior model to the data by 
statistical techniques, such as correlation analysis, variation analysis, t-test, linear 
regression, and so on. Among them, General Linear Model (GLM) [1] is a typical one, 
in which false positive ratio could be limited through selecting an appropriate P value 



from hypothesis test. However, it has several critical limitations: (1) a linear addition 
model is assumed; (2) the residuals are assumed to follow a normal distribution, and 
so are the parameters; (3) the choice of the variables in the design matrix is sometimes 
arbitrary; (4) linear convolution is assumed and every voxel shares the same 
Hemodynamic Response Function (HRF). Another popular one is the functional 
connectivity method [2], which needs a user-selected ‘seed’ region of interest. It takes 
the mean time course in the seed region as the reference signal in the GLM. However, 
in most studies it is unclear how to select an appropriate seed region. Most model-
based methods, including the GLM and the functional connectivity analysis, are 
univariate methods which assume every time series is independent of each other. 

In model-free methods, effects or components of interest in the data are found 
based on some specific criterions. For example, Principal Component Analysis (PCA) 
[3] assumes that the structures of interest in the data are uncorrelated both in the 
temporal and spatial domains. Independent Component Analysis (ICA), including the 
spatial ICA [4, 5] and the temporal ICA [6], assumes that the data is a linear addition 
mixture of some independent sources. Another kind of model-free methods is 
clustering, including Fuzzy C-Means (FCM) [7], Gaussian mixture model [8], etc. 
These methods are based on the general physiological fact that the activities within a 
specific functional system have a certain similarity, which is the base of functional 
networks. Clustering methods partition the brain into some clusters based on some 
similarity measures. Model-free methods are multivariate and could gather more 
information and have less prior assumption than model-based methods. Moreover, 
model-free methods could be used for both activation detection in task study and 
functional networks analysis in resting-state study, which is difficult for model-based 
methods. However, there are still some intrinsic assumptions in model-free methods, 
such as linear addition, uncorrelation and independence which cannot be fully 
satisfied in the brain. How to determine an appropriate similarity measure and the 
number of clusters is also an open problem for clustering methods. 

In both model-based and model-free methods, normalization of time series is an 
important and sometimes necessary preprocessing step. Normalization means that the 
time course is subtracted by its mean (centering) and then divided by its L2 norm 
(scaling). The space of normalized time series with n time points is a unit sphere ����, named as the functional space by Friston [3]. In fact, the results of most 
methods, for which the normalization may not be necessary, do not change under 
normalization transform, which could be called as “normalization invariant”. That 
means most of the current fMRI data analysis methods work in the functional space. 
In this paper, by introducing the Riemannian framework in the functional space, we 
propose a novel robust nonparametric Mean Shift Functional Detection method 
(MSFD) to explore the functional space. 

2 Riemannian Framework in the Functional Space 

In fMRI study, each normalized time course could be considered as a point scattered 
in the functional space ����, and the point is called as the shape of the time course. 
Every point x in the sphere is a representative element of an equivalence class in ��,



i.e. 	
� � 
 � ����� � �� ��� . The distribution of these points embodies the 
functional topography [3]. The closer two points are, the higher their correlation (i.e. 
functional connectivity) is. In fact, the correlation is the cosine of the angle subtended 
at the origin (see Fig. 1). Considering in GLM, �� � �
� � �, we have � � � � ����.
Model-based methods use the predefined shape of the HRF (a point on ����) to find 
a group of points that have close shape. Comparatively, model-free methods analyze 
the distribution and the structure of these points. PCA and ICA methods try to find 
some mapping directions to properly interpret the distribution. Clustering methods try 
to partition these points into some functional homogeneous groups based on some 
certain similarity measures. In summary, the most important issue in fMRI data 
analysis is how to describe and interpret the distribution and how to measure the 
degree of the “close”, which needs a rigorous mathematical formulation. 

