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Abstract: Multi-level discrete models of genetic networks, or the more general piece-
wise affine differential models, provide qualitative information on the dynamics of the
system, based on a small number of parameters (such as synthesis and degradation
rates). Boolean models also provide qualitative information, but are based simply on
the structure of interconnections. To explore the relationship between the two for-
malisms, a piecewise affine differential model and a Boolean model are compared, for
the carbon starvation response network in E. coli. The asymptotic dynamics of both
models are shown to be quite similar. This study suggests new tools for analysis and
reduction of biological networks.
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Comparaison entre modèles booléens et différentiels

linéaires par morceaux ; application aux réseaux

géniques

Résumé : Les modèles discrets (multi-niveaux), et plus généralement les modèles
différentiels linéaires par morceaux, donnent des informations qualitatives sur la dy-
namique d’un système, en utilisant très peu de paramètres (comme les taux de synthèse
et de dégradation d’une espèce). Les modèles booléens donnent aussi des informations
qualitatives en partant seulement de la structure des interconnections. Pour examiner
les rapports entre ces deux types de formalismes, cette étude mène une comparaison en-
tre un modèle différentiel linéaire par morceaux et un modèle booléen, pour un réseaux
génique lié à la réponse au stress en carbone de la bactérie E. coli. Cette étude suggère
de nouveaux outils pour l’analyse et la réduction des modèles de réseaux biologiques.

Mots-clés : Modèles booléens, modèles linéaires par morceaux, réseaux géniques,
réduction de modèles
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1 Introduction

Genetic regulatory networks have been analysed through various different formalisms,
in particular continuous differential models [17], piecewise affine (PWA) models [10, 8,
4], multi-level discrete models [13, 11], and Boolean models [6, 5, 3, 14]. Each formal-
ism has its advantages and drawbacks, and different models using different formalisms
may provide complementary information on the system. To illustrate this point of view,
we will analyse the PWA model of the carbon starvation response in E.coli developed
in [10], which was studied mathematically in [8]. An algorithmic method, consisting
of two mains steps, will be proposed to construct a Boolean model from a piecewise
affine model: first, the PWA system gives rise to a multi-level discrete system, where
each variable takes values in a finite set; then the discrete model can be translated into
a Boolean model, by appropriately extending the state space (see, for instance, [16]).
(See Section 2 and Appendix 1).

The Boolean model has two attractors that correctly represent the asymptotic be-
haviour of the piecewise linear system, under two different input conditions. Following
the method developed in [14], it is possible to identify a family of “operational inter-
actions” for each attractor: a subset of the original network of interactions that actively
contribute to characterize the dynamics within that attractor. This family of operational
interactions, together with the components involved, constitutes a smaller (Boolean)
subsystem of the original system, which can be used to construct a reduced model of
the system of differential equations. The asymptotic dynamics of the PWA and Boolean
model are compared and shown to agree in most qualitative aspects (Section 4). In par-
ticular, we illustrate the correspondance between a sliding mode in the PWA model [8]
(which may induce chattering or Zeno behaviour [18] in one of the variables), and pe-
riod 2 oscillations in the Boolean model (see Section 5). These results suggest future
applications of Boolean network analysis to model reduction techniques.

2 Piecewise affine, discrete and Boolean models for ge-

netic networks

To compare the results of discrete and Boolean modelling frameworks, we first briefly
describe the different formalisms, and discuss some methods to transform a model from
one formalism to the other without changing the dynamical behaviour. As an example,
the model developed in [10] and studied in [8] will later be analysed. Throughout this
section, for a system with n > 0 variables, let xi (i = 1, . . . , n) denote the continuous
variables, Vi the corresponding discrete variables, each with a discrete set of values
Vi ∈ {0, 1, . . . , di} (di ≥ 1). Below we will define also Vi,j (j = 1, . . . , di), to be the
Boolean variables associated to the multi-level variable Vi.

2.1 From discrete to Boolean models

Boolean (purely binary) and discrete (multi-level) models are related in several ways.
One way to generate a Boolean model from a multi-level model is to generate a set of
Boolean variables for each multi-level discrete variable (see, for instance, [16, 12, 13]).
Our construction (detailed in the Appendix 1) is based on hypothesis H1.

Consider a discrete model Σd = (Ωd, Fd), with variables V = (V1, . . . , Vn), state
space Ωd = {0, 1, . . . , d1} × · · · × {0, 1, . . . , dn}, and a map Fd : Ωd → Ωd which
defines the state transition table. This map lists all the possible transitions from each
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4 Chaves, Tournier & Gouzé

state, and thus defines the possible dynamical trajectories of the system. At each state
V ∈ Ωd, the next possible value for variable i is given by: V +

i = (Fd)i(V ). Through-
out this paper we will consider only asynchronous dynamics, where exactly one vari-
able is updated at any given time (for more details, see Appendix 1). This gives rise to
a non-deterministic system, where each state may have more than one successor:

V + ∈ {W ∈ Ωd : ∃k s.t. Wk = (Fd)k(V ) 6= Vk and Wj = Vj , ∀j 6= k }. (1)

Following previous work on multi-level systems [12, 13], it will be assumed that the
state transition map Fd satisfies the hypothesis:

H1. Each variable Vi can only switch from its current level to an immediately adja-
cent level, that is:

V +

i ∈ {Vi − 1, Vi, Vi + 1}, ∀i.

In other words, any variable Vi can only be increased or decreased by one unit at
each time. This hypothesis represents the continuity of the biological variables: the
concentration of a given protein cannot evolve from level d to level d + 2 without
passing through level d+ 1.

To construct a Boolean model Σb associated to Σd, the state space will be ex-
panded by adding extra variables. If a discrete variable Vm takes values in the set
{0, 1, . . . , dm}, then, in the Boolean model, dm variables will be created (see [16, 12,
13]):

H2. For each Vm ∈ {0, 1, . . . , dm} in the discrete model, generate Vm,1, . . . , Vm,dm
∈

{0, 1} such that:

Vm = k ⇔ [ Vm,1 = · · · = Vm,k = 1 and Vm,k+1 = · · · = Vm,dm
= 0 ].

In particular, note that Vm,k ≥ Vm,k+1, for all k = 1, . . . , dm − 1, meaning that if Vm

is at a certain level, then all inferior levels must be “filled” as well. This hypothesis
requires special attention when constructing the Boolean model from the discrete one,
since we will wish to avoid transitions from a permissible (i.e., satisfying H2) to a
forbidden (i.e., not satisfying H2) state. Our procedure deals with this problem in a
natural way (see Appendix 1), and guarantees that no transitions from permissible to
forbidden states take place.

