
HAL Id: inria-00425150
https://hal.inria.fr/inria-00425150

Submitted on 22 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling advanced simulation scenarios with new
software engineering techniques.

Judicaël Ribault, Olivier Dalle

To cite this version:
Judicaël Ribault, Olivier Dalle. Enabling advanced simulation scenarios with new software engineering
techniques.. 20th European Modeling and Simulation Symposium (EMSS 2008), Sep 2008, Briatico,
Italy. �inria-00425150�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50137283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00425150
https://hal.archives-ouvertes.fr

ENABLING ADVANCED SIMULATION SCENARIOS WITH NEW SOFTWARE ENGINEERING TECHNIQUES

Extended Abstract

Judicaël Ribault

Olivier Dalle

MASCOTTE project-team, INRIA Sophia Antipolis &

I3S, Université de Nice-Sophia Antipolis, CNRS

B.P. 93, F-06902 Sophia Antipolis Cedex, FRANCE.

ABSTRACT

1 INTRODUCTION

In the 1970’s, Zeigler introduce the DEVS formalism (Zei-

gler, Kim, and Praehofer 2000): a hierarchical component

approach to separate modelling concerns. In DEV/SES,

Zeigler introduce the notion of Experimental Framework

(Zeigler, Kim, and Praehofer 2000). This Experimental

Framework divides the computer simulation in two parts:

on one hand the model of the System Under Testing (SUT)

and on the other hand, the Experimental Frame. Here-

after, we will refer to the part of the Experimental Frame

that generates exogenous events for the model part, as the

scenario part. This approach has benefits and drawbacks.

The benefits are a better separation of concerns that favors

reusability of components. The drawbacks are twofold: (i)

it prohibits direct interactions between the scenario part and

components deeply burried in the model part; (ii) it does

not support building scenario based on structural changes

of the model.

In this paper, we introduce new techniques to get around

these limitations while enforcing the separation of concerns

approach of the Experimental Framework. In fact, separat-

ing models and scenario allow a better reuse of components

in both parts: reuse a model with a lot of Experimental

Frame, or reuse an Experimental Frame with a lot of model

depending on the goals of the simulation. In particular, a

model that can be reused multiple times or used in combi-

nation with other models can save a many time, money, and

human effort (Davis and Anderson 2003). From a method-

ological point of view, reuse allows to: (i) build reference

model used in several studies, particularly to compare dif-

ferent solutions and (ii) benefit from user feed-back and/or

improvements. There are also situations in wich reuse can

simply not be avoided. Indeed, we may distinguish two

levels of component reuse: (i) reuse at source level offers

enough flexibility to allow reusing with modifications of the

sources. But this modifications can cost a lot of time and

money in terms of verification and validation. (ii) Reuse

at execution level prohibits modifications because sources

code are not provided. The sources code was not provided

when the model must remain secret: to protect an industrial

secret, for security reasons, and so on.

Section 2 present the software background involved in

this paper. Section 3 present the use case in wich we present

the use of ADL (section 3.2) and AOP (section 3.3).

2 Background

This section present Open Simulation Architecture (OSA)

(Dalle 2007): a discrete-event simulator that provides a

process-oriented programming model and the software in-

volved in this implementation.

2.1 Open Simulation Architecture

The goal of OSA is to help users in their simulation activities

like building models, developping simulations campaigns,

running experiences plans, or analyzing data results. Also,

OSA aims at becoming framework for the modelling and

simulation community by favoring the integration of new

or existing contributions at all levels architecture. Figure

1 represents the OSA architecture. In the left part, the

front end-users GUI based on Eclipse framework. In the

center part, the functional concerns and in the right part

the simulation tasks. Functional concerns resolve one or

more typical simulation tasks. Each functional concerns

are part of the OSA software components and must be

considered optional and replaceable independently from one

another. In OSA, handling are almost always hidden in the

controller component thus significantly reduce the modelling

process, but also simplifies the replacement of any part of the

simulation engine. OSA allows to model component-based

systems using Fractal component (Bruneton, Coupaye, and

Stefani 2004). AOKell, an open implementation in Java of

the Fractal component model, provides an aspect-oriented

approach to integrate control concerns in component. In

2.3 Aspect-Oriented Programming Ribault and Dalle

practice, the real system is represented by a FractalADL

application. This application can then be instrumented using

Fractal component capability.