Considering the sphere is a simple manifold that has been well studied in 
Riemannian geometry, we thus adopt the geodesic distance to describe how close two 
points are. Moreover, tangent space theory could be used for algorithms device [9]. In 
particular, assuming that 
 and � are two points, the geodesic is the part of the 
great circle between them. Formulae (1) (2) (3) give the geodesic distance, the 
exponential map and the logarithmic map. A pictorial representation is shown in Fig.1. 
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Fig. 1 Pictorial representation of the functional space. �: the geodesic distance between 
 and �.  : a vector in the tangent space of 
. ��: correlation coefficient. !"!: L2-norm. 
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3   Mean Shift Functional Detection (MSFD) 

As we discussed above, we formulate fMRI data processing as the problem of 
analyzing the structure of points in the functional space. A commonly accepted 
physiological fact is that time courses in the same functional area have covariant 
fluctuation, which forms the base of functional networks. In other words, they have 
close shapes (i.e. small geodesic distances). The functional space ���� is a very high 
dimensional unit sphere. Points in the functional space are sparsely scattered and 
relatively assemble in groups. If we consider these points as the observations from a 



certain distribution, i.e. the probability distribution of the time course distributed in 
the whole brain, obviously hills appear in the area with many points, and valleys 
appear in the area with few points in the distribution on sphere. The idea of MSFD is 
to find the optimal representative time courses (peaks) and partition these points 
based on these peaks of different hills. Time courses in the same hill have close 
shapes (i.e. small geodesic distances). The spatial location distribution of these time 
courses within the same hill could be considered as a functional network (see Fig. 2). 

Mean Shift (MS) is a powerful nonparametric clustering method for feature 
space analysis in computer vision and machine learning [10]. MS could iteratively 
move points towards the high density regions in the feature space and cluster data into 
some groups. Compared with other clustering methods, it is independent of the 
initialization, and can cluster data into arbitrary number of arbitrary shaped groups 
[10,12]. Traditional MS method is devised for low dimension Euclidean space (e.g. 
gray or color natural image). Two modified versions, respectively for low dimension 
analytic manifold [11] and high dimension Euclidean space [12], have been proposed 
recently. Considering the requirements in fMRI, we integrate these two versions of 
MS into the functional space, i.e. a high dimension manifold. If 	
&� * � /�0 �1� are 1 points in the functional space, then the adaptive kernel density estimation (KDE) at 
 with the kernel profile 2#"$ could be expressed in (4). Define the mean shift 
vector 3#
$ in the tangent space as (5). It could be proved that 3#
$ is collinear 
with the gradient of the probability density function (PDF) at 
 [11]. �2#"$ is the 
kernel profile, and 4#5$ � .26#
$. 2#"$ is chosen as the truncated Gaussian profile. 
So - � 2. 7
 is the kernel bandwidth at 
, which is adaptively determined as a half 
of the distance between 
 and its 289 nearest neighbor (KNN method). It has been 
proposed in high dimension Euclidean space that KNN adaptive MS is robust [12]. In 
this paper, the results of both synthetic and real experiments change little, even if k 
ranges from 500 to 1500. Therefore, we choose 2=500 for computational efficiency. 

Fig. 2 A distribution of two hills in the functional space. Red hill and blue hill are partitioned 
by a valley. The black arrows are the movement directions of points. The red and blue arrows 
denote the locations of time courses in brain. They belong to two networks. 
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MSFD could be used not only for activation detection in task study, but also for 
functional network analysis in resting-state study. Both of them are based on Mean 
Shift Iteration (MSI) that is given below. Two images can be obtained after MSI. One 
is a 4D functional image, which contains the time courses after MSI. The other one is 



a 3D dist image for statistical post-processing, which denotes how far a point is away 
from itself in the original position in the functional space. After the MSI, these new 
& gather in some peaks of hills that are the optimal representative time courses. Thus 
if two points are belonged to two groups, the distance between them will be enlarged 
after MSI, which will enhance the boundary between different networks (Fig.2) [13]. 
Algorithm: Mean Shift iteration (MSI)
Input:   time courses, 
&, * � /�0 �1

normalize 
&, * � /�0 �1
            for * T /�0 �1
              
 T 
& �*�U#*$ � �
              Repeat :  
                          Determine 7
(KNN)