2.2 From piecewise affine to multi-level discrete models

In models of genetic regulatory networks it is common to represent the activation (or
inhibition) of one gene by another by a Heaviside function, that is, if the concentration
of the first “gene” is below a certain threshold, then there is no transcription of the sec-
ond gene; while above that threshold transcription is fully turned on. This description
gives rise to piecewise affine differential models [6, 5]. A general way to represent the
influence of variable xi on variable xk is through a step function with threshold θ∗i .
Increasing or decreasing step functions are defined as [6, 5]:

s+(xi, θ
∗
i ) =

{

0, xi < θ∗i
1, xi > θ∗i ,

INRIA



Boolean and piecewise affine models for genetic networks 5

and s−(xi, θ
∗
i ) = 1 − s+(xi, θ

∗
i )1. These functions are not defined at the thresh-

old points. At these points, the system of equations is defined as a differential inclu-
sion [7, 2]. To construct a multi-level discrete model from the PWA model, based on
the work [13], we will consider that the number of levels of a given variable xi, is equal
to the number of thresholds which define the influence of xi on the other variables:

0 < θ1i < θ2i < · · · < θdi

i < +∞.

Define the corresponding multi-level discrete variable by:

Vi =







0, 0 ≤ xi ≤ θ1i
k, θk

i < xi ≤ θk+1

i , k = 1, . . . , di − 1

di, θdi

i < xi < +∞.

(2)

To obtain a transition table (Fd) for the discrete model, the ordering among thresholds
is used. Let Vi and V +

i denote, respectively, the discrete current and updated values for
the continuous variable xi. Suppose the level set of variable i is {0, 1, . . . , di}. For each
discrete combination of values (a vector V = (V1, . . . , Vn) ∈ Ωd), each continuous
variable is in an interval between thresholds, as defined in (2). The PWA equation for
xi will take a particular expression for each V (see (6)-(9), for an example), and have
a corresponding fixed (or focal) point x̂ = x̂(V ). Then Vi is updated to evolve towards
x̂i, in such a way that hypothesis H1 is satisfied: if x̂i is in the interval (θk

i , θ
k+1

i ), then

V +

i = (Fd)i(V )







min{di, Vi + 1}, Vi < k,
Vi, Vi = k,
max{0, Vi − 1}, Vi > k.

(3)

The state transition table Fd for the discrete system associated to the PWA system
can thus be built. The discrete system evolves according to an asynchronous strategy,
following the updating rule (1).

3 Example: the carbon starvation response in E.coli

As an example, the E. coli model developed by Ropers et al. in [10] and studied
in [8] will be analysed (see these two references for more details on the biological
and modelling aspects). This model describes the dynamics of a family of genes that
regulate the carbon starvation response in E.coli (Fig. 1): crp (xc), cya (xy), fis (xf ),
gyrAB (xg), topA (xt), and rrn (xr). Nutritional stress is represented by an input u ∈
{0, 1}: u = 0 if carbon is present, and u = 1 in the absence of carbon.

3.1 Piecewise affine and discrete models

We will use the notation: x = (xc, xy, xf , xg, xt)
′ ∈ R

5
≥0 denotes the continuous

variables, V = (C, Y, F,G, T )′ ∈ Ωd denotes the corresponding multi-level discrete
variables, and Ci, i = 1, . . . , dc denote the Boolean variables, associated with crp

1The superscripts “+” or “-” indicate whether the step function is increasing or decreasing. This notation
is not related to V

+ used in discrete and Boolean systems, which designates the successor of state V .
Since s

+ and V
+ are used for different systems (respectively, PWA and discrete), the notations will not be

confused.

RR n° 7070



6 Chaves, Tournier & Gouzé

Figure 1: Genetic network, including proteins and regulations that come into play dur-
ing a nutritional stress response in E.coli: CRP activation module (Cya, CRP, Fis),
DNA Topology module (GyrAB, TopA, Fis), stable RNA output module (Rrn).

(similar notation is used for the other network components). The PWA equations are
taken from [10]:

ẋc = κ1
c + κ2

cs
−(xf , θ

2
f )s+(xc, θ

1
c )s+(xy, θ

1
y)s+(u, θu) + κ3

cs
−(xf , θ

1
f ) − γcxc

ẋy = κ1
y + κ2

y[1 − s+(xc, θ
3
c )s+(xy, θ

3
y)s+(u, θu)] − γyxy

ẋf = κ1
f [1 − s+(xc, θ

1
c )s+(xy, θ

1
y)s+(u, θu)]s−(xf , θ

5
f )

+κ2
fs

+(xg, θ
1
g)s−(xt, θ

2
t )s−(xf , θ

5
f ) × [1 − s+(xc, θ

1
c )s+(xy, θ

1
y)s+(u, θu)] − γfxf

ẋg = κ1
g[1 − s+(xg, θ

2
g)s−(xt, θ

1
t )]s−(xf , θ

4
f ) − γgxg

ẋt = κ1
t s

+(xg, θ
2
g)s−(xt, θ

1
t )s+(xf , θ

4
f ) − γtxt

ẋr = κ1
rs

+(xf , θ
3
f ) + κ2

r − γrxr (4)

with the following inequalities among thresholds:

0 < θ1c <
κ1

c

γc

<
κ1

c + κ2
c

γc

< θ2c < θ3c <
κ1

c + κ3
c

γc

0 < θ1y <
κ1

y

γy

< θ2y < θ3y <
κ1

y + κ2
y

γy

0 < θ1f <
κ1

f

γf

< θ2f < θ3f < θ4f < θ5f <
κ1

f + κ2
f

γf

0 < θ1g < θ2g <
κg

γg

0 < θ1t < θ2t <
κt

γt

(5)

To construct a discrete (multi-level) system from (4), note that:

• crp contributes to inhibit fis and activate itself once it reaches threshold θ1c , and
contributes to cya inhibition at θ3c . Since threshold θ2c doesn’t enter into any
equations, it will not be considered here;

INRIA



Boolean and piecewise affine models for genetic networks 7

• cya contributes to inhibit fis and activate crp at θ1y and contributes to its own
inhibition at θ3y . As for crp, the level θ2y will not be considered here;

• gyrAB contributes to fis activation at θ1g , and inhibits itself and activates topA at
θ2g ;

• topA influences gyrAB and inhibits itself at θ1t and contributes to fis inhibition at
θ2t ;

• fis has five threshold concentrations. It inhibits crp promoters 1 and 2 once it
reaches lower thresholds θ1f and θ2f , activates rrn at threshold θ3f , inhibits gyrAB
and activates topA at θ4f , and inhibits itself at θ5f .