Figure 1: OSA functionnal architecture.

2.2 Fractal component

Fractal basis development lies in writing components and

connections that enable components communication. Frac-

tal specification is based on: (1) hierarchical components

that provide a uniform view of applications at different levels

of abstraction, (2) shared components that allow modelling

and sharing of resources, while preserving hierarchical com-

ponents, (3) introspection to observe the performance of a

system, and (4) (re)configuration capabilities that enable

deployment and dynamic system configuration. Further-

more, Fractal is an extensible model because it allows the

developer to customize the control capabilities of each ap-

plication’s component. A Fractal component is an unit of

deployment that have one or more interfaces. An interface

is an entry point to the component. An interface implements

an interface type, which specifies the operations supported

by the interface. There are two types of interfaces: server

interfaces that correspond to the services provided by the

component and client interfaces that correspond to services

required by the component. A Fractal component is nor-

mally composed of two parts: a membrane which possesses

functional interfaces and interfaces allowing introspection

and (dynamic) configuration of a component, and a content

that is made up of a finite set of sub-components.

Figure 3 shows an example of Fractal component. Com-

ponents are represented by rectangles. The bold line cor-

responds to the membrane component. The inner part

corresponds to the content of the component. Interfaces are

represented by round for clients interfaces, and by empty

half-round for servers interfaces. Note that internal inter-

faces allow a hierarchic component to control the exposure

of its external interfaces to its sub-components. External

sub−component

content

binding

external

interface component
shared

membrane

Figure 2: Fractal component example.

interfaces appearing at the top of the components are com-

ponent control interfaces. dashed line represent connections

among components. Fractal provide a Architecture Descrip-

tion Language (ADL) (Clements 1996), (Medvidovic and

Taylor 2000) to describe applications architecture.

2.2.1 Fractal ADL

FractalADL is a XML language to describe the architecture

of a Fractal application: components topology (or hierarchy),

relationship between client and server, name and initial

value of components attributes. A FractalADL definition

can be divided into several subs definitions and several

files. Moreover, the language supports a mechanism to

ease the extension and redefinition through inheritance. The

motivation for such scalability is twofold. On the other hand,

the component model itself is extensible, it is possible to

attach an arbitrary number of components controllers. There

are multiple uses for a given ADL definition: deployment,

verification, analysis, and so on. FractalADL allows to

separate concerns because model definition can be split in

multiple files. ADL language is interpreted by a specialized

component of Fractal called a Factory: to read completely

(recursively) a description of a Fractal application, just send

a request to the Fractal Factory to read and instantiate the

root component of the application. To instantiate the various

components, the factory creates a Fractal Abstract Syntax

Tree (AST), where each node corresponds to a XML entity

of the ADL.

2.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) (Elrad, Filman, and

Bader 2001) is a new paradigm for modularizing applica-

tions with many concerns. AOP goals are (i) separation of

concerns: the goal is to design systems so that functions

can work independently of other functions, and so it is

easier to understand, design and manage complex interde-

pendent systems; (2) crosscutting interactions: it is not easy

to modularized common-interest concerns used by several

modules, like logging service; (3) dependencies inversion:

3 REUSE COMPONENT-BASED MODEL Ribault and Dalle

instead module use well-known services, the well-know

service shall use modules.

3 Reuse component-based model

EE

A B

Scenario

Model

Scenario X Model

C

EE BA C

X

Figure 3: Reuse and adapt a model of reference.

