
HAL Id: inria-00426451
https://hal.inria.fr/inria-00426451

Submitted on 26 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-Adaptive Vehicular Network Optimization
Olivier Mehani, Roksana Boreli, Thierry Ernst

To cite this version:
Olivier Mehani, Roksana Boreli, Thierry Ernst. Context-Adaptive Vehicular Network Optimization.
ITST 2009, 9th International Conference on Intelligent Transport Systems Telecommunications, Oct
2009, Lille, France. pp.186-191. �inria-00426451�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50136207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00426451
https://hal.archives-ouvertes.fr

Context-Adaptive Vehicular Network Optimization

Olivier Mehani
Inria Rocquencourt, France, and
National ICT Australia, and
Mines ParisTech, France, and

University of New South
Wales, Australia

olivier.mehani@inria.fr

Roksana Boreli
National ICT Australia

Locked Bag 9013, Alexandria
NSW 1435, Australia, and
University of New South

Wales, Australia
roksana.boreli@nicta.com.au

Thierry Ernst
Inria Rocquencourt,
Imara Project-Team,

Domaine de Voluceau, BP 105,
78153, Le Chesnay Cedex, France

thierry.ernst@inria.fr

Abstract—We propose a framework to optimize the
communication performance and mobility management
in vehicular networks. By having a single unified deci-
sion algorithm taking into account both stack-related
and external contextual information such as GPS lo-
calization or signaling from other nodes, advice can be
provided to every layer in the network stack to allow
for globally optimized, faster and more accurate adap-
tation to the current conditions. We present how key
example scenarios would benefit from such a system.
We describe an instance of this framework using a con-
straint satisfaction problem (CSP) approach. We also
describe our prototype implementation of the network
data collection system and give some timing evaluation
for a given constraint solver.

Index Terms—IPv6, mobility, multihoming, context-
aware, performance optimization, constraint satisfac-
tion

I. Introduction

Vehicular networks present a heterogeneous environ-
ment based on a large variety of technologies. Several
networking solutions can be used to establish communica-
tion channels with other vehicles (V2V), the infrastructure
(V2I) or the internet. It is thus not uncommon to see
vehicular communication solutions built on top of vari-
ous physical technologies such as GPRS, UMTS, various
flavors of the 802.11 standard or the more recent WiMAX.

However both IP- and non IP-based network protocols
have been proposed, current standardization works advo-
cate the use of IPv6 at the network layer [1]. Vehicles
can then benefit from direct connectivity to the internet
as well as native support for host and network mobil-
ity to maintain application-level communication. Having
more than one network interface is additionally becoming
common. Vehicles can then take part in several networks
at once e.g., a Vehicular Ad-hoc NETwork (VANET) for
local communication and a WWAN for longer distance
communication. Such multihoming, with peers potentially
reachable via several disjoint networks, prompts the need
for routes and interface selection support in order to
achieve good performance e.g., not using the WWAN when
a direct VANET route exists [2].

Most currently available network stacks are designed
following the layered design of the OSI model. As upper

layers protocols aren’t informed about the lower levels
reconfigurations, it takes them time to detect and adapt
to the new conditions on their own. Worse, when their
parameters have been updated to reflect the new network
conditions, it is the turn of the layers above to go through
the same type of time-consuming stand-alone adaptation.
Due to the high dynamicity of vehicular environments,

the completion of a full adaptation to new network con-
ditions may be delayed beyond acceptable limits or even
after said conditions have changed again. To overcome
layer adaptability issues, a number of cross-layer designs
have been proposed. Linking various protocols in order to
pass relevant information directly, these approaches allow
an improvement of the adaptation delay. It is however
limited to the involved layers. Amongst others, the link
and network/mobility management layers are usually cou-
pled [3], [4], while other solutions target TCP’s behavior
over wireless networks [5], [6]. Most cross-layer solutions
are however limited to a narrow set of use-cases and tech-
nologies and cannot be applied to more generic contexts.
Additionally, as they do not take into account the rest of
the system, two cross-layer mechanisms may interact with
each other in unintended and destructive ways [7].
Some works have taken the cross-layer information pass-