Since rrn is an output variable (it doesn’t influence any of the other five), we will
drop this variable and consider only four different thresholds for fis. Without loss of
generality for the dynamics of the model, one can also say that rrn is activated once
fis is above θ2f (or θ4f ). Therefore, we will assume that: C, Y,G, T ∈ {0, 1, 2} and
F ∈ {0, 1, . . . , 4}.

To obtain the discrete model from equations (4), we follow the method indicated
above. For example, consider the equation for xc, which can take only one of four
forms:

ẋc = κ1
c − γcxc (6)

ẋc = κ1
c + κ2

c − γcxc (7)

ẋc = κ1
c + κ3

c − γcxc. (8)

ẋc = κ1
c + κ2

c + κ3
c − γcxc (9)

Let C and C+ denote, respectively, the current and updated value for variable crp.
For any state V ∈ Ωd, consider the appropriate equation (6)-(9), together with inequal-
ities (5). In cases (6), (7): C+ = C+1 ifC = 0, C+ = C ifC = 1, andC+ = C−1 if
C = 2. In cases (8), (9): C+ = C+1 ifC < 2, andC+ = C ifC = 2. The multi-level
discrete model obtained from the PWA model is represented by its transition tables in
the Appendices 2-5.

3.2 Boolean model

Following the method described in Section 2.1, and from the Tables in the Appen-
dices 2-5, the Boolean model for the E. coli network can be written:

U
+

= U

C
+
1 = 1

C
+
2 = (U ∧ C1 ∧ F1) ∨ (U ∧ C1 ∧ F2 ∧ F3 ∧ F4)

Y
+
1 = 1

Y
+
2 = (U ∧ Y1) ∨ (U ∧ [(Y1 ∧ (C1 ∨ C2)) ∨ ((Y1 ∧ Y2) ∧ C1 ∧ C2)])

G
+
1 = (F3 ∧ F4) ∨ [(F1 ∧ F2 ∧ F3) ∨ G2]

G
+
2 = F3 ∧ F4 ∧ G1 ∧ (G2 ∨ T1 ∨ T2)

T
+
1 = [F3 ∧ F4 ∧ T2] ∨ [F1 ∧ F2 ∧ F3 ∧ ((G2 ∧ T2) ∨ (G2 ∧ (T2 ∨ T1)))]

T
+
2 = 0

F
+
1 = (U ∧ H

0
1) ∨ (U ∧ H

1
1)

F
+
2 = (U ∧ H

0
2) ∨ (U ∧ H

1
2)

F
+
3 = (U ∧ H

0
3) ∨ (U ∧ H

1
3)

F
+
4 = (U ∧ H

0
4) ∨ (U ∧ H

1
4)
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8 Chaves, Tournier & Gouzé

Table 1: Attractors of Boolean model.

Att. C1 C2 Y1 Y2 G1 G2 T1 T2 F1 F2 F3 F4

A1 (U = 1) 1 1 1 ∗ 1 ∗ 0 0 0 0 0 0
A0 (U = 0) 1 0 1 1 ∗ ∗ ∗ 0 1 ∗ ∗ ∗

where:

H
0
1 = 1

H
0
2 = (F1 ∧ G1 ∧ T2) ∨ (F1 ∧ F2 ∧ F3)

H
0
3 = (F1 ∧ F2 ∧ G1 ∧ T2) ∨ (F1 ∧ F2 ∧ F3 ∧ F4)

H
0
4 = (F1 ∧ F2 ∧ F3 ∧ F4 ∧ G1 ∧ T2)

H
1
1 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧ H

0
1 ] ∨ [(C1 ∨ C2 ∨ Y1 ∨ Y2) ∧ F1 ∧ F2]

H
1
2 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧ H

0
2 ] ∨ [(C1 ∨ C2 ∨ Y1 ∨ Y2) ∧ F1 ∧ F2 ∧ F3]

H
1
3 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧ H

0
3 ] ∨ [(C1 ∨ C2 ∨ Y1 ∨ Y2) ∧ F1 ∧ F2 ∧ F3 ∧ F4]

H
1
4 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧ H

0
4 ].

Analysis of this Boolean model (using the computational tools described in [14])
shows that it has two attractors: a strongly connected component with four states when
U = 1, and a strongly connected component with 24 states in the case U = 0. In
Table 1, the fixed coordinates for each attractor are indicated. Following the method
used in [14], it is possible to computationally identify the “operational interactions”
within this attractor, and the variables associated with these interactions. That will give
a subsystem of the original system.

For attractor A1 (U = 1), we obtain: G+

2 = G2 and Y +

2 = Y2. That is, keeping
one of the two variables G2 or Y2 fixed, the other can switch between zero and one,
generating a fully reversible cycle as shown in Fig. 3 (see interpretation in Section 5).

For the attractor A0 (U = 0), the operational subnetwork is depicted in Fig. 2.
The diagram of interactions corresponding to this reduced system is shown in Fig. 2.
Several cycles are possible within attractor A0. The corresponding transition graph is

G+

1 = F3 ∨G2

G+

2 = F3 ∧G1 ∧ (G2 ∨ T1)
T+

1 = F3 ∧G2 ∧ T1

F+

2 = G1 ∨ F3

F+

3 = (G1 ∨ F4) ∧ F2

F+

4 = G1 ∧ F3 ∧ F4.

Figure 2: Operational interactions within attractor A0. Shaded regions indicate
Boolean variables related to the same discrete multi-valued variable.

represented in Figs. 5 (T1 = 0) and 6 (T1 = 1), and discussed in Section 4.

INRIA



Boolean and piecewise affine models for genetic networks 9

4 Comparison between Boolean and PWA differential

models

To compare the two modelling formalisms, we now briefly summarize the results ob-
tained in [8] for the model (4). First, the solutions were defined with the help of Fil-
ippov’s differential inclusions. Then, the asymptotic dynamics were computed for the
two values of the input. This system exhibits both equilibria (some in the sense of
Filippov) and sliding modes (stable sliding motion along a threshold).

For the case U = 1, the asymptotic dynamics of (4) satisfies:

• xc(t) →
κ1

c+κ2
c+κ3

c

γc
> θ3c > θ2c ;

• xy(t) = θ3y , in finite time;

• xf (t) → 0;

• xg(t) = θ2g , in finite time;

• xt(t) → 0.