We present in this paper new techniques to build scenar-

ios from existing component models. We focus on reusing

model at execution level. Starting from an existing model

we want to preserve (for example because it came after

a long validation and verification process, or because we

want to keep the source code secret), we build a complex

scenario. Figure 3 show the composition of the complex

scenario and the reference model. Reference model con-

tains two components A and B. Complex scenario add a

new component C between A and B, and a new component

EE wich generate exogeneous events. The composition is

the result of the model and the scenario. To obtain this

composition, we propose to use in two originals ways: (i) an

Architecture Description Language (ADL) with overloading

capability like FractalADL and (ii) Aspect-Oriented Pro-

gramming (AOP) like AspectJ to extend the reusability of

a model thru a simple case study : user authentication on

server thru a not secure file transert protocol (FTP).

ClientImpl ServerImpl

Client Server

cftp

sftp

Figure 4: Components layout of File Transfers Protocol case

study.

3.1 Case study

As described previously, we propose to use AOP and ADL

in an original way to override difficulties in reusing models.

We choose in this paper to show the cost and benefits thru a

simple case study. First, let us assume that we have a model

we want to reuse to test different security flaws. There is

a model representing the Basic operation of a server File

Transfer Protocol (FTP). This simple model has not been

developed in order to be used in this study, we are not

supppose to have the source code, and even we need to test

the safety of this protocol. Figure 4 shows the architecture

of the model, and Listing 1 details its implementation in

FractalADL. Line 4 specifies the name of this model, line

6-11 correspond to the client definition and line 12-19 to

the server definition. Line 7-9 and 14-16 describe client

and server interfaces used by the binding on line 20-21.

Listing 1 Fractal ADL definition used to implement layout

of figure 4.

01<?xml version="1.0" encoding="ISO-8859-1" ?>

02<!DOCTYPE definition skipped ... >

03

04<definition name="ftp">

05

06 <component name="Client">

07 <interface name="cftp"

08 role="client"

09 signature="FTPService"/>

10 <content class="ClientImpl"/>

11 </component>

12

12 <component name="Server">

14 <interface name="sftp"

15 role="server"

16 signature="FTPService"/>

17 <content class="ServerImpl"/>

18 </component>

19

20 <binding client="Client.cftp"

21 server="Server.sftp"/>

22</definition>

The protocol represented by this model is a two-party

protocol. We will denote the two parties by the name Client

and Server (Client want to be authenticated on Server). The

model works like this : the client send the users login and

password to the server to be authenticated. To do this,

client ask his interface (cftp, declared line 07) to obtain

3.3 Spyware with aspect-oriented programming Ribault and Dalle

connection with the server. In this study, we focus on the

login process to test security flaw.

From this model, we propose a new reusing approach.

First, we will show how to add a man in the middle attacker

in this model using the overload capability of FractalADL.

Second, we will show how to simulate spyware on client

using the overload capability of FractalADL and AOP.

3.2 Man-in-the-middle attacker with Fractal ADL

ClientImpl ServerImpl

Client Server

cftp

sftp

AttackerImpl

asftp
acftp

Attacker

Figure 5: Components layout of Fractal’s MITM attack.

From the original model describe in section 3.1, we

want to test the ftp login process security. We decide to test

the security against a man-in-the-middle attacker. In the

man-in-the-middle setting (MITM), there is a third party

called Adversary. All the communication between Client and

Server are intercepted by Adversary. Thus both Client and

Server talk to Adversary and cannot communicate directly

with each other. Adversary need to transmit information

between Client and Server, but - it’s the security break -

he can read, change, or drop transmit depending on his

settings.