ing out of the stack and delegated it to specific entities
[8], [9], [10]. [11] proposed to use an external component
in charge of collecting data from each layer and making
it available to the entire stack in an abstracted form. The
use of such abstraction allows to design adaptation mecha-
nisms which are not tied to a specific layer implementation
and protocol, hence more portable. Similarly, the Unified
Link Layer API [12] can be used by applications desiring
to get the necessary information to adapt their settings to
the current conditions. In all these instances, though, opti-
mization choices are still made locally by each application.
This thus doesn’t alleviate the risk of bad interactions.
To benefit from cross-layer information while ensuring

globally valid optimization decisions, both the collection of
stack information and the parameters adjustment decision
have to be centralized. Protocol implementation are no
longer responsible for interpreting the data collected from
other layers. This loose coupling between information

mailto:olivier.mehani@inria.fr
mailto:roksana.boreli@nicta.com.au
mailto:thierry.ernst@inria.fr

source and parameters update has the advantage of limit-
ing the modifications on standard implementations.

Additionally, as a number of non network-stack-related
conditions also impact vehicular communication perfor-
mances, information about the environment (such as GPS
and map-matched localization) could benefit to the op-
timization process. Indeed, the rather strict structure of
the road system and driving rules make it a good field
for condition prediction based on previous observations,
as was proposed in [13] for personnal mobile devices.

This article presents such a framework. Section II gives
further motivation by presenting example scenarios which
would benefit from such a system. Section III presents the
overall architecture as well as how contextual information
is unified for use by a constraint programming solver run-
ning as the decision process. Section IV presents an early
implementation of a prototype of the framework. Finally,
conclusions and future work are laid out in Section V.

II. Motivating Example Scenarios

This section presents examples of vehicular communi-
cation (V2V and V2I) where adaptation of upper layers
to new lower layers configuration or the ability to solve
problems spanning several layers would be desirable.

A. Transport Adaptation to Network Changes

Performing mobility handovers, switching route or sim-
ply getting one hop closer to a peer usually changes the
characteristics of end-to-end paths. While the network
layer is quickly made aware of changes, upper layers tend
to react more slowly to such changes.

Fig. 1 on the following page presents three typical use-
cases where, due to the mobility of the vehicles, paths to
communication peers change. Such changes are likely to
have an important impact on higher layers, starting with
transport protocols.

In multihop VANETs (Fig. 1(a)), getting closer to (resp.
away from) another node reduces (resp. increases) the
number of hops. The number of times a message has
to be relayed in the air directly influences the round-
trip time (RTT) observed along the path. Additionally,
with a smaller number of hops, messages contend less
for the wireless medium, thus reducing the probability of
collisions. This can lead to an increase in the end-to-end
throughput. Given the number of hops, it is then possible
to estimate parameters that the transport should use to
profit from this opportunity for better communication.
The path-change scenario has an even more drastic impact
in the case of a change from a NEMO to a MANET route
(Fig. 1(b)), as several hops over networks with various
characteristics and routing or peering policies as well
as the triangular routing problem that happens between
mobility Home Agents are replaced by a few direct hops.
Conversely, it is desirable to inform the transport of degra-
dations of the paths early to prevent creating congestion
along the new path.

A

B

E

D

C

Unusable link

Fig. 2. Rogue node E advertises its presence but doesn’t forward
packets properly, thus hindering communication between A and D.

Correlating information from various layers can help
make more educated handover decisions. When given the
choice of several physical access points, previous obser-
vations can help choose the access network which will
provide the best performance to current communications.
In Fig. 1(c), a moving vehicle can decide to associate with
a network it knows from previous observations has better
connectivity to the one server it is currently communicat-
ing with.

B. Routing around a Rogue VANET Node

A very specific issue of unmanaged networks like
VANETs is that of âĂIJrogueâĂİ nodes. Such a node par-
ticipates in the route establishment algorithm but doesn’t
forward packets properly (either willingly or due to a
misconfiguration), thus creating a “black hole”. As shown
in Fig. 2, rogue node E is on the shortest path from A to
D. Their routing algorithm will then select that node to
forward their packets to each other.