        3#
$ � % FGH
#
A$HIJ@K
�
ALMB NOAPQ
% HRJ@K
�
ALM
 SOAPQ

,

           
 T '()
K3#
$L, �*�U#*$ T �*�U#*$ � !3#
$!
                 Until !3#
$! V �    
Output:  save every new 
& and �*�U#*$, * � /�0 �1

MSFD for functional network analysis in resting-state study. We can estimate 
these representative time courses through the following process. First, many clusters 
could be generated by grouping together all the new (& that are closer than a given 
small threshold �89 � �W�X (correlation coefficient=0.9988). Second, many cluster 
centers are calculated by averaging new time courses in the same cluster. Third, these 
centers are sorted in descending order according to the number of voxels in the cluster. 
More voxels in the cluster, more believable the representative time course is. For 
every representative course YZ and every point 
& in the whole brain, a distance 
index �Z& could be calculated, �Z& � �[\�8\] � �*�U, where �[\�8\] is the distance 
between the new 
& and YZ, Compared with GLM, an analogous Ẑ& value is used 
to measure how close a point 
& is to the YZ.

Ẑ& � _` . a bcd#�Z&$ +e/ . bcd� �Z&,  where ` is length of time course  (6)

Therefore, for YZ there is a ^ map 	 Ẑ&� * � /�0 �1�. If 2 � �, MSI dose not start 
and �*�U � �, �Z& � �[\�8\]. Every point is the representative time courses itself 
since there is just one point in every cluster, i.e. Y& � 
&. Then for every voxel 
&, we 
have a T map. In that case, MSFD is the same as the functional connectivity method.

MSFD for activation detection in task study. Because the aim in task study is to 
find the activity region instead of all activity networks in the brain, it can be seen as a 
special case of whole brain network analysis. We just need to find the right hill (i.e. 
the activation hill) that the given point (the expected hemodynamic response) belongs 
to. So the computational cost is much lower than in resting-state study. In practical, 
the given hemodynamic response (HR) is usually biased by many factors, such as the 
noise, the assumption of different regions share the same HR, etc. A novel idea to 
avoid these limitations and make full use of the given biased reference is to consider it 
as a real time course in brain, and update it through MSI. We consider the corrected 
expected HR as the real activation reference for this subject. Obviously, different 



subjects will have different references. However, these references are close if all 
subjects do the same task, which could be seen from the small dist values of all 
references. The corrected reference is considered as the representative time course of 
the activation hill. MSI is needed only for points which are in a certain cone (e.g. 
correlation coefficient > 0.05). For the points after MSI, �fg � �[\�8\] � �*�U , 
where �[\�8\]  is the distance between new 
&  and the corrected reference. 
Analogously, T values (formula 6) could be calculated for these points. Thus we have 
an activity significant map, i.e. the T map, for the reference. It should be noted that if 2 � �, MSI does not start and the reference does not update. The T map is just the 
same as the T map used in the GLM with the only one repressor, i.e. the reference. 