What makes this case interesting is to modify the original

FTP topology (figure 4) to obtain the new topology describe

in figure 5. In practice, we need to add a new component

inside a model. Like in reality, Adversary need to mimic

Server interface and Client Interface. In fact, Adversary

need to imitates Server for the Client, and imitates Client

for the Server. Figure 5 show the new architecture we

want to obtain compared to figure 4 section ??. Since

model is locked, we cannot change his topology directly in

source code. Listing 2 shows how to use the FractalADL

overload capability to overload the topology. Line 04 show

we extend the original ftp model in a new model called

mitm-ftp. Line 06-14 represent the declaration of the new

Adversary component. And line 16-19 demonstrate how

overload the original binding between Client and Server by

a new binding between Client and Adversary, and between

Listing 2 Fractal ADL definition used to implement layout

of figure 5.

01<?xml version="1.0" encoding="ISO-8859-1" ?>

02<!DOCTYPE definition skipped ... >

03

04<definition name="mitm-ftp" extends="ftp">

05

06 <component name="Adversary">

07 <interface name="acftp"

08 role="client"

09 signature="FTPService"/>

10 <interface name="asftp"

11 role="server"

12 signature="FTPService"/>

13 <content class="AdversaryImpl"/>

14 </component>

15

16 <binding client="Client.cftp"

17 server="Adversary.asftp"/>

18 <binding client="Adversary.acftp"

19 server="Server.sftp"/>

20</definition>

Adversary and Server. With this topology, communication

between the Client and the Server pass thru the Adversary.

This example shows how to modify a model to include

new component or change topology. The overload capa-

bility of Fractal ADL permit to reuse and change some

specification of the model like topology. In fact, in our

example, communication between the Client and the Server

go thru the Adversary but the FTP model have not been

modified. We build a new model extending the original

FTP model, and overload the binding between the Client

and the Server. In the next section, we use FractalADL to

add a new component and change the topology, but we also

demonstrate how to use AOP. The next section described

the FTP model with a spyware inside the client.

3.3 Spyware with aspect-oriented programming

In this section, we demonstrate how using Fractal ADL

and aspect-oriented programming we can add a spyware

(Stafford and Urbaczewski 2004) into the Client from the

original FTP model. Spyware is the name given to the class

of software that is surreptitiously installed on a computer

and monitors users activities and reports back to a third

party on that behavior [Anon, 2004; Daniels, 2004; Doyle,

2003; Taylor, 2002]. We want to model a spyware inside

the Client of the FTP model. The goal of this attack is to

take the user login and password when typed in. Spyware

send all information to a third party using the network. The

model architecture we want to obtain is shown in figure 6.

We see the Client is connected to a third entity (Spy) and

contain a SpyWare inside his implementation.

Listing 3 shows a solution using Fractal ADL and AOP

to introduce spyware in original FTP model. Using the

extension capability of Fractal ADL, we add a new spy

interface to the Client component, we add a Spy component

4 CONCLUSION Ribault and Dalle

ServerImpl

Client Server
sftp

cftp

sspy

cspy

SpyImpl

ClientImpl

SpyWare

Spy

Figure 6: FTP model with SpyWare in Client.

and we bind the Client and the Spy together. Line 04

show how to create a new model extending the original

FTP model. Line 06-17 represent the Spy component, line

07-09 represent the interface for connecting with the Spy

component. Line 13-17 represent the Client component

declared in the original FTP model, line 14-16 show the

new interface added to the Client component. Line 19-20

represent the binding to connect the Client with the Spy

component.

Listing 3 Fractal ADL used to implement layout of figure

6.
01<?xml version="1.0" encoding="ISO-8859-1" ?>

02<!DOCTYPE definition skipped ... >

03

04<definition name="spyware-ftp" extends="ftp">

05

06 <component name="Spy">

07 <interface name="sspy"

08 role="server"

09 signature="SpyService"/>

10 <content class="SpyImpl"/>

11 </component>

12

13 <component name="Client">

14 <interface name="cspy"

15 role="client"

16 signature="SpyService"/>

17 </component>

18

19 <binding client="Client.cspy"