Therefore, the solutions converge to a fixed point in the sense of Filippov. In practice,
one may expect a sliding mode along xg = θ2g , and “chattering” in the variable xg .
Variable xy satisfies a similar dynamics. This characterization is obtained also with the
Boolean model which, for the case U = 1, converges to an attractor with four states
(Fig. 3). In these states only the values of G2 ∈ {0, 1} and Y2 ∈ {0, 1} may vary,

00
←
→ 1:0

↓ ↑ ↓ ↑

0:1
←
→ 1:1

Figure 3: Transition graph within attractor A1.The state 1:0 represents: (G2, Y2) =
(1, 0).

and the transitions indeed correspond to a chattering mode in the variables xg and/or
xy , between the highest (G1 = G2 = 1 or Y1 = Y2 = 1) and intermediate (G1 = 1,
G2 = 0 or Y1 = 1, Y2 = 0) levels. The variables C1 = C2 = 1 indicate that xc

converges to its highest level, and also T1,2 = 0, F1,2,3,4 = 0, exactly recovering the
piecewise affine asymptotic results for xt and xf .

For the case U = 0, the asymptotic dynamics of (4) can be reduced to the equations
on xg and xf (see Fig. 4) with:

• xc(t) →
κ1

c

γc
and xy(t) →

κ1
y+κ2

y

γy
, after some finite time;

• xt(t) ≤ θ1t and xg(t) ≤ θ2g , after some finite time;

• Sliding mode along the plane xt = θ1t with the solution eventually jumping down
to the region xt < θ1t , and staying there;

• Sliding mode along the line xg = θ2g and xf < θ4f , with the solution reaching
(and leaving) the point xg = θ2g and xf = θ4f in finite time;

RR n° 7070



10 Chaves, Tournier & Gouzé

• Sliding mode along the line xg > θ1g and xf = θ5f , with the solution reaching
(and leaving) the point xg = θ1g and xf = θ5f in finite time;

• Damped oscillations around the point xg = θ1g and xf = θ4f . It is shown that all
trajectories will asymptotically converge to this point, which is an equilibrium in
the sense of Filippov.

Figure 4: Asymptotic behaviour of (4) in the (xf , xg) plane, for the case U = 0.
Thick black lines indicate sliding modes (cf [8]).

In this case, the interaction graph of the asymptotic system (xf , xg, xt) obtained in
[8] (see also the diagram analysis in [15]), is recovered in the diagram of operational
interactions in Fig. 2. The same interaction graph is obtained, with one negative loop
between G and F , and two positive loops of length 2 and 3. The Boolean model cor-
rectly predicts the levels for xc (intermediate, with C1 = 1, C2 = 0) and xy (highest,
with Y1 = 1, Y2 = 1). The Boolean model also predicts the three sliding modes: the
transitions between states 000:110⇌000:100 or 100:110⇌100:100 (Table 5), describe
a possible chattering behaviour in variable G, which recovers the sliding mode along
the line xg = θ2g . Similarly, the sliding mode along xf = θ5f , is also recovered, with
the transitions between states 110:110⇌111:110 or 110:100⇌111:100. Finally, from
every state with T1 = 1, a transition is possible to the corresponding state with the
same Boolean values but for T1 = 0, i.e.: abc.de1→abc.de0. This transition is possible
in both senses for the states: 110:111⇌110:110 and 111:111⇌111:110 (states marked
with ∗) (see Tables 5 and 6). This captures the fact that eventually xt ≤ θ1t , together
with the sliding mode along xt = θ1t . For the oscillations in xf , xg , the Boolean model
predicts the same orientation as that of the PWA model (compare Figs. 5 and 4). Note
that these figures can be read as a “phase portrait” of the system, with the period two
oscillations corresponding to the dark solid lines in Fig. 4.

In summary, all the main qualitative asymptotic properties of the PWA system are
recovered in its Boolean counterpart. Nevertheless, one should note that, given the
exclusively qualitative nature of Boolean networks, some fine-grained aspects of the
dynamics are lost. In the previous example, even though the phase portraits of both
systems are identical from a qualitative point of view, the Boolean model loses the fact
that the oscillations are damped, and eventually converges towards a singular steady
state. In [8], the demonstration of this convergence was made through a fine analysis
of the sliding modes, based on Filippov theory. The Boolean model also looses the

INRIA



Boolean and piecewise affine models for genetic networks 11

000:110 → 100:110 → 110:110∗ ←
→ 111:110∗

↓ ↑ ↓ ↑ ↓ ↓

000:100 → 100:100 → 110:100
←
→ 111:100

↑ ↑ ↓ ↓

000:000 ← 100:000 ← 110:000 ← 111:000

Figure 5: Transition graph within attractor A0, case T1 = 0. The state 110:100 rep-
resents: (F2, F3, F4) = (1, 1, 0) and (G1, G2, T1) = (1, 0, 0). The star indicates a
possible transition to the corresponding state with T1 = 1.

000:111∗ → 100:111∗ → 110:111∗ ←
→ 111:111∗

↑ ↑ ↓ ↓

000:101∗ → 100:101∗ → 110:101∗ ←
→ 111:101∗

↑ ↑ ↓ ↓

000:001∗ ← 100:001∗ ← 110:001∗ ← 111:001∗

Figure 6: Transition graph within attractor A0, case T1 = 1. The state 110:101 rep-
resents: (F2, F3, F4) = (1, 1, 0) and (G1, G2, T1) = (1, 0, 1). The star indicates a
possible transition to the corresponding state with T1 = 0.

information that the lines xg = θ2g or xf = θ5f (bold lines in Fig. 4) are in fact “black
walls”, which effectivelly prevent trajectories to cross from one side to the other. This
information is, however, only hidden in the Boolean framework and can be uncovered
by finer modelling, to recover the convergence towards singular domains. This will be
shown next, for a simple example.

5 Sliding modes and period two Boolean oscillations

The attractors of a Boolean model describe the possible asymptotic behaviours of the
network and depend on the model’s size, connectivity, and rules. The attractors in
a given network can be counted and classified according to its qualitative dynamical
properties [1] but, however, not all attractors represent biologically relevant or even
observed behaviour. In our example, we observe several short one-step cycles where
the system may be locked in a period 2 oscillation that might constitute suspicious
non-biological behaviour. Nevertheless, in this case, comparison with the PWA model
shows that all the one-step oscillations correspond to a given “sliding mode” in the con-
tinuous system. The biological significance of these sliding motions can be related to
the phenomenon of homeostasis, where the regulatory network contributes to maintain
a biological species around a given level.