4   Experiments on Synthetic and Real Data 

Two synthetic and two real experiments are given to compare the proposed method 
with widely used GLM and ICA. For synthetic experiments, we utilize receiver 
operating characteristic (ROC) analysis [14] to evaluate MSFD, GLM (SPM2, 
http://www.fil.ion.ucl.ac.uk/spm/) and ICA (GIFT, http://icatb. sourceforge.net/).  
    In the first synthetic experiment, we will test the activity detection performance 
of three algorithms with the accurate reference. We use a resting-state data as null 
data [15]. Then we preprocess the null data by SPM2 including slice timing, 
realigning, EPI template normalization of h i h i h  voxel size and Gaussian 
smoothing of 4mm FWHM. Last, synthetic data is generated by replacing resting time 
courses in given position (two /� i /� i /�  boxes, Fig.3(a)) with simulated 
response which is generated by mixing reference signal with white noise under a 
given contrast-to-noise ratio (CNR=0.4) [7]. Reference signal is simulated by a 
boxcar (24s rest and 26s stimulation, totals 7 cycles) convolved with the HRF that is a 
combination of two �-functions in SPM2. With the accurate estimation of reference, 
GLM and ICA both achieve good performance (perfect classification), which is 
obvious because the activation signal generation satisfies the assumptions of GLM 
(linear addition, white noise) and ICA (spatially independent). Our MSFD is also a 
perfect classification even without these assumptions. 

Fig. 3 ROC analysis of synthetic data. From left to right: (a) Illustration of block position. (b) 
the real reference, the mean time course of boxes, the biased reference and the corrected 
reference; (c) ROC curves of three methods with the biased reference.

The second synthetic experiment is to evaluate the robustness of methods by 
using a biased reference signal since the real activation reference cannot be accurately 



estimated in real experiment. The average time course of the original resting data in 
the two boxes was added to the reference with CNR=1.0 to simulate the biased 
reference. Correlation coefficient between the real reference and the biased reference 
was 0.723. Fig. 3(b) shows that after MSI, the corrected reference is very close to the 
real reference (correlation coefficient is 0.96), which makes the activity detection 
result unchanged and validates the robustness of MSFD. The ROC curves of the three 
methods with the biased reference are given in Fig.3(c). It reveals that the 
performance of GLM and ICA relies on the reference estimation. A wrong component 
was chosen in ICA based on the biased reference, which got the lowest performance, 
although these components were decomposed independently of the reference. 

In the first real experiment, the real fMRI data is the auditory bi-syllabic data 
from the SPM public dataset (http://www.fil.ion.ucl.ac.uk/spm/data/auditory.html). 
The preprocessing procedures are similar to that in synthetic data. Fig. 4 shows one 
slice of the results. These three methods all found the activated auditory regions. 
From the color bars of Fig. 4, we can find that MSFD have the biggest contrast, 
because it can enhance the boundary between different networks. 

In the second real experiment, the real resting-state data that is the null data in 
the synthetic experiments is used to explore the functional networks. We can get the 
representative time courses after MSFD. And for each of them, we have a T map. 
Here we just show some of these T maps for the default-mode network, hippocampus, 
sensorimotor and visual area (Fig.5). The slice number is shown in each axial image. 

Fig. 4 Results of one slice. From left to right: (Left) GLM (SPM2, p<0.0001); (Middle) ICA 
(GIFT, z> 0.6); (Right) MSFD (T>2). 
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Fig. 5 From left to right: default-mode network, hippocampus, sensorimotor, visual area.

5   Conclusions 

In this paper, we propose a nonparametric Mean Shift Functional Detection (MSFD) 
method based on the Riemannian framework in the functional space. Compared with 
other classic methods, GLM and ICA, MSFD does not assume the linear addition and 



the independence. It is based on the intrinsic manifold formulation, does not depend 
on the initialization and does not assume the number and the shape of clusters. MSFD 
considers the local spatial information, and is a multivariate extension of the 
functional connectivity method. For every optimal representative time course, MSFD 
can get a T map, which is analogous with the T map in GLM. It can enhance the 
boundary between different functional networks, and robustly detect the optimal 
representative time courses of the data. It has a good performance validated by the 
experiments both on synthetic and real data. Therefore, it is a data-driven, robust 
method based on manifold formulation, which is appropriate for both the activation 
detection in task study and the functional network analysis in resting-state study. 
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