However, as E doesn’t forward packets, communication
establishment between A and D is impossible through it.
IP routing being best-effort, the problem is not detected
at the network layer. Without a human noticing that the
application doesn’t behave properly, the situation cannot
be resolved (e.g. changing to a route not using E).

In that case a problem is observable at a given level, but
solutions to the issue can only be undertaken at another
layer, which isn’t able to notice any malfunction. Using
metrics from both the transport (e.g. unacknowledged
packets) and network layer, A could correlate the problem
with routing through node E, and adapt its routing table
consequently to avoid it.

Extensions of this example can cover communication
between the decision frameworks on A and B to synchro-
nize their routes, as well as adaptation of the transport
and application layers to parameters relevant to the new,
longer, path, as previously emphasized.

III. Context-Based Optimization Framework

In this section, we present the architecture of a context-
aware optimization framework. A general description of
the components and their interaction is first given. The
unification of synthetic context information and a proposal
for a decision system based on a constraint satisfaction
solver are then described in more details.

A

B C

1 2

Movement

Wireless link

Communication flow

(a) Changes in the number of VANET
hops impact the achievable end-to-end
performance.

A

B

HABHAA

1

2

RSU2

RSU1

(b) MANEMO route switching can cause
huge changes in the path conditions.

21

AP1 AP2

Access point wireless coverage

S

C

(c) Correlation of information can help choose the
best combination of parameters.

Fig. 1. Several typical scenarios that could benefit from a better use of contextual information.

A. Overall Description

The proposed context-aware famework comprises sev-
eral functionalities:

network state collection
Information about the network stack (available net-
works and interfaces as well as network and transport
metrics) need to be constantly updated to maintain
a valid knowledge of the current conditions.

context collection
Similarly, contextual data needs to be periodically
updated from the available sources (such as bat-
tery monitor or localization) to keep an accurate
description of external factors which may impact the
performance.

context unification
Once contextual information has been gathered from
various sources, it is necessary to compose it into a
synthetic representation to be used by the decision
algorithm.

context history
Optionally maintaining a history of the unified con-
text (at a human scale i.e. days) can help the deci-
sion process predict future conditions. Such a history
could be collectively built to allow provision of his-
torical information even for new locations.

decision
Main component of this framework, the decision al-
gorithm takes synthetic contextual information (and
possible future predictions) and derives the parame-
ters the network stack should be configured with in
order to use the available resources as efficiently as
possible. One requirement for the decision algorithm
is that it converges towards a stable solution and
avoids oscillations.

parameters adjustment
Once the parameters to use have been decided,
they eventually need to be fed back to the network
stack protocols to be taken into account. Maintain
their genericity of the protocols is important. When

Decision

system

prevention
Oscillation

algorithm
Decision

Application

Transport

Network

Mobility

Link &

Physical

Conditions
predictionsContext

history

Collaborative
history

BatteryGPS

Clock

“External”

context

Fig. 3. The proposed architecture aggregates network as well as
contextual and historical information. Based on this input, a decision
algorithm then derives a good set of parameters for the various
protocols and algorithms currently running within the network stack.

adapted to take such intructions into account, they
should not be modified so much that they can’t
function properly in a standalone fashion.

The functionnal blocks providing these functionnalities as
well as their interactions are presented in Fig. 3.
The updatable parameters, as determined by the deci-

sion algorithm, span over all the stack. Common examples
can be cited such as

• next hop (or full path) determination in a VANET,
• decision to perform a handover to a wireless network

with (or expected to soon have) a better signal-to-
noise level,

• route selection and flow binding to specific interfaces
or networks;

• update of the transport parameters e.g. for
TCP: RTT, congestion window, slow-start
threshold (sshthr),

• adaptation of the application to the available network
capacity (e.g. change of codec, compression or data or
reduction of the sending frequency).

Another desirable feature is the possibility to signal
other instances of the framework over the network in order
to synchronize common states. For example, in the case of

TABLE I
Example information available from various sources.