20 server="Spy.sspy"/>

21</definition>

AOP allows us to introduce new code into objects

without the objects is needing to have any knowledge of

that introduction. The FTP model has been validated and

we don’t have the source code so we can’t change it to

introduce some concerns about spyware. The Listing 4

show how using AOP we can add some concerns inside a

model. Line 01 explain we want to intercept a method call,

and do something before the method was called. Line 02

show the method we want to intercept, it’s all methods from

Listing 4 Fractal ADL used to implement layout of figure

6.
01 before(ClientImpl b) :

02 call(* FTPService.*(..)) && this(b)

03 && if(isBinding(b)) {
04 try {
05 SpyService spyS = b.lookupFc("cspy");

06 spyS.send(thisJoinPoint.getArgs()[0]+"");

07 } catch (NoSuchInterfaceException nsie) {
08 ...

09 }
10 }

the FTPService java interface called by a ClientImpl class.

Line 03 add a condition, only component binded with a Spy

component are concerned. Line 05 ask the Client interface

connected to the Spy component to have this one. Line

06 call thru the connection with the Spy the send method

to send data. This aspect (written in AspectJ) represent

the Spyware, the Spy component represent the third party

waiting for data to analyze.

This example shows how to modify a model to include

new component, change topology and instrument a com-

ponent. The capability of AOP to inject some code inside

the model allow to read variables of the model. Here we

demonstrate how a third component can access the login

and password field during the login process of the client

on server.

4 CONCLUSION

We have shown how ADL and AOP techniques can be used

to extend the reusability of a model. Both techniques offer

new way to create a complex scenario without modifying

the original model. So, the model remain valid and thus

economize a lot of works and moneys. ADL allow to build

a composition of the model and the scenario by overloading

some model definition like bindings. AOP helps to add some

code into the model to allow other component reads model’s

variables. But we need to build a tools that automaticaly

verify if the code injected does not modify the model’s

content. In fact, if the code injected have some edge effect,

it would be preferable to replace it by a new component or

concider it as a new component. Future works could be to

study the possibility to build a DEVS engine for OSA. This

means that OSA could offer the DEVS formalism with the

capability to build complexes scenarios by reusing models.

But we need to answers some questions first like is DEVS

formalism compliant with AOP ? Another interesting works

could be to build bigger models and complexes scenarios,

particularly in the security domain.

Ribault and Dalle

ACKNOWLEDGMENTS

REFERENCES

Bruneton, E., T. Coupaye, and J. Stefani. 2004, February.

The fractal component model specification. Available

from http://fractal.objectweb.org/specification/. Draft

version 2.0-3.

Clements, P. C. 1996. A survey of architecture description

languages. 16: IEEE Computer Society.

Dalle, O. 2007, Februray. Component-based discrete event

simulation using the fractal component model. In AI,

Simulation and Planning in High Autonomy Systems

(AIS)-Conceptual Modeling and Simulation (CMS) Joint

Conference. Buenos Aires, AR.

Davis, K. P., and A. R. Anderson. 2003. Improving

the composability of department of defense models

and simulations. RAND Technical report available at

http://www.rand.org/publications/MG/MG101/ (last ac-

cessed April 2008).

Elrad, T., R. E. Filman, and A. Bader. 2001. Aspect-oriented

programming: Introduction. Commun. ACM 44 (10):

29–32.

Medvidovic, N., and R. N. Taylor. 2000. A classification

and comparison framework for software architecture

description languages. IEEE Trans. Softw. Eng. 26:70–

93.

Stafford, T. F., and A. Urbaczewski. 2004. Spyware: The

ghost in the machine. 291–306: Commun. AIS 14.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 2000. Theory

of modeling and simulation. Academic Press, Inc.

	INTRODUCTION
	Background
	Open Simulation Architecture
	Fractal component
	 Fractal ADL

	Aspect-Oriented Programming

	Reuse component-based model
	Case study
	Man-in-the-middle attacker with Fractal ADL
	Spyware with aspect-oriented programming

	CONCLUSION