Assume that the Boolean model dynamics has a period 2 oscillation in variable i,
whenever the system is in a subset Rb ∈ Ω:

X+

i = Fi(X) = Xi =

{

0, Xi = 1, X ∈ Rb

1, Xi = 0, X ∈ Rb.
(10)

The smallest possible set Rb = {X0, X1}, is such that X0
i = 0 = 1 − X1

i , and
X0

j = X1
j for all j 6= i. Following our rules for construction of Boolean models,

Xi = 1 (resp., Xi = 0) means that xi > θi, (resp., xi ≤ θi). We will consider that
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12 Chaves, Tournier & Gouzé

each Boolean variable corresponds to one continuous variable (only one threshold per
variable): one can restrict the system to a region in the state space where only xi has a
threshold value, and all other xj are in a interval between two thresholds. According
to (3), the focal point x̂i (computed from fi(x̂) = 0) for the xi equation must satisfy:

xi > θi and X+

i = Xi : x̂i < θi

xi < θi and X+

i = Xi : x̂i > θi,

that is, the PWA equation for xi must satisfy:

ẋi = fi(x)







< 0, xi > θi, x ∈ R
any, xi = θi, x ∈ R
> 0, xi < θi, x ∈ R

where

R = {x ∈ R
n
≥0 : sign(Xj − 1/2)xj > θj , θi − ε < xi < θi + ε}

that is, each xj is above or below its threshold depending on the value of the corre-
sponding Boolean variable Xj , while xi is the only one that may range over an interval
containing its threshold. Thus, on R, sign(fj(x)) =const., for all x ∈ R, j 6= i.

Since the sign of the vector field of variable i depends only on itself, the simplest
PWA system that satisfies these properties is of the form

ẋi = fi(x) = κis
−(xi, θi) − γixi, x ∈ R,

ẋj = fj(x), has constant sign ∀ x ∈ R (j 6= i)

with a negative auto-regulatory function for i, and θi < κi/γi. By assumption, xi is
the first variable to reach a threshold, and we observe that the equation for xi (in R) is
decoupled from the rest of the system and can be analyzed separately. The equation for
xi admits no equilibrium with xi 6= θi (since fi(x) 6= 0), but it admits an equilibrium
of Filippov type satisfying: x̂i = θi. This gives rise to a “sliding mode” solution on R,
where xi reaches θi in finite time and the other variables strictly increase or decrease
until the boundary of R is reached. If the system suffers a small perturbation on xi, it
will respond by again converging towards θi. In theory, we expect no oscillations in xi,
even if, due to the discontinuity in the vector field, numerical simulations may show
oscillations. For the 1-dimensional system ẋi = κis

−(xi, θi) − γixi a comparison

can be made with the solution of a continuous vector field ẋi = κi
θ

p
i

θ
p
i
+x

p
i

− γixi

(p ≥ 2), which has a single stable equilibrium, and no damped oscillations. In the
current Boolean model, there are not enough variables to represent a solution with
fixed xi = θi, so the discrete solution converges to an attractor comprising both states
X0 and X1 which are equally “close” to the state xi = θi.

In fact, this correspondence between period 2 oscillations and sliding modes can
be further interpreted as follows: the “back-and-forth’ oscillatory behaviour may be
the result of the existence of an intermediate variable which is lacking in the Boolean
model. So, introduce a new variable associated with xi as follows:

Xi∗ =

{

0, xi < θi

1, xi ≥ θi.

Then we have

xi < θi ⇔ Xi∗ = Xi = 0

xi = θi ⇔ Xi∗ = 1, Xi = 0

xi > θi ⇔ Xi∗ = Xi = 1.
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Boolean and piecewise affine models for genetic networks 13

In order to define the Boolean dynamics, we construct the following table:

xi Xi∗ Xi X
+

i∗ X
+

i

< θi 0 0 1 0
= θi 1 0 1 0
> θi 1 1 1 0

The first and third line are straightforward. The second line is interpreted like this:
when (Xi∗, Xi) = (1, 0), i.e. when xi = θi, then the two neighbor vector fields are of
opposite sign, and therefore force the variable xi to remain constant.

To illustrate this, consider the attractor A1 (Fig. 3), consisting of the reversible
transitions in a 2 dimensional space G2Y2. Note that, fixing either of the variables, the
other may have a period 2 oscillation. Introducing one intermediate variable for each
of G2 and Y2, the attractor A1 expands to (with notation G2∗G2 : Y2∗Y2):

00:00 → 00:10 ← 00:11
↓ ↓ ↓

10:00 → 10:10 ← 10:11
↑ ↑ ↑

11:00 → 11:10 ← 11:11

This diagram represents exactly the Filippov type equilibrium for the case U = 1,
where xg → θ2g and xy → θ3y in finite time. In the Boolean model, both one-step
oscillations disappear, and the strongly connected component containing four states is
“decoupled”, giving rise to a Boolean steady state: G+

2∗ = 1, G+

2 = 0, Y +

2∗ = 1, and
Y +

2 = 0.

6 Conclusions

A comparison between two formalisms, Boolean and piecewise affine models, was ex-
plored in this paper. It was verified that the Boolean model captures most of the asymp-
totic behaviour of the system, even though the PWA model gives more details. Namely,
while the Boolean model correctly reproduces oscillatory behaviour and sliding modes,
it cannot capture convergence to a given point through damped oscillations, or the fact
that a sliding mode along a given line plays the role of a black wall. This latter problem
can be circumvented by noticing that there is a correspondence between sliding modes
and period 2 Boolean cycles, and adding a new variable to more finely describe the
local oscillatory behaviour. Therefore, dynamical behaviour in the Boolean model that
might be considered as non-relevant biologically may in fact contain useful information
for analysis of complex systems.

Moreover, for the E. coli network, we have been able to identify a Boolean subsys-
tem corresponding to each attractor of the full Boolean system. In our case, the dy-
namics of this asymptotic Boolean system was compared to the computed asymptotic
dynamics of the differential system, and shown to be very similar. More generally, this
reduced Boolean asymptotic system could be again translated into a continuous one, to
obtain a reduced system of the full differential system, hopefully keeping some of the
asymptotic properties of the full system. This offers interesting perspectives for model
reduction.

Given the available computational tools for Boolean analysis, based on well known
and efficient graph algorithms (see, for instance, [11, 10, 14]), the construction of a
Boolean model associated to a PWA system can therefore constitute an undeniable
help for the analysis of genetic regulatory networks.
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APPENDICES

1 Discrete (multi-level) and Boolean

Here, an intuitive algorithm is proposed, and shown to always provide a biologically
feasible model consistent with the multi-level one. Our construction is based on the
hypothesis that each multi-level variable can only switch between adjacent level (see
H1, below).