Source s Abstracted information Is

N
e
tw

o
r
k

s
t
a
c
k

la
y
e
r
s

Application Throughput and delay requirements,
Data sending pattern (amount/frequency),
Correctness of received data,
Possible configurations (e.g. codecs)

Transport End-to-end metrics such as throughput,
timings (RTT, jitter) or error rate

Network Next hops or full routes (source routing)
(Mobility) Change of network address (CoA)

Link Network identifier (e.g. VLANs, ESSIDs),
Data rate, retransmissions and delays,
Link-local neighbors

Physical Modulation, Signal strength

C
o
n
t
e
x
t

Clock Current time t

System Battery level, load average
External Upcoming hand-offs at an uplink router,
network Overheard concurrent communications
GPS Map-matched localization, heading, speed

. . .

the binding of a flow or (resp.) change of next hop, one
instance could signal its decision to its peer running on the
mobility Home Agent or (resp.) the other involved vehicle
for these changes to be mirrored. This is represented by
Inet(t) in Fig. 4.

B. Global Context from Separate Information

The global situation can be estimated from information
both from the network stack and the external context.
Table I lists typical examples of such information.

Each layer implementation, as well as external factors,
have states varying with time. They represent the current
dynamic conditions. States can be the mode a protocol is
in, metrics currently observed (e.g. transport sending rate
or physical signal strength from a neighbor) or current
localization of the vehicle.

The global context information is scattered between the
current observed states. It is necessary to aggregate all
these data into a synthetic representation of the current
situation. Fig. 4 shows a unification component which is
in charge of collecting states from every source, and create
such a representation. Achieved performances can thus be
correlated with the associated settings and context.

As a simple example of the unification process, one
can consider the situation in which node A communicates
with B. The socket concept is used to represent and end-
to-end connection (s = sock(A,B)). At time t, the
collected information from some of the relevant layers can
be represented as

Iapp(s, t) = {c = codec(t), . . .} ,

Itrp(s, t) = {thr = throughput(s, t), rtt = rtt(s, t), . . .} ,

Irt(t) = {nhB = nextHop(B, t), . . .} .

By correlating data collected for socket s, the system
could infer that a throughput of thr, as needed by codec

Application

Transport

Physical . . .

GPS

System Status

Hardware

Clock

Mobility

Network

Isys(t)

Iloc(t)
Ilnk(t)

Itrp(t)

Iapp(t)

Ihwc(t)

Iphy(t)

Link

Irt(t) Unification
Process

At (lat, long), time t, connection to essid

throughput from srcaddr to dstaddr

via nexhop is thr with RTT rtt, which
is suitable for application codec codec.

Global ContextNetwork

Inet(t)

Cglobal(t)

Fig. 4. Based on both in- and out-of-stack information Is(t), a
unification process derives a description of the global context.

c, is achievable towards node B along a path starting with
nhB :

Cglobal(t) = {{nhB = nextHop(B, t),

thr = throughput(s, t), c = codec(t), . . . }

. . . } .

C. Constraint Satisfaction Problem

Both generic context and network stack layers have
states. The latter also has parameters. They are sets of
adjustable settings or possible features as well as their
requirements on the other layers of the stack (e.g. possible
video codecs and required bandwidth). The list of current
parameter values and enabled features is however consid-
ered part of the states as it participates to the observed
performance.
States lay out a set of constraints for the possible

configurations of the stack. Not every combination of
parameter values is intrinsicically valid but with the added
constraints from the context, a number of others are
temporarily ruled out (e.g. the use of a given codec when
no underlying layer configuration can achieve at least the
highest tolerated delay). The goal of the optimization
process is to derive a valid set of parameters which would
achieve good performance overall.
With an increasing number of interfaces, neighbors and

routes, as well as several adjustable parameters for each
layer protocol and a large number of concurrent connec-
tions, finding optimal solutions is computationally expen-
sive. Indeed, it requires exploring an exponentially large
number of configurations. For that reason, and given the
formulation of the problem in terms of related constraints,
it seems relevant to use a constraint solver as the decision
engine.
Formally, a constraint satisfaction problem (CSP) is

composed of a set of variables which can take values
within specific ranges, and relations (constraints) between

these variables conditioning their simultaneous values [14].
Given this expression of the problem, a constraint solver
is used to find valid solutions. A solution to a CSP is a
binding of each variable with a value in its domain in such
a way that all the constraints are satisfied. Table II on
the next page gives an example of tabulated constraints
derived from states and parameters of an application with
three quality levels (codec) in a multihomed scenario with
several routes to the destination.

To allow searching for a good (or optimal if time avails)
solution, an objective function can be provided to be min-
imized by the solver. One such function to achieve a high
throughput and low RTT while privileging the cheapest
interfaces (e.g. in terms of money, user preferences or a
combination of both) could be

min (α · rtt− β · thr + γ · Cif)

where Cif is the cost of using the chosen interface and
α, β, γ are weight parameters set according to the impor-
tance of each criterion (e.g. if the data flow is not large
but has real-time requirements, α > β).
Oscillation avoidance is not catered for directly by the

constraint solver. This can however be modelled by adding
additional constraints representing recent configurations
and assigning high costs for returning into them.

IV. Prototype Implementation

A prototype implementation of the above framework is
under development. Some non-crucial components have
been omitted so far in order to focus one the main
functions that are the network stack information collection
and unification, and the decision process. The prototype
is developped using the Python programming language for
Linux 2.6(.30) systems.

A. Stack Information Collection

In order to collect stack information, the Netlink sub-
system [15] has been used. This system provides an in-
formation bus between the kernel and userland applica-
tions accessible by opening a socket of the AF_NETLINK

address family and binding to specific groups or querying
information. More specifically, two channels are openned,
using the route (NETLINK_ROUTE) and socket diagnostic
(NETLINK_INET_DIAG) protocols.

The route socket is bound to the link, address, neighbor
and route groups (RTMGRP_LINK | RTMGRP_NEIGH | RT-

MGRP_IPV6_IFADDR | RTMGRP_IPV6_ROUTE). Messages
about these categories are sent to the relevant group
whenever a parameter changes.

The diagnostic socket can be used to get in depth
information about all sockets currently existing on the
system. Unlike the route protocol, there is no group to bind
to get information pushed by the kernel. It is necessary
to to periodically send queries. TCP socket information
obtained via the TCPDIAG_GETSOCK query details a number

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

T
im

e
to

 e
xp

lo
re

 th
e

pr
ob

le
m

 s
pa

ce
 [s

]

Number of tuples in the relations

Fig. 5. Time taken for MiniZinc to explore the solution space for a
varying numbers of constraints tuples (100 runs each).

of metrics and parameters currently observed by the con-
gestion control algorithm such as the congestion avoidance
state, RTT or window sizes, amongst many others.

B. Constraint Satisfaction Solver

The decision component of the prototype is based on
the MiniZinc [16] constraint solver. The ruleset is similar
to what is shown on Table II. It is however extended by
a couple of relations representing the recent configuration
for each socket, as well as a cost table for oscillations.
It is necessary that the solver is able to return solutions

in timely enough a manner that the newfound configu-
ration is still relevant. In order to check this property,
timing tests have been run. For every run, coherent data
files have been randomly generated to populate the model.
To estimate a higher bound on the computation time, all
solutions were requested and tree pruning was disabled.
The computer used for these tests sports a 2GHz Intel
Core2 Duo and 1GB of RAM under Linux (reported at
3991.24“BogoMIPS”). The timing results are reported in
Fig. 5. They present a reasonable computation time even
for large problems (the last datapoint’s 1270 constraints
were created assuming 5 network interfaces, 190 known
destinations and 95 sockets).
One problem of the current setup is that it currently

can’t function in an online loop. Support of dynamic
constraints updates within MiniZinc is an ongoing research
problem. Thus, for each iteration the solver has to be
restarted with an updated set of data. This prevents
benefitting from optimizations (for the solving algorithm)
that could take advantage of the structure of the CSP.

V. Conclusion

We have presented a framework for network optimiza-
tion taking into account parameters from within the net-
working stack as well as from the environment as reported
by various subsystems. After unifying these data into a
synthetic representation of the context, it is formulated as
a constraint satisfaction problem for use by a solver along

TABLE II
Examples contraints expressed as tabulated relations for a simplified example.