Consider a discrete model Σd = (Ωd, Fd,syn), with variables V = (V1, . . . , VM ),
state space Ωd = {0, 1, . . . , d1}× · · · × {0, 1, . . . , dM}, and a map Fd,syn : Ωd → Ωd

defining the state transition table. This map lists all the possible transitions from each
state, and thus defines the possible dynamical trajectories of the system. At each state
V ∈ Ωd, the next possible state for variable i is given by:

V +

i = (Fd,syn)i(V ).

There are different strategies for updating a discrete system, leading to different dy-
namics. The synchronous algorithm consists of updating all variables simultaneously:
V + = Fd,syn(V ) is called the synchronous successor of V . A more general and realis-
tic dynamics can be obtained using an asynchronous updating algorithm, where exactly
one variable is updated at any given time. In the asynchronous case we have:

V + = Fd,asyn(V )

where each state V ∈ Ωd may have more than one asynchronous successor, in fact
there are as many as the number of variables k that change value in the synchronous
table:

Fd,asyn(V ) ∈ {W ∈ Ωd : Wk = (Fd,syn)k(V ) 6= Vk, for some k; and Wi = Vi, i 6= k}.

In particular, the asynchronous algorithm gives rise to a non-deterministic system,
while the synchronous system is deterministic, since at each state only one successor
exists.
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16 Chaves, Tournier & Gouzé

Throughout this Section, we use the notation Fd,syn to represent the state transition
table and synchronous dynamics, and use

V [t+ 1] = Fd,asyn(V [t]). (11)

to represent the asynchronous dynamics, where exactly one variable is updated at any
given time.

Following the work in [16, 12, 13], it will be assumed that system Σd satisfies
hypotheses H1 and H2.

H1. Each variable Vm can only switch from its current level to an immediately adja-
cent level, that is:

V +
m ∈ {Vm − 1, Vm, Vm + 1}.

In other words, any variable Vm can only be increased or decreased by one unit at each
time.

To construct a Boolean model Σb associated to Σd, the state space will be formed by
adding extra variables. If a discrete variable Vm takes values in the set {0, 1, . . . , dm},
then, in the Boolean model, dm variables will be created:

H2. For each Vm ∈ {0, 1, . . . , dm} in the discrete model, generate Vm,1, . . . , Vm,dm
∈

{0, 1} such that:

Vm = k ⇔ Vm,1 = · · · = Vm,k = 1

and Vm,k+1 = · · · = Vm,dm
= 0. (12)

In particular, note that Vm,k ≥ Vm,k+1, for all k = 1, . . . , d, meaning that if Vm is at a
certain level, then all inferior levels must be “filled” as well.

More generally, if there are M discrete variables, each with dm (m = 1, . . . ,M )
levels, define: D = (d1, . . . , dM ), n = d1 + · · · + dM and set Ω = {0, 1}n. Then
define a function ϕD : Ωd → Ω, such that:

ϕD(V ) = (V1,1, . . . , V1,d1
, . . . , VM,1, . . . , VM,dM

), (13)

where Vm,k are defined as in (12). It is clear that the function is injective, but ϕD(Ωd)
is strictly contained in Ω. Namely, those elements of Ω that would satisfy Vm,k <
Vm,k+1 for some m and some 1 ≤ k ≤ dm do not have a pre-image in Ωd. In fact,
such combinations are biologically meaningless, in view of the interpretation of (12).
Moreover, when constructing the Boolean rules for the extended system, one naturally
wishes to avoid transitions to these unfeasible states, in order to obtain a biologically
significant model. Define the sets of permissible and forbidden states of Ω, associated
with D:

SD,p = {X ∈ Ω : (∀ 1 ≤ m ≤M)(∀ 1 ≤ k ≤ dm), Xm,k ≥ Xm,k+1}

SD,f = {X ∈ Ω : (∃ 1 ≤ m̄ ≤M)(∃ 1 ≤ k̄ ≤ dm̄), Xm̄,k̄ < Xm̄,k̄+1},

where the n coordinates of vector X ∈ Ω are labelled in M groups of length dm:

X = (X1,1, . . . , X1,d1
, . . . , XM,1, . . . , XM,dM

). (14)
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Boolean and piecewise affine models for genetic networks 17

Note that: SD,p = ϕD(Ωd), SD,f = Ω\SD,p, in view of H2. Then ϕD is a bijection
between Ωd and SD,p, so it is possible to define a (partial) inverse function:

ϕ−1

D,p : SD,p → Ωd, ϕ−1

D,p(X) = (V1, . . . , VM ),

where Vm =
∑

k Xm,k. An algorithm for generating a Boolean model Σb = (D,Ω, Fb,syn)
associated to Σd is then as follows:

1. Generate the state space: Ω = {0, 1}n with n = d1 + · · · + dM , and label the
coordinates of X ∈ Ω according to (14);

2. Translate the discrete value table V + = Fd,syn(V ) into a Boolean value table
X+ = Fb,syn(X), for each X ∈ SD,p:

Fb,syn(X) := ϕD(Fd,syn(V )) = ϕD(Fd,syn(ϕ−1

D,p(X)))

(note that this assigns values to X ∈ SD,p only);

3. Complete the table Fb,syn by assigning any function ψ : Ω → Ω to the Boolean
states X ∈ SD,f :

Fb,syn(X) =

{

ϕD(Fd,syn(ϕ−1

D,p(X))), X ∈ SD,p

ψ(X), X ∈ SD,f ;

4. Obtain Boolean logical rules from the (now full) synchronous truth table Fb,syn.

Note that step 3 can be viewed as the identification of a n-dimensional Boolean map,
verifying certain constraints (on the set SD,p) and with some degrees of freedom (on
the set SD,f ). Thus the map Fb,syn : Ω → Ω is not necessarily unique. To construct
this map, one can use a reverse engineering algorithm, to find a function ψ according
to some suitable criteria (for instance, REVEAL [9] will find a function ψ with min-
imal node connectivity). In any case, whatever Fb,syn(SD,f ) is, it will not affect the

dynamics of the biologically relevant part of the Boolean model (cf. Lemma 1.1). An
example of a multi-level to Boolean table translation can be seen in Table 2, for the E.

coli example. A completed Boolean truth table is shown in Table 3, where the rows
corresponding to forbidden states are shaded in grey.

The Boolean model thus obtained is well defined and consistent with the discrete
model, in the sense that no forbidden state will be a successor of a permissible state.
However, forbidden states can succeed one another or go into an permissible state. This
means that, even though some parts of the state space will be biologically meaningless,
it is guaranteed that once a trajectory enters the meaningful part (SD,p) it will remain
there.