Observed network performances

Destination Route Interface Throughput Jitter RTT PER

Addr1 NH2 eth0 2Mbps 1× 10−4 s 10× 10−3 s 0%
Addr1 NH1 wlan0 900 kbps 1× 10−3 s 100× 10−3 s 10%
Addr2 NH1 wlan0 450 kbps 1× 10−3 s 250× 10−3 s 30%

. . .

Interface costs

Interface Cost

eth0 10
wlan0 100
ppp0 250

. . .

Application App1 parameters and requirements

Quality Throughput Jitter RTT PER

1 ≥ 1.5Mbps ≤ 10−3 ≤ 10× 10−4 s ≤ 10× 10−3

2 ≥ 1Mbps idem idem idem
3 ≥ 500 kbps ≤ 10−2 ≤ 10× 10−3 s idem

Socket between applications and destinations

Socket Application Destination

1 App1 Addr1
. . .

with a cost function to identify good solutions. Based on
the best found solution, parameters of the network stack
are adjusted to achieve better performance.

An early prototype implementation under Linux has
been presented. Additionaly, the computation time of the
chosen constraint solver has been evaluated with resaon-
able numbers of constraints to ensure the feasability of this
approach.

Future work will focus on refining the prototype into a
complete implementation of our framework. This includes
integrating more contextual information and a non-naive
data unification process. We plan to evaluate the perfor-
mance of our global optimization in real experiments and
compare the results with similar control systems like the
CALM Manager.

Acknowledgement

The authors would like to thank Michael Maher for the
insight he provided about constraint programming and the
initial MiniZinc model of the problem.

References

[1] ISO/TC204 WG16, “ISO/DIS 21210:2009: Intelligent transport
systems — Communications Access for Land Mobiles —
CALM IPv6 Networking,” 2009. [Online]. Available: http:
//www.iso.org/iso/catalogue detail.htm?csnumber=46549

[2] M. Tsukada, O. Mehani, and T. Ernst, “Simultaneous usage
of NEMO and MANET for vehicular communication,” in
TridentCom 2008, 4th International Conference on Testbeds
and Research Infrastructures for the Development of Networks
& Communities, March 2008. [Online]. Available: http://
portal.acm.org/citation.cfm?doid=1390576.1390592

[3] L. Qin and T. Kunz, “Survey on mobile ad hoc network
routing protocols and cross-layer design,” Carleton University,
Tech. Rep. SCE-04-14, August 2004. [Online]. Available:
http://kunz-pc.sce.carleton.ca/Thesis/RoutingSurvey.pdf

[4] N. Montavont and T. Noël, “Stronger interaction between link
layer and network layer for an optimized mobility management
in heterogeneous IPv6 networks,” Pervasive and Mobile
Computing, vol. 2, no. 3, pp. 233–261, September 2006. [Online].
Available: http://dx.doi.org/10.1016/j.pmcj.2006.02.001

[5] M. Chiang, “To layer or not to layer: balancing transport and
physical layers in wireless multihop networks,” in INFOCOM
2004, 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 4, March 2004, pp. 2525–2536.
[Online]. Available: http://dx.doi.org/10.1109/INFCOM.2004.
1354673

[6] A. Baig, L. Libman, and M. Hassan,“Performance enhancement
of on-board communication networks using outage prediction,”
IEEE Journal on Selected Areas in Communications, vol. 24,
no. 9, pp. 1692–1701, September 2006. [Online]. Available:
http://dx.doi.org/10.1109/JSAC.2006.875108

[7] V. Kawadia and P. R. Kumar, “A cautionary perspective on
cross-layer design,” IEEE Wireless Communications, vol. 12,
no. 1, pp. 3–11, February 2005. [Online]. Available: http:
//dx.doi.org/10.1109/MWC.2005.1404568

[8] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated
congestion management architecture for Internet hosts,”
SIGCOMM Computer Communication Review, vol. 29,
no. 4, pp. 175–187, October 1999. [Online]. Available:
http://dx.doi.org/10.1145/316194.316220

[9] B. L. Tierney, D. Gunter, J. Lee, M. Stoufer, and J. B. Evans,
“Enabling network-aware applications,” in HPDC-10 (2001),
10th IEEE International Symposium on High Performance
Distributed Computing, April 2001, pp. 281–288. [Online].
Available: http://dx.doi.org/10.1109/HPDC.2001.945196

[10] T. Dunigan, M. Mathis, and B. Tierney, “A TCP
tuning daemon,” in SC 2002, ACM/IEEE conference on
Supercomputing, November 2002, pp. 9–25. [Online]. Available:
http://dx.doi.org/10.1109/SC.2002.10023

[11] E. Borgia, R. Bruno, M. Conti, F. Delmastro, E. Gregori
et al., “MobileMAN architecture, protocols and services,” EC
âĂİ Information Society TechnologiesâĂİ Programme, Tech.
Rep., October 2004. [Online]. Available: http://cnd.iit.cnr.it/
mobileMAN/deliverables/MobileMAN Deliverable D5.pdf

[12] M. Sooriyabandara, T. Farnham, M. Wellens, J. Riihijärvi,
P. Mähönen et al., “Unified link layer API: A generic
and open API to manage wireless media access,” Computer
Communications, vol. 31, no. 5, pp. 962–979, March 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2007.
12.025

[13] S. Herborn, H. Petander, and M. Ott, “Predictive context aware
mobility handling,” in ICT 2008, 15th IEEE International
Conference on Telecommunications, 2008, pp. 1–6. [Online].
Available: http://dx.doi.org/10.1109/ICTEL.2008.4652647

[14] B. M. Smith, “A tutorial on constraint programming,”
University of Leeds, Tech. Rep. 95.14, April 1995. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.15.9886

[15] J. H. Salim, H. M. Khosravi, A. Kleen, and A. Kuznetsov,
“Linux Netlink as an IP services protocol,” RFC 3549
(Informational), July 2003. [Online]. Available: http://tools.
ietf.org/html/rfc3549

[16] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey,
M. Garćıa de la Banda et al., “The design of
the Zinc modelling language,” Constraints, vol. 13,
no. 3, pp. 229–267, September 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10601-008-9041-4

http://www.iso.org/iso/catalogue_detail.htm?csnumber=46549
http://www.iso.org/iso/catalogue_detail.htm?csnumber=46549
http://portal.acm.org/citation.cfm?doid=1390576.1390592
http://portal.acm.org/citation.cfm?doid=1390576.1390592
http://kunz-pc.sce.carleton.ca/Thesis/RoutingSurvey.pdf
http://dx.doi.org/10.1016/j.pmcj.2006.02.001
http://dx.doi.org/10.1109/INFCOM.2004.1354673
http://dx.doi.org/10.1109/INFCOM.2004.1354673
http://dx.doi.org/10.1109/JSAC.2006.875108
http://dx.doi.org/10.1109/MWC.2005.1404568
http://dx.doi.org/10.1109/MWC.2005.1404568
http://dx.doi.org/10.1145/316194.316220
http://dx.doi.org/10.1109/HPDC.2001.945196
http://dx.doi.org/10.1109/SC.2002.10023
http://cnd.iit.cnr.it/mobileMAN/deliverables/MobileMAN_Deliverable_D5.pdf
http://cnd.iit.cnr.it/mobileMAN/deliverables/MobileMAN_Deliverable_D5.pdf
http://dx.doi.org/10.1016/j.comcom.2007.12.025
http://dx.doi.org/10.1016/j.comcom.2007.12.025
http://dx.doi.org/10.1109/ICTEL.2008.4652647
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9886
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9886
http://tools.ietf.org/html/rfc3549
http://tools.ietf.org/html/rfc3549
http://dx.doi.org/10.1007/s10601-008-9041-4

	Introduction
	Motivating Example Scenarios
	Transport Adaptation to Network Changes
	Routing around a Rogue VANET Node

	Context-Based Optimization Framework
	Overall Description
	Global Context from Separate Information
	Constraint Satisfaction Problem

	Prototype Implementation
	Stack Information Collection
	Constraint Satisfaction Solver

	Conclusion
	References