For the Boolean model Σb = (D,Ω, Fb,syn), one can also define an asynchronous
dynamics from Fb,syn, by updating only one Boolean variable at a time:

X[t+ 1] = Fb,asyn(X[t]). (15)

If X+ = Fb,syn(X) = X then also X[t + 1] = X[t] for all t, and X is called an
equilibrium point.

Lemma 1.1 Suppose Σd is a multi-level system that satisfies H1. The Boolean system
Σb = (D,Ω, Fb,syn), constructed according to H2 and points 1 to 3, allows only tran-
sitions from SD,p or SD,f into SD,p or from SD,f into itself (for both synchronous and
asynchronous updating strategies).
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18 Chaves, Tournier & Gouzé

Proof: Given any X ∈ SD,p, we want to show that X+ = Fb,syn(X) ∈ SD,p. By
definition of Fb,syn, ϕD and ϕ−1

D,p we have:

Fb,syn(X) = ϕD(Fd,syn(ϕ−1

D,p(X))) = ϕD(Fd,syn(V )) = ϕD(V +),

for some V ∈ Ωd. By assumption H2, it follows that ϕD(V +) ∈ SD,p.
The forbidden states can remain in SD,f or switch to SD,p since, given any X ∈

SD,f , we have

X+ = Fb,syn(X) = ψ(X) ∈ Ω = SD,p ∪ SD,f .

To see that the asynchronous updating strategy also prevents transitions from SD,p to
SD,f , consider X ∈ SD,p and any asynchronous transition, Y = Fb,asyn(X). If X is
an equilibrium point then immediately Y = X ∈ SD,p. Otherwise, since X is of the
form (13), it can be written as:

X = (~1p1 ,~0d1−p1 ; · · · ;~1pM
,~0dM−pM

),

where ~1p (resp., ~0p) is a vector of length p with all coordinates equal to 1 (resp., 0). Its
synchronous successor is

X+ = (~1p
+
1
,~0d1−p

+
1
; · · · ;~1p

+
M
,~0dM−p

+
M

),

where p+

i ∈ {pi − 1, pi, pi + 1}, for all i = 1, . . . ,M . Since X is not an equilib-
rium point, then there exists k ∈ {1, dM} such that p+

k 6= pk. In any asynchronous
successor, only one pi can change at a time. Therefore, there exists exactly one index
1 ≤ k ≤M such that p+

k = pk ± 1:

Y = (~1p1
,~0d1−p1

; · · · ;~1p
+
k
,~0d1−p

+
k
; · · · ;~1pM

,~0dM−pM
).

Therefore, it is clear that Y ∈ SD,p.

2 Multi-level and Boolean state transition tables for crp

To write the discrete and Boolean for crp, we will divide into the case U = 0 and the
case U = 1. Let h0,1

C1
and h0,1

C2
denote the rules for the Boolean variables in the presence

or absence of U :

C+

1 = (U ∧ h0
C1) ∨ (U ∧ h1

C1)

C+

2 = (U ∧ h0
C2) ∨ (U ∧ h1

C2)

The grey shaded rows in each Table represent the forbidden states, in SD,f . The rules
can be written in the form:

C+

1 = (U ∧ 1) ∨ (U ∧ 1) ≡ 1

C+

2 = (U ∧ C1 ∧ F1) ∨ (U ∧ (F2 ∧ F3 ∧ F4 ∧ C1)).
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Table 2: Multi-level model for crp (C), case U = 0.

C F C+ C+

1 C+

2

0 0 1 1 0
0 ≥ 1 1 1 0
1 0 2 1 1
1 ≥ 1 1 1 0
2 0 2 1 1
2 ≥ 1 1 1 0

Table 3: Boolean rules for crp (C), case U = 0.
C1 C2 F C+

1 C+

2

0 0 0 1 0
0 0 ≥ 1 1 0
0 1 0 1 0
0 1 ≥ 1 1 0
1 0 0 1 1
1 0 ≥ 1 1 0
1 1 0 1 1
1 1 ≥ 1 1 0

Table 4: Multi-level and Boolean rules for crp, case U = 1.
C Y F C+ C+

1 C+

2

0 0 < 2 ≥ 2 1 1 1 1 0 0
0 1 < 2 ≥ 2 1 1 1 1 0 0
0 2 < 2 ≥ 2 1 1 1 1 0 0
1 0 < 2 ≥ 2 2 1 1 1 1 0
1 1 < 2 ≥ 2 2 1 1 1 1 0
1 2 < 2 ≥ 2 2 1 1 1 1 0
2 0 < 2 ≥ 2 2 1 1 1 1 0
2 1 < 2 ≥ 2 2 1 1 1 1 0
2 2 < 2 ≥ 2 2 1 1 1 1 0

Table 5: Multi-level model for cya (Y ) (synchronous).

C Y U Y + Y +

1 Y +

2

0 0 0 1 1 1 1 1 0 0
0 1 0 1 2 2 1 1 1 1
0 2 0 1 2 2 1 1 1 1
1 0 0 1 1 1 1 1 0 0
1 1 0 1 2 2 1 1 1 1
1 2 0 1 2 2 1 1 1 1
2 0 0 1 1 1 1 1 0 0
2 1 0 1 2 2 1 1 1 1
2 2 0 1 2 1 1 1 1 0
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Table 6: Boolean rules for cya.

C1 C2 Y1 Y2 U Y +

1 Y +

2

0 0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1
0 1 0 0 0 1 1 1 0 0
0 1 0 1 0 1 1 1 0 0
0 1 1 0 0 1 1 1 1 1
0 1 1 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1 0 0
1 0 0 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 1 1
1 0 1 1 0 1 1 1 1 1
1 1 0 0 0 1 1 1 0 0
1 1 0 1 0 1 1 1 0 0
1 1 1 0 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1 0

Table 7: Multi-level model for gyrAB (G) and topA (T ) (synchronous).

G T F G+ T+ G+

1 G+

2 T+

1 T+

2

0 0 < 3 ≥ 3 1 0 0 0 1 0 0 0 0 0 0 0
0 1 < 3 ≥ 3 1 0 0 0 1 0 0 0 0 0 0 0
0 2 < 3 ≥ 3 1 0 1 1 1 0 0 0 1 1 0 0
1 0 < 3 ≥ 3 2 0 0 0 1 0 1 0 0 0 0 0
1 1 < 3 ≥ 3 2 0 0 0 1 0 1 0 0 0 0 0
1 2 < 3 ≥ 3 2 0 1 1 1 0 1 0 1 1 0 0
2 0 < 3 ≥ 3 1 1 0 1 1 1 0 0 0 1 0 0
2 1 < 3 ≥ 3 2 1 0 0 1 1 1 0 0 0 0 0
2 2 < 3 ≥ 3 2 1 1 1 1 1 1 0 1 1 0 0

3 Multi-level and Boolean state transition tables for cya

The two columns under U , Y +

1 or Y +

2 correspond to the cases U = 0 or U = 1. The
corresponding Boolean rules can be written:

Y +

1 = 1

Y +

2 = (U ∧ Y1) ∨ (U ∧ [(Y1 ∧ (C1 ∨ C2)) ∨ ((Y1 ∧ Y2) ∧ C1 ∧ C2)])
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Table 8: Boolean rules for gyrAB and topA.

G1 G2 T1 T2 F G+

1 G+

2 T+

1 T+

2

0 0 0 0 < 3 ≥ 3 1 0 0 0 0 0 0 0
0 0 0 1 < 3 ≥ 3 1 0 0 0 1 1 0 0
0 0 1 0 < 3 ≥ 3 1 0 0 0 0 0 0 0
0 0 1 1 < 3 ≥ 3 1 0 0 0 1 1 0 0
0 1 0 0 < 3 ≥ 3 1 1 0 0 0 1 0 0
0 1 0 1 < 3 ≥ 3 1 1 0 0 1 1 0 0
0 1 1 0 < 3 ≥ 3 1 1 0 0 0 0 0 0
0 1 1 1 < 3 ≥ 3 1 1 0 0 1 1 0 0
1 0 0 0 < 3 ≥ 3 1 0 1 0 0 0 0 0
1 0 0 1 < 3 ≥ 3 1 0 1 0 1 1 0 0
1 0 1 0 < 3 ≥ 3 1 0 1 0 0 0 0 0
1 0 1 1 < 3 ≥ 3 1 0 1 0 1 1 0 0
1 1 0 0 < 3 ≥ 3 1 1 0 0 0 1 0 0
1 1 0 1 < 3 ≥ 3 1 1 1 0 1 1 0 0
1 1 1 0 < 3 ≥ 3 1 1 1 0 0 0 0 0
1 1 1 1 < 3 ≥ 3 1 1 1 0 1 1 0 0

4 Multi-level and Boolean state transition tables for gyrAB

and topA

The corresponding Boolean rules can be written:

G+

1 = [F3 ∧ F4] ∨ [(F1 ∧ F2 ∧ F3) ∨G2]

G+

2 = F3 ∧ F4 ∧G1 ∧ (G2 ∨ T1 ∨ T2)

T+

1 = [F3 ∧ F4 ∧ T2] ∨ [F1 ∧ F2 ∧ F3 ∧ ((G2 ∧ T2) ∨ (G2 ∧ (T2 ∨ T1)))]

T+

2 = 0.

5 Multi-level and Boolean state transition tables for fis

The rules for fis will also be determined separately forU = 0 andU = 1. LetH0
i (resp.,

H0
i ) denote the rules for the Boolean variable Fi in the absence (resp., presence) of U :

F1 = (U ∧H0
1 ) ∨ (U ∧H1

1 )

F2 = (U ∧H0
2 ) ∨ (U ∧H1

2 )

F3 = (U ∧H0
3 ) ∨ (U ∧H1

3 )

F4 = (U ∧H0
4 ) ∨ (U ∧H1

4 )

The Boolean rules for fis, in the case U = 0, can be written:
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Table 9: Multi-level model for fis, case U = 0.

G T F F+

0 0 0 1 2 3 4 1 1 1 2 3
0 1 0 1 2 3 4 1 1 1 2 3
0 2 0 1 2 3 4 1 1 1 2 3
1 0 0 1 2 3 4 1 2 3 4 3
1 1 0 1 2 3 4 1 2 3 4 3
1 2 0 1 2 3 4 1 1 1 2 3
2 0 0 1 2 3 4 1 2 3 4 3
2 1 0 1 2 3 4 1 2 3 4 3
2 2 0 1 2 3 4 1 1 1 2 3

Table 10: Boolean rules for fis, case U = 0.

G1 G2 T1 T2 F F+

1 F+

2 F+

3 F+

4

0 0 0 0 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 2 3 4 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 0 0 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 2 3 4 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 0 1 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 2 3 4 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 0 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 2 3 4 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0
1 1 1 1 0 1 2 3 4 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
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Table 11: Multi-level model for fis, case U = 1 and C = 0 or Y = 0.

C Y G T F F+

0 0 0 1 2 3 4 1 1 1 2 3
0 1 0 1 2 3 4 1 1 1 2 3
0 2 0 1 2 3 4 1 1 1 2 3

0 * 1 0 0 1 2 3 4 1 2 3 4 3
1 1 0 1 2 3 4 1 2 3 4 3

* 0 1 2 0 1 2 3 4 1 1 1 2 3
2 0 0 1 2 3 4 1 2 3 4 3
2 1 0 1 2 3 4 1 2 3 4 3
2 2 0 1 2 3 4 1 1 1 2 3

1,2 1,2 * * 0 1 2 3 4 0 0 1 2 3

Table 12: Boolean rules for fis, case U = 1, and C, Y ∈ {1, 2}.

C1 C2 Y1 Y2 F F+

1 F+

2 F+

3 F+

4

0 1 0 1 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 1 0 1 2 3 4 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

H0
1 = 1

H0
2 = (F1 ∧G1 ∧ T2) ∨ (F1 ∧ F2 ∧ F3)

H0
3 = (F1 ∧ F2 ∧G1 ∧ T2) ∨ (F1 ∧ F2 ∧ F3 ∧ F4)

H0
4 = (F1 ∧ F2 ∧ F3 ∧ F4 ∧G1 ∧ T2).

The Boolean rules for fis, in the case U = 1, can be written:

H1
1 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧H

0
1 ] ∨ [(C1 ∨ C2 ∨ Y1 ∨ Y2) ∧ F1 ∧ F2]

H1
2 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧H

0
2 ] ∨ [(C1 ∨ C2 ∨ Y1 ∨ Y2) ∧ F1 ∧ F2 ∧ F3]

H1
3 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧H

0
3 ] ∨ [(C1 ∨ C2 ∨ Y1 ∨ Y2) ∧ F1 ∧ F2 ∧ F3 ∧ F4]

H1
4 = [((C1 ∧ C2) ∨ (Y1 ∧ Y2)) ∧H

0
4 ].
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